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1. Introduction 

The pandemic caused by the severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2) generated much interest on the basic 
pathogenetic mechanisms through which SARS-CoV-2 damages diverse 
organ systems including the lungs, heart, brain, kidney, and vasculature. 
[1] In June 2020, the European Journal of Internal Medicine hosted a 
paper from our group which presented a unified pathophysiological 
hypothesis on some basic aspects of the disease [2]. 

We moved from the observation that the imbalance between angio-
tensin II (Ang II) and Angiotensin1-7 (Ang1,7) caused by the interaction 
between SARS-CoV-2 and the angiotensin converting enzyme 2 (ACE2) 
receptors may be expected to play an important pivotal role on the 
clinical picture and outcome of COVID-19 [2]. Then, we raised the hy-
pothesis that the reduced catalytic efficiency of ACE2 resulting from 
viral occupation and down-regulation of these receptors could be 
particularly detrimental not in subjects with ACE2 up-regulation, as 
initially believed, but, rather, in subjects with baseline deficiency of 
ACE2 receptor activity [2,3]. 

The main aim of this review is to summarize the evidence accrued 
over the past 12 months in this field, spanning from basic researches to 

human clinical studies. 

2. Interaction of SARS-CoV-2 with ACE2 

The mechanisms of virus entry into cells is mediated by the efficient 
binding of the Spike protein (which comprises S1 and S2 subunits) to 
ACE2 [4,5]. The ACE2 is a homolog to ACE with 40% structural identity 
[6]. It is a trans-membrane type I glycoprotein (mono-carboxypeptidase) 
composed by 805 amino acids which uses a single extracellular catalytic 
domain to cleave an amino acid from angiotensin I (Ang I) to form 
angiotensin1-9 (Ang1-9) and to remove an amino acid from Ang II to form 
Ang1-7 [7]. ACE2 receptors are expressed in almost all human tissues 
(heart, vessels, gut, adipose tissue, thyroid, lung, kidney, testis, and 
brain) [8]. 

Briefly, the viral entry process consists of three main steps [4,9]. In 
the first step, the N-terminal portion of the viral protein unit S1 binds to 
a pocket of the ACE2 receptor [4]. In the second step, the protein 
cleavage between the S1 and S2 units is operated by the receptor 
transmembrane protease serine 2 (TMPRSS2, structurally contiguous to 
ACE2 receptor) which facilitates viral ingress and down-regulates sur-
face ACE2 expression [10]. In the last step, the viral S2 unit undergoes a 
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conformational rearrangement after the cleavage of the viral protein by 
TMPRSS2, driving the fusion between the viral and cellular membrane 
and promoting the entry of the virus into cell, release of its content, 
replication, and infection of other cells [11]. 

3. Angiotensin II “storm” 

As aforementioned, the failure of the counter-regulatory renin- 
angiotensin-aldosterone system (RAAS) axis, characterized by the 
decrease of ACE2 expression and generation of the protective Ang1,7, 
appears to be strictly implicated in the development of severe forms of 
COVID-19 [2,3,12]. More specifically, ACE2 internalization, down-
regulation and malfunction predominantly due to viral occupation, 
dysregulates the protective RAAS axis with increased generation and 
activity of Ang II and reduced formation of Ang1,7 [2,3,12]. 

This has been corroborated by the findings of recent investigations 
supporting the evidence of the development of an “Ang II storm” [13] or 
“Ang II intoxication” [14] during the SARs-CoV-2 infection. The specific 
mechanisms of this condition are depicted in Figure 1. 

The interplay between SARS-CoV-2 infection and RAAS is explained 
by the binding of S protein to ACE2 which triggers enzyme internali-
zation via endocytosis [15] and down-regulation of its cell surface ac-
tivity [10,16] with consequent increase in serum levels of Ang II (which 
remains almost intact because of the lack of conversion to Ang1,7). 
Indeed, in the absence of ACE2 due to viral blockade and 
down-regulation, both Ang I and Ang II accumulate. Nonetheless, ACE is 
not engaged by the virus and the conversion of Ang I to Ang II continues 
unabated, leading to unopposed accumulation of Ang II. Elevated levels 
of Ang II develop an abnormal activation of the Ang II/Ang II type 1 
receptor (AT1R) component of the RAAS, producing end-organ damage 
through the activation of pro-inflammatory cascade (also enhanced by 
the activation of the complement system by pattern recognition re-
ceptors [PRRs]), pro-fibrotic cascade, pro-coagulant state, mitochon-
drial oxidative damage, reactive oxygen species production, and 

interleukin (IL) 6 (IL-6) up-regulation [14,15,17-19]. 
Furthermore, Ang II upregulation and accumulation activates dis-

integrin and metalloproteinase domain-containing protein 17 
(ADAM17) activity (perpetuating membrane shedding of ACE2 and 
RAAS over-activation), and the nuclear factor kappa-light-chain- 
enhancer of activated B cells (NF-kappaB) pathway (as mediated by 
the AT1R activation) [20,21]. 

These mechanisms lead to increased production of IL-6, tumor ne-
crosis factor-α, IL-1β, IL-10, and IL-12 (citokynes storm) [22,23]. Finally, 
loss of activity of ACE2 reduce deactivation of des-Arg9 bradykinin 
(DABK, which is a well-known pulmonary inflammatory factor) [24,25] 
promoting a pro-inflammatory synergistic effect with the derangement 
of the ACE2/Ang II/AT1R and ACE2/DABK/bradykinin B1 receptor 
(BKB-1R) axes [19,26,27]. 

ACE2 downregulation and malfunction (with subsequent imbalance 
in the RAAS and increase in Ang II levels) is implicated in several models 
of acute lung injury [28]. More specifically, downregulation of ACE2 is 
associated with alveolar wall thickening, bleeding, edema, and the 
recruiting of inflammatory cells [28]. 

In the specific setting of COVID-19, an investigation of epidemio-
logical, clinical, laboratory, radiological characteristics, and potential 
biomarkers to predict disease severity in SARS-CoV-2 infected patients 
in Shenzen, demonstrated that Ang II levels in the plasma samples were 
significantly increased and linearly associated with viral load and lung 
damage in critically ill patients [29]. 

The findings in another study were similar and documented that 
plasma Ang II elevation was closely related to the SARS-CoV-2 infection 
[30]. Specifically, Wu and co-workers investigated the plasma Ang II 
levels in 82 non-hypertensive patients (42 mild cases, 25 severe cases, 
and 15 critically ill cases) infected by SARS-CoV-2 and 12 critically ill 
patients not infected by SARS-CoV-2 serving as control [30]. They 
documented that Ang II level was higher than that of normal range in the 
majority of COVID-19 cases (90.2%), especially the plasma Ang II pos-
itive rate in the critically ill COVID-19 patients (100%) [30]. 

Fig. 1. Mechanisms implicated in the development of Angiotensin II storm during the SARS-CoV-2 infection. The deleterious effects of this phenomenon are also 
depicted. See text for details. Legend: AI=angiotensin I; AII=angiotensin II; A1,7=angiotensin1,7; A1,9=angiotensin1,9; ACE2=angiotensin coverting enzyme 2; 
ADAM17= disintegrin and metalloproteinase domain-containing protein 17; AT1R=angiotensin II type 1 receptor; BKB-1R=bradykinin B1 receptor; DABK= des-Arg9 
bradykinin; MasR=Mas receptor; NF-kB= nuclear factor kappa-light-chain-enhancer of activated B cells; PRRs=pattern recognition receptors; SARS-CoV-2= severe 
acute respiratory syndrome coronavirus-2. 
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Furthermore, they demonstrated a positive correlation between plasma 
Ang II levels and COVID-19 severity [30]. 

Conversely, a study by Rieder and co-workers [31] showed that 
mean serum concentrations of ACE2 and Ang II did not differ between 
SARS-CoV-2 positive patients and a control group of subjects presenting 
with similar symptoms in the emergency unit. Nonetheless, most of the 
patients included in this study had non-severe forms of COVID-19 and 
results reinforced the notion that RAAS dysregulation is predominantly 
to be expected only among critically ill COVID-19 patients [31]. 

4. Phenotypes of ACE2 deficiency 

Observational studies and meta-analyses reported older age, male 
sex, and the presence of comorbidities (including hypertension, chronic 
obstructive pulmonary disease [COPD], diabetes mellitus, and history of 
cardiovascular events) as risk factors for increased disease severity in 
COVID-19 (2-1) [32–39]. Remarkably, all these conditions are associ-
ated with RAAS dysregulation and ACE2 deficiency [15,40,41] 
(Figure 2). 

4.1. Sex 

Different susceptibility to severe forms of COVID-19 between males 
and females may be explained by the different expression of ACE2. The 
human ACE2 gene is located on the X chromosome (Xp22.2 chromo-
somal region), in sites commonly escaping the inactivation (transcrip-
tional silencing) of one X chromosome in mammalian XX cells [42]. 

Nonetheless, the silencing is not complete and some of the genes present 
on the silenced chromosome (including ACE2 gene) still undergo tran-
scription and translation, "escaping" the inactivation [43]. As a conse-
quence, XX cells over-express genes located in XCI sites, like ACE2 [44]. 
Furthermore, estrogen, the primary female sex hormone, regulates 
different components of the RAAS, including the up-regulation of the 
expression of ACE2 [45]. 

4.2. Age 

Generally, respiratory viral infections are more frequent and severe 
in children than in adults. Nonetheless, the evidence that older age is an 
established risk factor for mortality and the marked disparities in disease 
prevalence and severity of COVID-19 between adult and paediatric 
populations [46] revealed a different scenario for SARS-CoV-2 infection. 

Notably, ageing has been associated with decline in levels of ACE2 
expression in experimental and human models [46–49]. Xie and 
co-workers [48] analysed the expression of ACE2 and the effect of 
ageing on its expression in lungs of rats. The analysis of the immuno-
reactive bands documented that ACE2 was predominantly expressed in 
alveolar epithelium, bronchiolar epithelium, endothelium and smooth 
muscle cells of pulmonary vessels with similar content [48]. Further-
more, ACE2 expression was markedly reduced among older group [48]. 

Similarly, a study by Yoon and coworkers [47] evaluating the asso-
ciation between the change in the expression of ACE2 and arterial 
ageing in mice demonstrated that the expressions of ACE2 decreased 
with age [47]. 

Fig. 2. Pre-existing ACE2 deficiency (as documented for elderly patients, diabetes mellitus, COPD, hypertension, and chronic disease) contributes to an unfavourable 
outcome in SARS-CoV-2 infection. See text for details. Legend: AII=angiotensin II; A1,7=angiotensin1,7; ACE2=angiotensin coverting enzyme 2; RAAS=renin- 
angiotensin-aldosterone system; SARS-CoV-2= severe acute respiratory syndrome coronavirus-2. 
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A bioinformatic analysis of publicly available human genomics and 
transcriptomics gene expression data by Chen and coworkers [49] 
demonstrated that ACE2 expression decreases during ageing in many 
tissues. Specifically, the Authors documented a decrease in ACE2 
expression with age in blood, adrenal gland, colon, nervous system, 
adipose tissues, and salivary gland [49]. 

4.3. Lung disease (with hypoxia) 

One of the main clinical feature of lung disease, including COPD, is 
hypoxia [50]. In a normoxic condition, the dynamic balance between 
the expression of ACE and ACE2 regulates the RAAS system. However, 
under conditions of chronic hypoxia ACE is upregulated by factor 1 
(HIF-1) in human pulmonary artery smooth muscle cells (hPASMCs), 
whereas ACE2 expression is markedly decreased [51]. Furthermore, a 
recent investigation of the binding affinity between receptor-binding 
domain (RBD) and S1 at different oxygen concentration levels docu-
mented that ACE2 is down-regulated under hypoxia [52]. 

4.4. Cardiovascular risk factors and comorbidities 

RAAS over-activation in hypertension increases AT1R stimulation by 
Ang II, promoting downregulation of ACE2 and upregulation of ACE 
expression [53]. Disruption of tissue ACE/ACE2 balance results in 
changes in blood pressure (BP), with increased ACE2 expression pro-
tecting against increased BP, and ACE2 deficiency leading to increased 
BP [54,55]. 

Similarly, diabetes mellitus is associated with a reduction in ACE2 
expression and with Ang1,7-generating system downregulation [56,57]. 

ACE2 deficiency is also documented in several experimental models 
of cardiac complications, including left ventricular systolic dysfunction 
and heart failure with pulmonary congestion, myocardial infarction, and 
coronary artery disease [58–62]. The absence of ACE2 also results in 
increased mortality and infarct size expansion, adverse ventricular 
remodelling and greater systolic dysfunction after myocardial infarction 

[61]. 

5. Therapeutic strategies 

Some hypotheses have been made on the potential therapeutic 
approach of restoring the ACE2/Ang1-7 pathway. The development of 
ACE2 inhibitors, approaches to enhance ACE2 (including soluble ACE2 
and ACE2 activators), and pharmacological modulation of RAAS may be 
useful to build an armamentarium finalized to block the transition from 
infection to severe forms of COVID-19. 

A reasonable treatment strategy deserving further investigation 
would be delivering functional soluble ACE2 forms to trap the virus and 
to stimulate the RAAS protective pathway (Figure 3, left panel). Indeed, 
high-affinity variants of soluble ACE2 bind to spike protein of SARS- 
CoV-2 and thereby neutralize infection as decoy receptors. These high- 
affinity variants outcompete native ACE2 present on cells by binding 
with the S protein of SARS-CoV-2, making native ACE2 on cell surfaces 
readily available for conversion of Ang II to Ang1,7 [63]. 

Although clinical evidence on this aspect is scarce, the administra-
tion of the soluble human recombinant ACE2 was able to reverse the 
lung-injury process in preclinical models of other viral infections [64, 
65]. 

Among the different therapeutic strategies, the blockade of SARS- 
CoV-2 from binding to human cell receptors is the object of both in- 
silico and in-vivo experiments [66,67]. Keeping in mind that 
SARS-CoV-2 uses ACE2 as a Trojan horse to invade target cells, ACE2 
inhibitors with insurmountable inhibition of ACE2, blocking or attenu-
ating the binding of the viral Spike protein to the pocket of the ACE2 
receptor, have the potential to prevent viral internalization into 
ACE2-expressing cells. However, pharmacological inhibition of ACE2 
may exert enzymatic activities with or without inactivation of ACE2. 
Thus, the real challenge in the field of ACE inhibition is to modulate 
SARS-CoV-2 binding to ACE2 without blocking the crucial protective 
properties of this enzyme (Figure 3, middle panel) [12]. 

The increase in Ang II levels in COVID-19 also suggests that the use of 

Fig. 3. Potential therapeutic approaches of restoring the ACE2/Angiotensin1-7 pathway or to trap the virus and to stimulate the renin-angiotensin-aldosterone system 
protective pathway. See text for details. Legend: AII=angiotensin II; A1,7=angiotensin1,7; ACE2=angiotensin coverting enzyme 2; ACE-Is=ACE inhibitors; 
ARBs=angiotensin receptor blockers; AT1R=angiotensin II type 1 receptor; DRIs=direct renin inhibitors; RAAS=renin-angiotensin-aldosterone system; SARS-CoV-2=
severe acute respiratory syndrome coronavirus-2. 
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drugs balancing the RAAS may be used repurposing on SARS-CoV-2 
infected patients [12,68,69] (Figure 3, right panel). Indeed, cardiac 
ACE2 expression is markedly enhanced in response to RAAS blockade by 
ACE-inhibitors (ACE-Is) [70], angiotensin receptor blockers (ARBs) 
[71–73], and even by mineralocorticoid receptor (MR) antagonists [73, 
74]. 

In this context, a systematic review and meta-analysis of 52 studies 
evaluated the clinical outcomes among 101949 patients with COVID-19 
who did and did not receive ACE-Is or ARBs [75]. The Authors 
demonstrated a significantly lower risk of multivariable-adjusted mor-
tality and severe adverse events among patients who received 
ACE-inhibitors or ARBs compared with patients who did not [75]. 

Notably, a subgroup analysis of patients with hypertension indicated 
significant decreases in mortality and severe adverse events among pa-
tients receiving ACE-inhibitors or ARBs in both unadjusted and adjusted 
analyses [75]. 

6. Vaccines and ACE2 interactions 

SARS-CoV-2 vaccination is now offering the opportunity to come out 
of the current phase of the pandemic. However, some concerns 
regarding the safety of SARS-CoV-2 vaccines have been recently raised, 
mostly based on scattered reports of thromboembolic events [76–79]. 

It has been recently suggested that free-floating Spike proteins 
released by the destroyed cells previously targeted by vaccines may 
interact with ACE2 of other cells, thereby promoting ACE2 internaliza-
tion and degradation [80,81]. This mechanism may enhances the 
imbalance between Ang II overactivity and Ang1-7 deficiency through 
the loss of ACE2 receptor activity, which may contribute to trigger 
inflammation, thrombosis, and other adverse reactions [82,83]. 

Of note, spike proteins produced upon vaccination have the native- 
like mimicry of SARS-CoV-2 Spike protein’s receptor binding function-
ality and prefusion structure [84]. 

7. Conclusions 

At the beginning of the pandemic it was assumed that a mild or 
moderate deficiency of ACE2 could protect from viral infection. To date, 
this hypothesis appears to be rejected by the evidence that symptoms, 
clinical presentation and outcome of COVID-19 may be consistently 
related to molecular changes and dysregulation of the RAAS [13,15,85, 
86]. The interaction between ACE2 and SARS-CoV-2 Spike protein in-
duces a substantial loss of ACE2 receptor activity from the external site 
of the cellular membrane. This phenomenon leads to less Ang II inacti-
vation and less generation of Ang1-7 (imbalance between Ang II over-
activity and Ang1-7 deficiency), which may ultimately trigger 
inflammation, thrombosis, and other severe adverse reactions influ-
encing the outcome of COVID-19 [2,3,13,15]. 

The degree of ACE2 expression and the biological relevance of ACE2 
deficiency may vary depending on the presence of specific characteris-
tics and conditions (phenotypes of ACE2 deficiency). Important phe-
notypes including older age, hypertension, diabetes, cardiovascular 
disease and COPD [2,3,46] share a variable degree of ACE2 deficiency 
and are associated with more severe forms of COVID-19. Thus, it is very 
likely that is not the ‘excess’, but the deficiency of ACE2 receptor activity 
that complicates the outcome of COVID-19. 

In the SARS-CoV-2 era, we may assume that ACE2 receptors are not 
dangerous Trojan horses, but useful defense weapons against the 
adverse mechanisms associated with the disease. 
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