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Abstract: Septic cardiomyopathy (SCM) is a serious complication caused

by sepsis that will further exacerbate the patient’s prognosis. However,

immune-related genes (IRGs) and their molecular mechanism during septic

cardiomyopathy are largely unknown. Therefore, our study aims to explore the

immune-related hub genes (IRHGs) and immune-related miRNA-mRNA pairs

with potential biological regulation in SCM bymeans of bioinformatics analysis

and experimental validation.

Method: Firstly, screen di�erentially expressed mRNAs (DE-mRNAs) from the

dataset GSE79962, and construct a PPI network of DE-mRNAs. Secondly,

the hub genes of SCM were identified from the PPI network and the hub

genes were overlapped with immune cell marker genes (ICMGs) to further

obtain IRHGs in SCM. In addition, receiver operating characteristic (ROC) curve

analysis was also performed in this process to determine the disease diagnostic

capability of IRHGs. Finally, the crucial miRNA-IRHG regulatory network of

IRHGs was predicted and constructed by bioinformatic methods. Real-time

quantitative reverse transcription-PCR (qRT-PCR) and dataset GSE72380 were

used to validate the expression of the key miRNA-IRHG axis.

Result: The results of immune infiltration showed that neutrophils, Th17 cells,

Tfh cells, and central memory cells in SCM had more infiltration than the

control group; A total of 2 IRHGs were obtained by crossing the hub gene with

the ICMGs, and the IRHGs were validated by dataset and qRT-PCR. Ultimately,

we obtained the IRHG in SCM: THBS1. The ROCcurve results of THBS1 showed

that the area under the curve (AUC) was 0.909. Finally, the miR-222-3p/THBS1

axis regulatory network was constructed.
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Conclusion: In summary, we propose that THBS1 may be a key IRHG, and can

serve as a biomarker for the diagnosis of SCM; in addition, the immune-related

regulatory network miR-222-3p/THBS1 may be involved in the regulation

of the pathogenesis of SCM and may serve as a promising candidate for

SCM therapy.

KEYWORDS

septic cardiomyopathy, miRNA, immune-related gene, biomarker, miRNA-mRNA

regulatory network

Introduction

Septic cardiomyopathy (SCM) is septic myocardial damage

caused by severe sepsis and is an important cause of high

mortality in non-cardiac intensive care units (1). The current

general understanding of SCM is acute cardiac dysfunction

caused by a dysregulated host response to infection (2).

In addition, the presence of SCM in sepsis patients will

induce/aggravate circulatory dysfunction and further deteriorate

peripheral organ function, resulting in the mortality rate of

patients up to 70% (3). Therefore, in-depth research on septic

cardiomyopathy is very necessary.

Cardiomyocyte injury and myocardial contractile

dysfunction are the main pathophysiological processes in

SCM. The current clinical diagnosis of SCM can only rely

on myocardial injury factors and echocardiography, which

limits early intervention in SCM patients (4–8). Therefore, it

is crucial to select appropriate predictive biomarkers for early

intervention in SCM.

MicroRNAs (miRNAs) are a class of transcripts without

protein-coding functions and play a regulatory role in

inflammation (9), growth and development, and biological

metabolism in eukaryotes (10). They can regulate gene

expression by promoting messenger RNA (mRNA) degradation

or inhibiting the mRNA post-transcriptional process (11, 12).

With the development of high-throughput gene expression

profiling technology, microarray analysis has been widely used

to monitor the abnormal expression of genes or miRNAs

in diseases (13). More importantly, circulating miRNAs are

proposed as biomarkers for disease diagnosis and monitoring

in inflammatory heart disease and sepsis-induced cardiac

insufficiency (14, 15).

In SCM, abnormal/excessive immune responses are also

considered to be one of the important causes of cardiomyocyte

dysfunction. Previous studies have shown that interleukin-

1β (IL-1β), activated by NLRP3 inflammasome, impairs

cardiac function and causes cardiogenic atrophy and diastolic

dysfunction in patients with sepsis (16). Activation of the

cholinergic anti-inflammatory pathway (CAP) central alpha7

nicotinic acetylcholine receptor (alpha7nAChR) reverses

immunosuppression and attenuates multiorgan dysfunction in

T lymphocytes from septic rats (17). This suggests that immune

response is an important process in myocardial injury in SCM.

However, the exact mechanisms of the immune response and

IRGs in SCMmyocardial injury remain unclear.

Therefore, to determine the role of immune responses

in SCM, we obtained DE-mRNAs in datasets GSE79962 by

bioinformatics analysis. The ImmucellAI tool was used to

analyze the differences in immune cell infiltration between

the SCM and control samples of the dataset GSE79962.

Subsequently, GO/KEGG enrichment analysis was performed

on the DE-mRNAs. Based on the STRING online database,

we constructed a protein-protein interaction (PPI) network

for DE-mRNA and used Cytoscape-MCODE and CytoHubba

plugins to identify significant clusters and central genes in

the PPI. Then, we overlapped the hub genes with immune

cell marker genes (ICMGs) to obtain immune-related hub

genes (IRHGs) during SCM. qRT-PCR and GEO datasets were

used to validate the expression of IRHGs. Not only that, after

screening the target IRHGs, we predicted the upstream miRNAs

of IRHGs from the relevant database. After dataset validation,

the key immune-related miRNA-IRHG pair was constructed.

We summarize the overall workflow of this study and present

it in Figure 1.

Materials and methods

Expression profile of mRNA and miRNA in
microarray data from human and mice
with septic cardiomyopathy

Three human and mice septic cardiomyopathy datasets

(GSE79962, GSE141864 and GSE72380) were obtained

from the Gene Expression Omnibus (GEO) (https://www.

ncbi.nlm.nih.gov/geo/) database. Datasets GSE79962 and

GSE141864 analyzed mRNA transcript changes in cardiac

tissue from patients with septic cardiomyopathy, and

dataset GSE72380 collected cardiac tissue from septic

mice for miRNA microarray sequencing. The detailed
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FIGURE 1

The overall workflow of this study. De-mRNAs: Di�erentially expressed mRNAs; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and

Genomes; ICMGs: immune cell marker genes.

data of these SCM datasets are presented in Table 1.

Therefore, we used these 3 datasets to screen and identify

hub genes and hub gene-related miRNA-mRNA regulatory

networks. The overall flow chart of this study is shown in

Figure 1.

Immune cell infiltrate analyses

ssGSEA enrichment analysis is a method for assessing

immune cell infiltration in samples in a dataset based

on the expression levels of immune cell-specific marker

genes. ImmuCellAI (ImmuCellAI, https://bioinfo.life.hust.

edu.cn/web/ImmuCellAI/) (18) is an online tool that uses

ssGSEA enrichment analysis to investigate immune cell

infiltration in expression matrices. Upload the dataset’s

gene expression matrix to ImmuCellAI and compare it to

the defined immune cell-related gene expression matrix,

evaluate the quantity of 24 various types of immune cells

in the samples, and compare immune cell infiltration

in different samples. Then cluster analysis of immune

cell infiltration matrix data, and draw a two-dimensional

PCA cluster diagram. The correlation heat map shows

the correlation of genes in 24 types of immune cell

infiltration, and the violin plot shows the difference in

immune cell infiltration.

Di�erentially expressed transcript
analysis

The GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) tool

is an R-based web application for identifying differentially

expressed mRNAs (DE-mRNAs) and miRNAs (DE-

miRNAs) between SCM and control groups. A p-value

< 0.05 and an absolute fold-change (|FC|) > 2.5 as the
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TABLE 1 Information on selected microarray datasets.

GEO accession Experiment type Species Experimental model Source tissue Sample Data Attribute

Control SCM

GSE79962 Array Human Sepsis Heart 11 20 mRNA Test set

GSE141864 Array Human Sepsis Heart 2 8 mRNA Validation set

GSE72380 Array Mice LPS-induced Heart 6 6 miRNA Validation set

LPS, lipopolysaccharide.

threshold for screening DE-mRNAs and DE-miRNAs.

We use a volcano plot to show the overall expression

and distribution of genes in the dataset GSE79962, and

a heatmap to show the intergroup expression of the top

30 DE-mRNAs.

Functional enrichment analyses

To understand the characteristic biological properties

of DE-mRNAs, the Metascape bioinformatics resource

(Metascape, a gene annotation and analysis resource, http://

metascape.org, version 3.5) (19) was used for functional

enrichment analysis. A minimum overlap value of 3, p-

value cutoff of 0.05 and minimum enrichment of 1.5 were

set as thresholds. The DE-mRNAs screened in dataset

GSE79962 were imported into Metascape to evaluate enriched

biological process (BP), molecular function (MF) and cellular

component (CC), and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways, and used circle diagram

and histograms visualize the enrichment results for GO

and KEGG.

Protein interaction analysis and
acquisition of key gene clusters

Protein-protein interaction (PPI) networks have been

generated from the STRING database (https://string-db.org/)

(20). A rating of 0.4 (medium confidence) used to be set

as a threshold. The number of nodes and edges of the PPI

network is also obtained from STRING. Next, in order to obtain

the gene clusters in the PPI network, the Cytoscape-Minimal

Common Oncology Data Elements (MCODE) was used to

identify significant gene clusters and obtain cluster scores (filter

criteria: degree cut-off = 2; node score cut-off = 0.2; k-core

= 2; max depth = 100) and visualize it in Cytoscape. The

method of using MCODE to identify key genes of the network

is recognized, and scholars have used this method to conduct

related research (21).

Acquisition of SCM hub genes and SCM
immune-related hub genes, and
determination of target genes

CytoHubba is a plugin that can measure the importance

of nodes in the network based on network characteristics.

The Maximal Clique Centrality (MCC) algorithm was used in

CytoHubba to filter the top 50 genes of the PPI network (22).

Then, to further elucidate whether these 50 hub genes have

immunomodulatory roles, we obtained 782 immune cell marker

genes (ICMGs) from published articles (23), and crossed 50 hub

genes with ICMGs to obtain hub genes with immunomodulatory

effects in SCM, namely immune-related hub genes (IRHGs).

IRHGs was further validated using dataset GSE141864 to

identify target genes. This analysis of immune-related genes

associated with diseases is practical and has been used by

scholars for related studies. It is worth emphasizing that this

analysis of immune-related genes associated with diseases is

practical and has been used by scholars for related studies (24).

SCM sample collection and real-time
quantitative reverse
transcription-polymerase chain reaction
analysis

Peripheral blood mononuclear cells (PBMCs) samples of

patients with septic cardiomyopathy were collected from the

Department of Emergency Medicine of the First Affiliated

Hospital of Kunming Medical University, Yunnan Province,

and medical information was collected by the Declaration

of Helsinki after informed consent of the patients. This

study was approved by the Ethics Committee of the First

Affiliated Hospital of Kunming Medical University, Yunnan

Province [(2022), ethical review L, No.23]. Male patients with

a definite history of sepsis and a reduced left ventricular ejection

fraction (LVEF) <0.5 and a confirmed diagnosis of septic

cardiomyopathy were included in the study. Exclusion criteria

were patients with: (i) a combination of severe arrhythmias; (ii)

a combination of significant organ failure, including liver and

kidney; and (iii) the presence of possible myocardial suppression
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TABLE 2 50 hub genes identified by MCC algorithms of CytoHubba.

Gene symbol Description Log2FC P-value Regulation

NDUFS3 NADH: ubiquinone oxidoreductase core subunit S3 −1.737120445 0.0000114 Downregulated

NDUFS7 NADH: ubiquinone oxidoreductase core subunit S7 −1.574897275 0.00561 Downregulated

NDUFAB1 NADH: ubiquinone oxidoreductase subunit AB1 −2.542003558 0.00000009 Downregulated

NDUFS8 NADH: ubiquinone oxidoreductase core subunit S8 −1.579567009 0.0000371 Downregulated

CYC1 Cytochrome c1 −2.076895721 0.00000486 Downregulated

NDUFA9 NADH: ubiquinone oxidoreductase subunit A9 −2.266993522 0.00000073 Downregulated

UQCRFS1 Ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1 −1.705705436 0.000108 Downregulated

NDUFA8 NADH: ubiquinone oxidoreductase subunit A8 −2.482463744 0.00000684 Downregulated

NDUFB6 NADH: ubiquinone oxidoreductase subunit B6 −2.039390389 0.0000192 Downregulated

NDUFB9 NADH: ubiquinone oxidoreductase subunit B9 −2.014906417 0.00000284 Downregulated

UQCRH Ubiquinol-cytochrome c reductase hinge protein −3.111336722 0.0000538 Downregulated

NDUFB5 NADH: ubiquinone oxidoreductase subunit B5 −2.941401697 0.00000012 Downregulated

NDUFS6 NADH: ubiquinone oxidoreductase subunit S6 −1.564226777 0.000194 Downregulated

UQCRB Ubiquinol-cytochrome c reductase binding protein −2.265991794 0.0000501 Downregulated

NDUFB3 NADH: ubiquinone oxidoreductase subunit B3 −2.914753787 0.00000001 Downregulated

NDUFS4 NADH: ubiquinone oxidoreductase subunit S4 −1.666024407 0.000942 Downregulated

NDUFC1 NADH: ubiquinone oxidoreductase subunit C1 −1.694958833 0.0000612 Downregulated

COX7A2 Cytochrome c oxidase subunit 7A2 −1.691922457 0.0000896 Downregulated

COA6 Cytochrome c oxidase assembly factor 6 −1.844743374 0.000682 Downregulated

UQCRHL Ubiquinol-cytochrome c reductase hinge protein like −2.243260438 0.00000231 Downregulated

SDHD Succinate dehydrogenase complex subunit D −1.899544757 0.0000576 Downregulated

SDHA Succinate dehydrogenase complex flavoprotein subunit A −1.848489446 0.000278 Downregulated

PDHB Pyruvate dehydrogenase E1 subunit beta −2.406816797 0.00000013 Downregulated

CCL2 C-C motif chemokine ligand 2 5.98480273 0.000357 Upregulated

CXCL8 C-X-C motif chemokine ligand 8 2.48555523 0.0337 Upregulated

STAT3 Signal transducer and activator of transcription 3 3.798381512 0.00000003 Upregulated

HIF1A Hypoxia-inducible factor 1 subunit alpha 2.044141975 0.0046 Upregulated

CTNNB1 Catenin beta 1 1.617683709 0.000253 Upregulated

TP53 Tumor protein p53 2.528141584 0.00000383 Upregulated

IGF1 Insulin-like growth factor 1 3.239931582 0.00158 Upregulated

TIMP1 TIMP metallopeptidase inhibitor 1 4.349271796 0.000184 Upregulated

ICAM1 Intercellular adhesion molecule 1 2.807022297 0.00599 Upregulated

PECAM1 Platelet and endothelial cell adhesion molecule 1 2.089522968 0.00000645 Upregulated

SERPINE1 Serpin family E member 1 6.890206457 0.000999 Upregulated

VCAM1 Vascular cell adhesion molecule 1 1.83948928 0.0182 Upregulated

EDN1 Endothelin 1 1.946877881 0.0126 Upregulated

DLAT Dihydrolipoamide S-acetyltransferase −2.103045773 0.00000176 Downregulated

ADIPOQ Adiponectin, C1Q and collagen domain containing −3.441462229 0.000137 Downregulated

HMOX1 Heme oxygenase 1 3.518726822 0.00898 Upregulated

SPP1 Secreted phosphoprotein 1 5.222682665 0.0105 Upregulated

disease. Three healthy males matched to the age of the SCM

patients served as controls. Total RNA was isolated using

TRIzol reagent (Invitrogen) followed by amplification grade

(Invitrogen) DNase 1 for further processing.SuperScriptTM III

First-Strand Synthesis SuperMix (Cat. No. 11752050; Thermo

Fisher Scientific Inc.) for reverse transcription of target

genes. Target gene determination was performed using the

StepOnePlusTM Real-Time PCR System (Cat. No. 4376600;

Thermo Fisher Scientific Inc.) with GAPDH as an internal

reference. To quantify miRNA expression, we used an optimized

qRT-PCR assay based on SYBR green. Data were analyzed using

the 2−11Ct method, with U6 (NR_004394.1) as an internal
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TABLE 3 Primer pairs for qRT-PCR used in this study.

Target Primer sequences, 5′-3′ Product

size (bp)

THBS1 Forward: AAGGACTGCGTTGGTGATGT

Reverse: AGCTAGTACACTTCACGCCG

109

miR-

222-3p

Forward: GAGCTACATCTGGCTACTGGGTAA

Reverse: GCGAGCACAGAATTAATACGAC

24

control for target genes, respectively. The sequences and other

characteristics of the primers used in the qRT-PCR analysis are

shown in Table 3.

Diagnostic analysis of target genes in
SCM

The receiver operating characteristic (ROC) curve was

obtained by a “rating” method and a mathematical prediction

method based on patient characteristics while meeting statistical

calculation criteria. ROC curves were generated by analyzing

the expression of markers with 1-specificity as the horizontal

coordinate and sensitivity as the vertical coordinate. The area

under the curve (AUC) of the ROC curve shows the probability

that a randomly selected diseased subject will be (correctly)

rated or ranked compared to a randomly selected non-diseased

subject. In clinical applications, ROC curves are commonly used

to assess the ability of biomarkers to distinguish between patients

and non-patients with a given disease. Therefore, to elucidate

the diagnostic value of target genes in SCM, ROC curve analysis

was used in this study. AUC > 0.5 indicates that the marker has

the ability to discriminate between healthy controls and patients

with SCM (25, 26).

Construction of the miRNA-MRNA
regulatory network

miRDB (http://mirdb.org) (27), TargetScan (https://www.

targetscan.org/vert_80/), StarBase (http://starbase.sysu.edu.cn/)

(28) and RNA22 (https://cm.jefferson.edu/rna22/) are four

online public databases that collect relevant miRNA-mRNA

interaction information. For miRNA target gene prediction,

we used miRDB, TargetScan, and StarBase. Then, the miRNA

prediction results of the three databases were intersected and

further verified in the dataset GSE72380 to obtain the target

miRNA. RNA22 was used to reverse predict the target genes of

miRNAs for validation of the results. The expression levels of

target miRNAs in peripheral blood mononuclear cells of SCM

patients were detected by qRT-PCR. Violin plots were used to

visualize miRNA expression.

Statistical analysis of microarray data

The Gene Expression Omnibus (GEO, http://www.ncbi.

nlm.nih.gov/geo/) - GEO2R (http://www.ncbi.nlm.nih.gov/geo/

geo2r/) was used to identify DEGs in this study. GEO2R

is an online application based on the R language. After the

user defines the group, GEO2R directly reads the original

series matrix file and platform annotation file uploaded by the

submitter and draws the boxplot and gene table (including

P-values, t-statistics and fold changes, and gene annotations

including gene symbols, gene names, gene ontology (GO)

entries and chromosome locations, etc.) of the expression value

distribution of the selected samples through the “boxplot” and

“limma” R language scripts. P < 0.05, FC > 2.5 or FC < 0.4

was set as the threshold for screening differentially expressed

genes (29).

Result

The landscape of immune cell infiltration
in septic cardiomyopathy

PCA cluster analysis is a method for examining the

consistency of biological repetition as well as group differences.

PCA cluster analysis results of immune cell infiltration showed

that gene expression levels in SCM samples and control

samples were significantly different (Figure 2A). The correlation

heatmap of 24 immune cells showed a significant positive

correlation between CD8+ T and cytotoxic cells, T helper type

17 (Th17) cells and T follicular helper (Tfh) cells, B cells (B-cells)

and gamma delta T cells and exhausted cells, exhausted cells and

CD8+ T and cytotoxic cells. Significant negative correlations

were found between neutrophils and B cells and depleting and

cytotoxic cells, Th17 and B-cells, Tfh and B-cells (Figure 2B).

The violin plot of the immune cell infiltration difference showed

that, compared with the control sample, neutrophil cells, Th17

cells, Tfh cells and central-memory cells infiltrated more and

exhausted cells, B-cells, gamma delta T cells, cytotoxic cells, Th2

cells, CD8+ T cells and DC infiltrated less (Figure 2C).

Identification of DE-mRNAs in cardiac
tissue of patients with SCM

A total of three datasets were used in this paper, and specific

information about the datasets, including GEO accession

number, experiment type, species, source tissue, number of

samples from SCM and controls, and dataset functions are

summarized in Table 1. A total of 34 SCM samples and 19

control samples from these three datasets were employed in

this paper. There are 51 samples in the GSE79962 dataset,

from which we extracted 20 cardiac mRNA array expression
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FIGURE 2

Evaluation and visualization of immune cell infiltration. (A) PCA cluster plot of immune cell infiltration between SCM samples and control

samples. (B) Correlation heatmap of 24 immune cells. The size of the circle represents the strength of the correlation: the darker the color, the

stronger the correlation; the color represents the correlation: blue represents a positive correlation, and blue represents a negative correlation.

Markers in red font represent di�erences in the infiltration of this cell type between the two groups. (C) Violin plot of the proportion of 24

immune cells. Markers in red font indicate di�erences in immune infiltration of this cell type between the SCM group and the control group.

profiles of patients with septic cardiomyopathy and 11 cardiac

mRNA array expression profiles of controls for analysis.

The volcano plot depicts the expression distribution of all

the genes in GSE79962 (Figure 3A). A total of 1592 DE-

mRNAs (788 up-regulated and 804 down-regulated) were

identified in GSE79962. The top 30 DE-mRNAs with the

most significant differential changes (top 15 up-regulated and

top 15 down-regulated) were then chosen for analysis and

heatmap visualization of their inter-group expression differences

(Figure 3B). GSE141864 and GSE72380 have 259 DE-mRNAs

and 34 DE-miRNAs, respectively.

Enrichment analysis of DE-mRNAs

According to the results of the GO analysis, these DE-

mRNAs were linked to a variety of biological processes,

molecular functions, and cellular components. The top three
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FIGURE 3

mRNA expression and DEGs enrichment analysis of dataset GSE79962. (A) Volcano plots corresponding to mRNA expression profiles in human

hearts in the GSE79962 dataset. Red plots represent up-regulated mRNAs, black plots represent insignificant mRNAs, and blue plots represent

(Continued)
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FIGURE 3 (Continued)

down-regulated mRNAs. (B) Heatmap corresponding to the expression profile of the top 30 DE-mRNAs in human hearts in the GSE79962

dataset as determined by p-value. Red rectangles represent high expression and blue rectangles represent a low expression. (C) Circle plot

showing the top 5 GO-enriched terms in BP, CC and MF. The most important BPs are involved in generation of precursor metabolites and

energy, energy derivation by oxidation of organic compounds, and response to hormone; CC is involved in mitochondrial envelope,

mitochondrial membrane and mitochondrial inner membrane; MF is involved in oxidoreductase activity, electron transfer activity, and

oxidoreduction-driven active transmembrane transporter activity. (D) Histogram showing the most abundant KEGG pathway for DE-mRNA. The

most important KEGG pathways are involved in diabetic cardiomyopathy, non-alcoholic fatty liver disease and chemical carcinogenesis-reactive

oxygen species pathway. DE-mRNAs: Di�erentially expressed mRNAs; GO: Gene Ontology; BP: Biological Process; CC: Cellular Components;

MF: Molecular Function; KEGG: Kyoto Encyclopedia of Genes and Genomes; The screening criteria for significantly enriched biological

processes and pathways were Q < 0.05. Q-values are adjusted p-values.

biological processes in which DE-mRNAs were involved

were: generation of precursor metabolites and energy, energy

derivation by oxidation of organic compounds, and response to

hormone; the top three significant cellular components in which

the DE-mRNAs participated were: mitochondrial envelope,

mitochondrial membrane and mitochondrial inner membrane;

the top three significantmolecular functions related to those DE-

mRNAs were: oxidoreductase activity, electron transfer activity,

and oxidoreduction-driven active transmembrane transporter

activity (Figure 3C). KEGG pathway analysis showed those DE-

mRNAs to be significantly enriched in diabetic cardiomyopathy,

non-alcoholic fatty liver disease and chemical carcinogenesis-

reactive oxygen species pathway (Figure 3D). The results of

GO/KEGG analysis of DE-mRNAs from Metascape online

resources are shown in Supplementary Table S1.

PPI network analysis and MCODE cluster
modules

The STRING online tool enables reciprocal analysis of

differentially expressed genes and derives a PPI network

containing network features and node information. The

interaction network between proteins coded by DE-mRNAs,

which was comprised of 1591 nodes and 12507 edges, was

constructed by STRING and visualized (Figure 4A). The

MCODE plugin was used to identify gene cluster modules.

In this network, we identified four modules based on the

filtering conditions, as shown in Figure 4. Cluster 1 had the

highest cluster score (score: 36.811, 38 nodes and 681 edges)

(Figure 4B), followed by cluster 2 (score: 16.235, 52 nodes,

and 414 edges) (Figure 4C), cluster 3 (score: 15.862, 30 nodes,

and 230 edges) (Figure 5D), and cluster 4 (score: 13.308,

27 nodes, and 173 edges) (Figure 4E). We then performed

GO/KEGG analysis on cluster 1 and cluster 2 genes. The

results showed that clusters 1 and 2 were mainly enriched in

oxidative phosphorylation, ribosome biosynthesis and the HIF-

1 signaling pathway, indicating that oxidation-related biological

processes and pathways play an essential role in the pathogenesis

of SCM. Meanwhile, the central position occupied by protein

products in the PPI network suggests that genes in these

clusters may be potential targets for SCM therapy. The results

of GO/KEGG analysis of cluster 1 and cluster 2 are shown in

Supplementary Table S2.

Identification of CytoHubba hub genes
and immune-related genes in SCM

CytoHubba is a plug-in that measures the importance of

nodes in a network based on network features and provides

11 different topological analysis methods for biological network

core element analysis. The Maximum Cluster Centrality (MCC)

algorithm has better performance in predicting the accuracy

of important proteins in the network. Therefore, the MCC

algorithm was chosen in this study for the screening of focused

key genes in the PPI network (22). To identify important genes

in the PPI network, we used the CytoHubba plugin to identify

hub genes. The top 50 hub genes (Figure 5A) were determined

by theMCC algorithm onCytoHubba. Details of these hub genes

are shown in Table 2. The hub gene refers to a gene that serves as

a vital connection in the PPI network and may have a function

in the regulation of SCM pathogenesis. Then, immune-related

genes in SCM were also identified. We crossed 50 hub genes

and 782 ICMGs and obtained 2 overlapping genes: CAV1 and

THBS1 (Figure 5B). Figures 5C,D show the expression levels of

CAV1 and THBS1 in dataset GSE79962. To obtain the target

genes, we used the GSE141864 dataset as a validation dataset to

verify whether 2 overlapping genes have a ubiquitous expression

in SCM. Dataset GSE141864 validation results show that only

THBS1 exists in both the dataset GSE141864 and the dataset

GSE79962. And the expression of THBS1 in the GSE141864

dataset was upregulated (Figure 5E), which is consistent with the

expression trend of THBS1 in the dataset GSE79962. Therefore,

THBS1 was selected as the target gene for this study.

Validation of target genes

To further verify the reliability of the expression level of the

target gene THBS1, we collected PBMCs from three clinical SCM

patients and three normal individuals for qRT-PCR experiments.
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FIGURE 4

PPI network of DE-mRNAs and four cluster modules extracted by MCODE. (A) The interaction network between proteins encoded by DE-mRNA

(Continued)
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FIGURE 4 (Continued)

consists of 1,591 nodes and 12,507 edges. Each node represents a protein, and each edge represents a protein-protein association. The smaller

the Q-value, the larger the shape size. (B–E) MCODE extracts four cluster modules. Cluster 1 had the highest cluster score (score: 36.811, 38

nodes and 681 edges), followed by cluster 2 (score: 16.235, 52 nodes, and 414 edges), cluster 3 (score: 15.862, 30 nodes, and 230 edges) and

cluster 4 (score: 13.308, 27 nodes, and 173 edges). Blue indicates low expression of the gene, pink indicates high expression of the gene.

The primer sequences and other characteristics used for qRT-

PCR analysis are shown in Table 3. As shown in Figure 5F,

the expression level of THBS1 in PBMCs of SCM patients was

significantly higher than that of normal controls (P < 0.01).

IRHG-THBS1 has excellent diagnostic
e�cacy for SCM

ROC curve analysis further demonstrated that THBS1 has a

good role in discriminating SCM patients from healthy controls

in the experimental dataset GSE79962 and the validation

dataset GSE141864. The results showed that the area under

the ROC curve (AUC) for the experimental dataset GSE79962

was 0.909 (Figure 6A), and the AUC for the validation dataset

GSE141864 was 1.000 (Figure 6B). This indicates that THBS1

has a good ability to distinguish SCM patients from healthy

controls, suggesting that THBS1 has potential diagnostic value

for septic cardiomyopathy.

Immune-related miR-222-3p/THBS1
network in SCM

From the miRDB, TargetScan and StarBase databases, we

predicted 188, 181, and 256 miRNAs, respectively Details of

the prediction results are shown in the Supplementary Table S3.

We then took the intersecting miRNAs from the prediction

results of the three databases and validated them using the

GSE72380 dataset, resulting in 2 shared miRNAs: miR-324-

3p and miR-222-3p (Figure 6C). The expression levels of miR-

324-3p (P = 0.0289, FC = 1.45) and miR-222-3p (P =

0.0367, FC = 0.54) in the GSE72380 dataset are shown in

Figures 6D,E. Functional studies of miRNAs show that miRNAs

often act as mRNA sponges in the process of transcript

regulation, inhibiting mRNA expression or promoting mRNA

degradation, that is, miRNAs are negatively correlated with

mRNA levels (30). Therefore, based on this mechanism of

action of miRNAs, we selected the down-regulated miR-222-

3p as the regulatory miRNAs of THBS1. Concomitantly,

THBS1 was similarly predicted in the results of the RNA22

database for reverse prediction of target genes of miR-222-

3p, which further enhanced the reliability of the results. The

target gene prediction results of miR-222-3p are shown in

Supplementary Table S4. Next, to verify the expression of miR-

222-3p in SCM patients, PBMCs from SCM patients and

healthy controls were extracted for qRT-PCR. The results

showed that miR-222-3p was lowly expressed in PBMCs of

SCM patients, which was consistent with the miRNA-mRNA

regulatory hypothesis (Figure 6F). Thus, we finally obtained the

miR-222-3p/THBS1 regulatory network with a regulatory role

in SCM.

Discussion

The occurrence of septic cardiomyopathy is very detrimental

to the survival and prognosis of septic patients. At the same

time, the multiple organ chain reaction and circulatory system

failure of SCM have also attracted scholars to study SCM.

Currently, systolic or diastolic ventricular dysfunction and

primary cardiomyocyte injury are commonly used as clinical

criteria for the evaluation of SCM. However, the commonly

used SCM diagnosis based on echocardiography (31), B-type

natriuretic peptide (BNP) (32) and cardiac troponin I (cTnI)

and other markers of myocardial injury have poor sensitivity

and specificity, hindering early intervention in SCM. Therefore,

finding more sensitive and specific biomarkers in SCM is crucial

for early intervention in SCM.

With the development of genomics and the continuous

maturation of gene sequencing technology, target gene

technology is also increasingly used for disease localization,

early diagnosis and treatment (33, 34). The construction of gene

co-expression networks is an important direction of current

disease research. By analyzing the changes of gene expression

under pathological conditions, we can explore the key genes

and mechanisms of disease development, reveal the changes of

disease gene level, and provide direction for early diagnosis of

disease (35).

The balance of the immune system plays an important role

in maintaining the body’s homeostasis, and an excessive or

unregulated immune response will cause severe organ/tissue

damage in the body. Existing studies suggest that the immune

microenvironment plays an important role in the occurrence,

progression, and susceptibility of sepsis (36, 37). For example,

in the pathogenesis of SCM, it has been found that the

activation of the complement system (38) and the increase

of extracellular histones (39, 40) can further deteriorate

the function of cardiomyocytes. Therefore, immune response

may play an important regulatory role in SCM. However,

the specific mechanism of action of IRGs in SCM remains

unclear. Therefore, we aimed to analyze the SCM dataset by
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FIGURE 5

Top50 hub genes and expression of target genes. (A) Cluster plots represent the top 50 hub genes identified by CytoHubba. (B) Venn diagram of

the intersection of hub genes and immune cell marker genes. (C) Expression levels of CAV1 in dataset GSE79962. (D) Expression levels of THBS1

in dataset GSE79962. (E) Expression levels of THBS1 in validation dataset GSE141864. (F) The expression level of THBS1 in peripheral blood

mononuclear cells of SCM patients was detected by quantitative reverse transcription polymerase chain reaction.

bioinformatics methods to explore the regulatory role of IRGs

and their co-expression networks in SCM.

Microarray dataset analysis based on public databases is

currently an effective method in the screening of disease

target genes (41). The GSE79962 and GSE141864 datasets

collected myocardial tissue samples from patients who died

of sepsis and controls who died from sepsis and performed

an array of data. Both datasets are well-organized and include

abundant sample sizes, producing them good resources for

bioinformatics analysis. In this study, we integrated the

septic cardiomyopathy dataset with 782 immune cell marker

genes (ICMGs), applied bioinformatics approaches to identify
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FIGURE 6

ROC curve diagnostic results of THBS1 and construction of the miRNA-mRNA regulatory network. (A) ROC curve of THBS1 in test dataset

GSE79962. (B) ROC curve of THBS1 in validation dataset GSE14186. (C) Venn diagram of the intersection of THBS1’s miRDB, TargetScan and

StarBase database prediction results and GSE72380 dataset. (D) Expression levels of miR-324-3p in the GSE72380 dataset. (E) Expression levels

of miR-222-3p in the GSE72380 dataset. (F) The expression level of miR-222-3p in peripheral blood mononuclear cells of SCM patients was

detected by quantitative reverse transcription polymerase chain reaction.

IRHGs with immunomodulatory roles in human SCM, and

constructed immune-related miRNA-IRHGs regulatory axis in

SCM, with the intention of improving our understanding of

SCM pathogenesis and exploring its potential biomarkers. The

dataset GSE79962 is used to investigate critical genes and

mechanisms of SCM in this paper. To clarify the differences
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in immune cell composition between SCM myocardial tissue

and normal myocardial tissue, we performed an immune cell

infiltration analysis of the dataset GSE79962. The results of

the analysis showed that there were 11 types of immune

cells with significant differences in the degree of infiltration

between SCM myocardial tissue and normal tissue. Th17 cells

play an important role in the regulation of immune-related

diseases (42), and previous findings suggest that an increase in

neutrophils and Th17 cells may lead to a decrease in immune

system defenses in patients with sepsis (43, 44); Studies on Tfh

cells have shown that Tfh cells are associated with mortality

warnings in patients with sepsis, and low Tfh cell levels may

imply a poor prognosis for patients (45); Danahy et al. ’s

research shows that in sepsis, not only the total number of

CD8+ T cells decreases, but also the antigen-driven proliferation

capacity and effector function of CD8+ T cells are also impaired

(46); These are consistent with the results of our immune

infiltration analysis, which further confirmed the important

role of abnormal immune response in the pathogenesis and

progression of SCM.

After analyzing the immune infiltration of dataset

GSE79962, DE-mRNAs of dataset GSE79962 were further

screened and subjected to GO/KEGG analysis. A total of 788

up-regulated and 804 down-regulated SCM-related DE-mRNAs

were identified in the GSE79962 dataset. And these DE-mRNAs

are related to biological processes such as the generation

of precursor metabolites and energy, energy derivation by

oxidation of organic compounds, and response to hormone.

To further screen genes with increasing regulatory roles in

SCM, a PPI network based on DE-mRNAs in the STRING

public database was constructed. Through the PPI network,

we obtained 4 central clusters and the top 50 hub genes in

DE-mRNAs. After crossing the Top 50 hub genes with ICMGs

and validated by the GSE141864 dataset and qRT-PCR, the

central target gene THBS1 with immune function in SCM was

finally obtained. The ROC curve is an important step in the

development of a test with the desired level of sensitivity and

specificity (47) and is important in assessing whether a given

test marker has a valid diagnostic ability in the early stages of the

disease (26). The AUC values under the ROC curve of THBS1

were 0.909 and 1.000, indicating that THBS1 has a good ability

to distinguish SCM patients from healthy people.

THBS1 (thrombospondin 1), a member of the

thrombospondin family, is expressed in many tissues during

embryonic development, but in healthy adults, it is associated

with ischemia-reperfusion, tissue remodeling, immune

system damage (rheumatoid synovium, glomerulonephritis),

atherosclerotic lesions, and high glucose and high-fat induction.

Xie et al.’s model of LPS-induced sepsis showed that THBS1 was

also high in injured cardiomyocytes, accompanied by increased

rates of inflammatory cytokines, ROS and apoptosis, indicating

that THBS1 has a regulatory role in the inflammatory response

of SCM, which coincides with our result that THBS1 is an

immune gene (48); McMaken et al. showed that THBS1–/–

mouse macrophages had stronger phagocytosis, increased

bacterial clearance, indicating that THBS1 can be activated

by innate Sexual immunity affects mortality in SCM mice

(49); in addition, thrombocytopenia during sepsis is also

associated with THBS1 (50); Sun et al. showed that knockdown

of THBS1 level can inhibit the TGF-β/Smad3 pathway and

alleviate sepsis-induced pyroptosis (51). These suggest that

IRCGs-THBS1 is likely to modulate the development of SCM

through ROS oxidative stress, enhanced macrophage clearance,

or TGF-β-related pathways, providing research directions for

the treatment of SCM and suggesting that THBS1 levels have

high diagnostic value for SCM detection.

In addition, although the immune response is an important

pathological process in SCM, immune-related regulatory

networks in SCM are uncommon. Here, we construct a miRNA-

IRHGs regulatory network for THBS1 to explore the potential

mechanism of action of THBS1 in SCM immunity. In this study,

the immune-related miR-222-3p/THBS1 signal axis in SCM was

identified by bioinformatics analysis.

miR-222-3p/THBS1 regulatory axis

MicroRNAs have regulatory roles at both the transcriptional

and post-transcriptional levels of gene information, and

according to the mRNA repression effect of miRNAs (52), the

level of target miRNAs should be negatively correlated with

THBS1. Our results show that IRHGs-THBS1 is upregulated

in SCM. This means that miRNAs upstream of IRHG-THBS1

should be at low levels in the SCM state. The LPS-induced SCM

model mouse heart dataset GSE72380 was used as a validation

dataset in this paper. Data from mouse myocardial tissue and in

vivo expression data will demonstrate the stability and reliability

of the experimental results. Finally, through database prediction,

dataset GSE72380 and qRT-PCR validation, the down-regulated

miR-222-3p in SCM was selected as the target miRNA.

Xu et al. performed miRNA array analysis on the

plasma of septic mice and showed that the level of miR-

222-3p in extracellular vesicles (EVs) was more than 1.5-

fold higher than that in control mice, and miR-222-3p

regulates cytokine production through downstream TLR7-

MyD88 signaling, affecting SCM myocardial inflammation

(53); However, the current research on miR-222-3p in sepsis

and septic cardiomyopathy is scarce, but other scholars have

studied the research of miR-222-3p in rheumatoid arthritis (54)

and hepatitis (55), which indirectly reflects the inflammatory

regulation of miR-222-3p and provides a reference for the

follow-up research of miR-222-3p in SCM. Sun et al.’s (56)

study on liver cancer showed that miR-222-3p could regulate

the expression of THBS1 and affect the proliferation and

apoptosis of hepatocellular carcinoma. However, there is a

lack of research on the miR-222-3p expression levels in
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SCM cardiomyocytes and the mutual regulation of miR-

222-3p with THBS1, which means that we still need to

conduct further cellular or in vivo SCM experiments to

verify them.

However, SCM is a complex immune system disease

caused by pathogen invasion and immune system activation.

Furthermore, multi-organ damage is involved in the

development of SCM, which means that diagnostic markers

for SCM are abundant and variable. Our findings demonstrate

that THBS1, which is highly expressed in SCM cardiomyocytes,

may be an important biomarker for SCM diagnosis. Compared

with myocardial injury markers and inflammation-associated

proteins with diagnostic support for SCM, such as troponin

(cTnI, cTnT), B-type NP (BNP) (57) and inflammation-

associated monocyte chemotactic protein 1 (MCP-1) (58),

THBS1 identified in this study is not only elevated in human

SCM cardiac tissue but also has miRNA regulatory mechanisms

upstream of it. This further illustrates the sensitivity and

diversity of THBS1 regulation. However, some scholars’ studies

have shown that THBS1 is involved not only in SCM, but also

in atrial fibrillation (59) and tumor invasion (60), therefore, an

in-depth exploration of the diagnostic and regulatory ability of

THBS1 and its miR-222-3p/THBS1 signaling pathway in SCM,

and testing whether THBS1 can be used as a stable biomarker

for SCM diagnosis independent of other diseases, will be more

home clarify the perspective of this study and provide the best

possible de support for early clinical intervention and treatment

of SCM.

From the published articles, we also found that Chen et al.

(61), Kang et al. (62), Gong et al. (63), Li et al. (64), and Wang

et al. (65). similarly applied bioinformatics approaches to study

the hub genes in SCM. First and foremost, our studies with Chen

et al. (61), Kang et al. (62), Li et al. (64), andWang et al. (65) used

the human SCM dataset GSE79962 as an experimental dataset,

but we innovatively combined immune cell marker genes with

SCMdifferentially expressed genes to identify the biomarker role

of IRHG in SCM; Secondly, we also used MCODE to identify

the central clusters of SCM differentially expressed genes to

explore modules that play an important interaction in SCM

and their involved pathways; Thirdly, different from the studies

of Kang et al. (62) and Gong et al. (63), we also extracted

human samples to verify the expression of target genes, and

used ROC curves to analyze the diagnosticity of target genes

for SCM. Finally, a miRNA-IRHG pair that is different from

TABLE 4 The innovations in this study compared to what has been published.

Items Identification of hub genes in SCM based on bioinformatics analyses

Our findings Cell paper

(PMID:

31424269)

Cell paper

(PMID:

31794266)

Cell paper

(PMID:

31794266)

Cell paper

(PMID:

35003233)

Cell paper

(PMID:

32147601)

Publication

date

– 2019 2020 2022 2021 2020

Test datasets GSE79962 GSE79962 GSE79962 GSE63920 and

GSE44363

GSE79962 GSE79962 and

GSE53007

Tissue/species Heart/human Heart/human Heart/human Heart/mice Heart/human Heart/human/mouse

Immune

infiltration

analysis

Applied – – – Applied –

Gene clusters Applied – – –

Hub genes Immune-related hub

gene: THBS1

MYC, SERPINE1,

CCL2, STAT3

NDUFB5,

TIMMDC1, VDAC3

FRGs: Cdkn1a,

Ptgs2, Nfe2l2, Rela

and Vim

LRRC39,COQ10A,

FSD2, PPP1R3A,

TNFRSF11B,

IL1RAP, DGKD,

POR and THBS1

CCL2,TIMP-

1,SOCS3 and

IL1R2

Dry validation GSE141864 and

GSE72380

– – GSE72380 and

GSE29914

— —

Wet verification Human PBMCs:

qRT-PCR

– Mice heart: WB Mice: RT-PCR – Human blood:

ELISA

ROC curves Applied – – – Applied Applied

Mechanism miRNA-IRHG pair:

miR-222-3p/THBS1

TF-miRNA-mRNA

network

– miR-1892/Cdkn1a

pair

– –

IRHG, Immune-related hub gene; FRGs, Ferroptosis-related genes; PBMCs, Peripheral blood mononuclear cells; WB, Western Blot; TF, Transcription factor; ELISA, enzyme-linked

immunosorbent assay.
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FIGURE 7

Flow chart of miRNA-mRNA regulatory network construction in cardiac tissue of SCM patients. The red word means upregulation and the green

word means downregulation.

previous studies and has an immunomodulatory role in SCM

was obtained: miR-222-3p/THBS1. Details of the comparison

between this study and previous studies are presented

in Table 4.

In summary, this study used bioinformatics analysis to

innovatively combine the GEO database with immune cell

marker genes to investigate the presence of immune-related

diagnostic biomarkers THBS1 in infectious cardiomyopathy
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and to establish miR-222-3p/THBS1 regulatory pairs with

immunomodulatory effects. The findings of this work

demonstrate the biological regulatory role of epigenetic

mechanisms in the progression of SCM and analyze important

biomarkers and prospective immunotherapeutic targets for

SCM, providing new therapeutic targets and directions for

early intervention in SCM. However, studies on the epigenetic

mechanisms of SCM are still lacking. The acquisition of

myocardial tissues from SCM patients and the completion of

the identification of SCM differentially expressed genes and

their epigenetic mechanisms by gene sequencing technology

will advance the realization of early clinical intervention in SCM

and deepen our understanding of the pathogenesis of septic

cardiomyopathy. The new working model used in this study on

human SCM research is shown in Figure 7.

However, it is worth noting that there are still some

restrictions on our study. First, bioinformatics analysis was the

main method of this study, and we next need to construct an

experimental animal model of SCM to study the expression

level of miR-222-3p/THBS1 and its regulatory mechanism in

vivo; second, although 19 control samples and 34 SCM samples

have been used for the evaluation and experimental validation

of this study, further expansion of the study sample size

will enhance the credibility of our results. Additionally, only

PBMCs from SCM patients were collected for the outcome

validation of this study, and the sample size of PBMCs

was not large enough, which may cause information bias

to some extent. The further acquisition of more peripheral

blood and even myocardial tissues from SCM patients for

gene expression analysis would improve the credibility and

authenticity of the results of this study. Last but not least,

the dearth of intrinsic information regarding the level of SCM

activity necessitates further analysis of the relationship between

immune genes and their regulatory networks and disease and

disease severity.
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