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1. Introduction

In the development of new nanotechnologies and biomateri-
als, the possibility of assembling ordered supramolecular struc-

tures starting from small building blocks and the exploitation
of self-assembly driving forces are very important and much

studied topics.[1–3] In the bottom-up approach, DNA strands
have been demonstrated to be very useful building blocks for

the assembly of supramolecular structures of various dimen-

sions and shapes. For example, the DNA nanotechnology
known as DNA origami allows the design and the construction

of tailored three-dimensional superstructures by exploiting the
Watson–Crick base-pairing scheme.[4–7] Besides the Watson–

Crick base-pairing scheme, also the Hoogsteen hydrogen
bonding one, which allows the formation of G-quadruplex
DNA, can be exploited to obtain DNA supramolecular struc-

tures. G-Quadruplexes are unusual secondary structures of
DNA, which form when guanine-rich DNA strands are annealed

in the presence of suitable monovalent or divalent cations.
The building block of G-quadruplexes is the G-quartet (Fig-

ure 1 A), a planar arrangement of four guanines held together
by a cyclic array of eight Hoogsteen hydrogen bonds.[8–10] The

onset of p–p interactions among the stacked G-quartets great-

ly stabilizes the G-quadruplex assembly, which is generally
more stable than a DNA duplex of the same length. A G-quad-

ruplex can be formed by one, two, or four G-rich DNA strands
and can be classified as either parallel, antiparallel, or hybrid

type depending on the mutual orientation of the strands in-

Obtaining DNA nanostructures with potential applications in
drug discovery, diagnostics, and electronics in a simple and af-
fordable way represents one of the hottest topics in nanotech-

nological and medical sciences. Herein, we report a novel strat-
egy to obtain structurally homogeneous DNA G-wire nano-
structures of known length, starting from the short unmodified
G-rich oligonucleotide d(5’-CGGT-3’–3’-GGC-5’) (1) incorporat-

ing a 3’–3’ inversion of polarity site. The reported approach al-
lowed us to obtain long G-wire assemblies through 5’–5’ p–p

stacking interactions in between the tetramolecular G-quadru-

plex building blocks that form when 1 is annealed in the pres-
ence of potassium ions. Our results expand the repertoire of

synthetic methodologies to obtain new tailored DNA G-wire
nanostructures.

Figure 1. Schematic representations of a G-tetrad (A) and of interlocked (B)
and stacked (C) G-wire polymers.

[a] Dr. S. D’Errico, Dr. B. Pinto, Dr. F. Nici, Prof. Dr. L. Mayol, Prof. Dr. G. Piccialli,
Dr. N. Borbone
Department of Pharmacy
Universit/ degli Studi di Napoli Federico II
Via D. Montesano 49, 80131 Napoli (Italy)
E-mail : nicola.borbone@unina.it

[b] Prof. Dr. G. Oliviero
Department of Molecular Medicine and Medical Biotechnologies
Via S. Pansini 5, 80131 Napoli (Italy)

[c] Dr. P. Dardano, Dr. I. Rea, Dr. L. De Stefano
Institute for Microelectronics and Microsystems
Consiglio Nazionale delle Ricerche
Via P. Castellino 111, 80131 Napoli (Italy)

Supporting Information and the ORCID identification number(s) for the
author(s) of this article can be found under https://doi.org/10.1002/
open.201700024.

T 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivs License, which permits use and
distribution in any medium, provided the original work is properly cited,
the use is non-commercial and no modifications or adaptations are
made.

ChemistryOpen 2017, 6, 599 – 605 T 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim599

DOI: 10.1002/open.201700024

http://orcid.org/0000-0003-0765-2127
http://orcid.org/0000-0003-0765-2127
http://orcid.org/0000-0002-8100-3726
http://orcid.org/0000-0002-8100-3726
http://orcid.org/0000-0002-5152-2189
http://orcid.org/0000-0002-5152-2189
http://orcid.org/0000-0003-2287-0886
http://orcid.org/0000-0003-2287-0886
http://orcid.org/0000-0002-0616-3914
http://orcid.org/0000-0002-0616-3914
http://orcid.org/0000-0003-0568-9911
http://orcid.org/0000-0003-0568-9911
http://orcid.org/0000-0002-9442-4175
http://orcid.org/0000-0002-9442-4175
http://orcid.org/0000-0002-9442-4175
http://orcid.org/0000-0002-9162-5799
http://orcid.org/0000-0002-9162-5799
http://orcid.org/0000-0002-1313-2091
http://orcid.org/0000-0002-1313-2091
http://orcid.org/0000-0003-0216-9814
http://orcid.org/0000-0003-0216-9814
https://doi.org/10.1002/open.201700024
https://doi.org/10.1002/open.201700024
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


volved in the G-quartets formation.[11, 12] Further factors that
contribute to the wide polymorphism of G-quadruplexes are

the length and the base composition of the loops (when pres-
ent), as well as the nature of the cations used to stabilize the

quadruple helix structure.[13–15] The biological implications of G-
quadruplexes in cellular processes[16–18] and their use as promis-
ing drugs[19–22] or in drugs delivery[23] and diagnostics[23–25] are
well known. In addition, G-quadruplexes possess greater con-
ductivity than DNA duplexes, thus suggesting their use for the

obtainment of electronic nano-biomaterials and nanodevi-
ces.[26–28] These properties indicate the G-quadruplex scaffold
as a useful structural motif to obtain supramolecular self-as-
semblies, including the so-called G-wires.[29–32] G-wire super-

structures can reach the length of thousands of nanometers
along the axis perpendicular to the G-tetrad planes. Depend-

ing on the topological arrangement of the G-rich strands par-

ticipating in their formation, G-wires can be classified into two
categories: i) interlocked G-wires, characterized by the coopera-

tive assembly of interlocked slipped strands (Figure 1 B) and
ii) stacked G-wires, characterized by the multimerization of G-

quadruplex building blocks held together by end-to-end p–p

stacking (Figure 1 C). Besides the well-known interlocked G-

wires[29–35] and G-wires containing both topological motifs,[36–38]

only a few examples of exclusively stacked G-wires have been
reported so far.[39–41]

In a previous study, we reported that in the presence of K+

cations the 7-mer d(CGGTGGT) can assemble into the octamer-

ic higher-ordered G-quadruplex complex d(CGGTGGT)8 (Fig-
ure S1 in the Supporting Information) through p–p stacking of

two unusual G(:C):G(:C):G(:C):G(:C) planar octads belonging to

two identical tetramolecular parallel G-quadruplexes.[42] Later,
we demonstrated that the same dimerization pathway is also

possible for all the other d(CGGXGGT) DNA strands, with X = A,
G, or C.[43] Herein, we report on the achievement of a new type

of stacked G-wire, here indicated as Qn (Figure 2) obtained by
exploiting the 5’–5’ p–p stacking interactions between the
G(:C):G(:C):G(:C):G(:C) octads formed at both ends of the tetra-

molecular G-quadruplex building block Q1 (Figure 2). The last

forms when the d(5’-CGGT-3’–3’-GGC-5’) DNA strand (1,
Figure 2), incorporating a 3’–3’ inversion of polarity site, is an-

nealed in the presence of K+ ions. The resulting G-wires were
obtained as a distribution of quadruplex multimers of different

length.
The n subscript in Qn indicates the number of tetramolecular

G-quadruplex building blocks participating in the G-wires elon-
gation. The actual formation of the target G-wires was con-
firmed by polyacrylamide gel electrophoresis (PAGE), HPLC size

exclusion chromatography (HPLC-SEC), circular dichroism (CD),
1H nuclear magnetic resonance (NMR) spectroscopy, and
atomic force microscopy (AFM) studies. The analytical results
allowed us also to gather information on the G-wires assembly

and stability, and to isolate and characterize the three shortest
Qn species (n = 2–4).

2. Results and Discussion

2.1. Synthesis of d(5’-CGGT-3’–3’-GGC-5’) and G-Wires

The d(5’-CGGT-3’–3’-GGC-5’) (1) incorporating a 3’–3’ inversion
of polarity site was synthesized by using a solid-phase auto-

mated DNA synthesizer as described in the Experimental Sec-
tion. The inversion of polarity site was achieved by performing

the first four coupling cycles with 5’-phosphoramidites and the
remaining three with standard 3’-phosphoramidites. The Qn

species were obtained by heating 1—dissolved in 1.0 m K+

containing buffer at the single strand concentration of 0.1 or
1.6 mm—at 90 8C for 10 min and then rapidly cooling it to 4 8C

(fast annealing procedure). All samples were stored at 4 8C for
24 h before further investigation.

2.2. PAGE Studies

The annealed 1.6 mm 1 was analyzed by PAGE to obtain infor-

mation on its propensity to form the tetramolecular G-quadru-
plex building block Q1 and/or the target Qn multimers. For this

purpose, we compared the electrophoretic mobility of

1 (lane 3 in Figure 3) with those of the G-quadruplexes
d(TGGGGT)4 (lane 1) and d(CGGTGGT)8 (lane 2), used as size

Figure 2. Formation of the G-quadruplex building block Q1 and its multi-
merization into Qn G-wire polymers starting from the ODN 1. The expected
stabilizing K+ ions are shown as red spheres.

Figure 3. Electrophoretic mobility of the ODNs under study annealed in
1.0 m K+ buffer. Lane 1: d(TGGGGT)4 ; lane 2: d(CGGTGGT)8 ; lane 3: ODN 1;
lanes 4–7: isolated peaks from the HPLC-SEC fractionation of annealed 1;
lane 8: single-stranded DNA reference ladder.
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markers for the tetramolecular G-quadruplex building block Q1

and for its eight-stranded dimer Q2, respectively. At the studied

conditions, the annealed 1 migrated as a ladder of bands, thus
confirming its propensity to form G-quadruplex multimers. The

electrophoretic mobility of the two fastest bands matched
almost perfectly with that of the size markers in lanes 1 and 2,

thus confirming the formation of a tetra-stranded Q1 and octa-
stranded Q2 ; whereas the remaining slower bands in lane 3
were likely a result of longer Qn species (n+3). The electropho-
retic mobility of the isolated Q1–4 species, obtained by HPLC-
SEC fractionation (see the following section), was also assessed
(lanes 4–7). Taken together, the PAGE data suggested that the
oligodeoxynucleotide (ODN) 1 in the presence of K+ ions is ca-

pable of self-assembling in a distribution of G-wire species of
different lengths (Qn) obtained by the sequential stacking of

the tetramolecular G-quadruplex building block Q1 presenting

two “sticky” G(:C):G(:C):G(:C):G(:C) planar octads at both 5’-
ends.

2.3. SEC Studies

The Qn G-wire population was analyzed by HPLC-SEC at room
temperature on a ReproSil 200 SEC column 24 h after anneal-

ing and storage at 4 8C. The HPLC profile of the annealed
0.1 mm 1 showed a distribution of peaks in which low molecu-

lar weight species had greater retention times (Figure S2 A in
the Supporting Information). To obtain information on the MW

of the observed product peaks, we used the same HPLC-SEC

conditions (see the Experimental Section) to determine the re-
tention times (Rt) of i) the single-stranded dT7 (panel B), ii) the

tetramolecular quadruplex d(TGGGGT)4 (panel C), and iii) the di-
meric quadruplex d(CGGTGGT)8 (panel D). Based on the HPLC-

SEC data, the peak at the highest retention time (Rt =

21.45 min) was attributed to the single-stranded 1, whereas

the two preceding peaks (at Rt = 19.89 and 19.02 min) were as-

signed to the G-quadruplex building block Q1 and to its dimer
Q2, respectively. From these data, it was reasonable to hy-

pothesize that each peak in the HPLC-SEC profile belongs to
a species differing from those of the adjacent peaks for a MW

corresponding to the tetramolecular G-quadruplex building
block Q1 (i.e. 28 nucleotides). Exploiting the good peak resolu-
tion on the HPLC-SEC column, the species likely corresponding
to Q1–4 were recovered and their purity and electrophoretic

mobility assessed by PAGE (Figure 3, lanes 4–7). PAGE results
confirmed the purity and allowed us to match the species re-
sponsible for the four fast-moving bands in the PAGE (i.e. Q4,

Q3, Q2, and Q1 from the slowest to the fastest band in
Figure 3) with the four corresponding peaks in the HPLC-SEC

distribution (i.e. Q4, Q3, Q2, and Q1 from the least to the most
retained in Figure S2 A in the Supporting Information). Further-

more, HPLC-SEC re-injection of the isolated Q1–4 species, per-

formed 24 h after their isolation and storage at 4 8C (Figure S3
in the Supporting Information), disclosed that the G-quadru-

plex building block Q1 and the first three Qn species (Q2–4) do
not interconvert each other and can be stored as single G-wire

segments of known length for at least 24 h. However, consider-
ing the contribution of entropy to the formation of Qn G-wires,

different behaviors could be anticipated for samples of 1 an-
nealed at different ODN concentrations. Thus, we exploited the
good chromatographic separation of Qn species to assess the
effect of the ODN annealing concentration on the formation

and size distribution of Qn species. As expected, the HPLC-SEC
profile of Qn obtained 24 h after the annealing of 1 at 1.6 mm
concentration (Figure 4) confirmed that the formation of

longer G-wires is strongly dependent on the ODN concentra-
tion during the annealing procedure. Indeed, in Figure 4 all Qn

species with n,8 are clearly distinguishable and almost equal-

ly populated, and an intense envelope peak attributable to
longer G-wires is present at Rt = 13.6 min. Conversely, in the

HPLC-SEC profile obtained from the sample annealed at
0.1 mm ODN concentration (Figure S2 A in the Supporting In-

formation), the envelope peak is absent and only the Qn spe-
cies with n,3 are significantly populated.

The effect of the temperature on the distribution of Qn spe-

cies was investigated by HPLC-SEC 24 h after the annealing of
0.1 mm 1 in 1.0 m K+ buffer. HPLC-SEC analyses were per-

formed by injecting the sample 30 min after heating and equi-
libration at 25, 45, 65, and 85 8C (Figure S4 in the Supporting

Information). The profile obtained from the sample injected at
25 8C showed almost the same Qn distribution as the sample

injected at 4 8C, but showed that at room temperature the di-
meric Q2 species not only is more abundant than the building
block Q1 (whereas the opposite was observed in the sample

stored and injected at 4 8C), but represents the most abundant
species. The progressive heating of the sample determined the

reduction of the amount of Qn species and the contextual in-
crease of the single-stranded 1, which resulted in the only ob-

servable peak at 85 8C. However, two significant outcomes

emerged from the profiles obtained at 45 and 65 8C: 1) at
45 8C, although the most abundant species was represented

by the single-stranded 1, we observed that the distribution of
Qn species shifted towards longer G-wires, with the appear-

ance of a new peak at Rt = 13.3 min and with the Q3 species
being even more abundant than Q2 ; 2) the analysis of the pro-

Figure 4. HPLC-SEC profile of Qn distribution obtained by annealing 1.6 mm
1 in 1.0 m K+ containing buffer. ss = single-stranded 1.
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file obtained at 65 8C suggested that the Qn species melt
through a cooperative process, which drives directly to the

random coil 1 (the peak of the G-quadruplex building block Q1

was even less abundant than that of Q5 species). The higher

thermal stability of Qn species relative to Q1 was also con-
firmed by CD melting data (see the following section).

2.4. CD Studies

CD is a well-established diagnostic technique to provide pre-
liminary information about the topology of G-quadruplexes in
solution. Generally, the CD profile of parallel G-quadruplexes,
in which all guanosines in the G-tetrads are in the anti glycosi-
dic bond conformation (Type 1 stem), is characterized by a pos-

itive signal at around 264 nm and a negative signal at around
240 nm; whereas that of antiparallel G-quadruplexes with alter-

nating syn–anti glycosidic bonds along the stem (Type 3 stem)

shows a positive signal at 245 nm, a trough at around 260 nm,
and a second positive signal at 290 nm.[41, 44–46] Considering the

formation of stacking interactions between the terminal G-tet-
rads of Q1 building blocks (required to obtain the Qn G-wires)

and the presence of the 3’–3’ inversion of polarity site within
the stem of Q1 and its multimers, the CD profile obtained for

the annealed 1 (containing a mixture of Qn of different

lengths), showing positive signals at 246 nm and 300 nm and
a negative signal at 270 nm (Figure 5, dashed line), was some-

what unexpected. In fact, although the latter structural fea-
tures anticipated for a Type 2 CD profile,[44] the experimental

result resembled that of a Type 3 stem. A Type 3 stem could be
obtainable from 1 only if the thymines of two ODN 1 strands

would participate in the formation of a propeller loop, thus al-

lowing the formation of a bimolecular antiparallel quadruplex
stem. However, this structural hypothesis has been ruled out

by PAGE and HPLC-SEC evidence, which indicated the exclusive
formation of the tetra-stranded quadruplex building block and

its multimers.
Indeed, the CD profile of Qn resembles those reported for

the G-quadruplexes formed by d(5’TG3’–3’GGT)4
[47] and

d(TGG3’–3’GGT)4
[48] incorporating a 3’–3’ inversion of polarity

site and characterized by the presence of all anti G-tetrads.
The occurrence of the same system of uninterrupted stacked

G-tetrads, including both clockwise and counter-clockwise di-
rectionality, in Q1 and Qn could explain the CD profiles shown

in Figure 5. The resulting structural hypothesis requires that
the thymines are projected outside the quadruplex stem to

form bulge loops,[49] as depicted in Figure 2. Unfortunately, the
strong positive signal at 300 nm induced by the presence of
the 3’–3’ inversion of polarity site precluded the observation of

the negative band at 290 nm, which, in our previous studies,
proved diagnostic for the formation of higher-ordered G-quad-

ruplex assemblies obtained by non-covalent p–p stacking of
planar G(:C):G(:C):G(:C):G(:C) octads.[42, 43] Similar CD profiles

were obtained for the isolated Q1–4 (Figure 5, colored lines),
thus confirming that the CD profile of Qn was the result of the

presence of quadruplex assemblies of different lengths incor-

porating the 3’–3’ inversion of polarity site. The overall thermal
stability of the species populating the Qn distribution and that

of the isolated Q1–4 complexes was assessed by means of CD
denaturation experiments (Figure S5 in the Supporting Infor-

mation). The resulting apparent melting curves clearly provid-
ed evidence that the thermal stability of the quadruplex multi-

mers was higher than that of the parent quadruplex building

block Q1.

2.5. NMR Spectroscopy

The formation of G-quadruplex assemblies from suitable G-rich

ODN sequences is usually confirmed by water-suppressed
1H NMR spectroscopy. When the N-1 imino protons of guanine

bases are engaged in Hoogsteen-type hydrogen bonding with
the O-6 carbonyl oxygen atoms of flanking guanines in each

G-tetrad, they are protected from exchange with the hydrogen
atoms of the solvent and are thus visible in the 1H NMR spec-

trum as quadruplex-diagnostic slightly broad signals resonat-

ing between 10 and 12 ppm.[50, 51] Depending on the orienta-
tion of the strands and on the glycosidic torsion angle of gua-

nosines participating in G-tetrads, the four imino protons in
each G-tetrad resonate as one, two, or four NMR signals.[52] The

downfield region of the water-suppressed 1H NMR spectra of
the Qn distribution—obtained by annealing 1 in 1 m K+ buffer
at 1.6 mm single strand concentration—recorded at 25, 45, 65,
and 85 8C are shown in Figure S6 in the Supporting Informa-

tion. In agreement with the CD evidence, the observation of
the G-quadruplex diagnostic imino protons signals in the 11–
12 ppm region confirmed the presence in solution of G-quad-
ruplex species at temperatures lower than 65 8C. However, the
intensity and the shape of imino and anomeric protons signals

differed significantly from those we observed in the 1H NMR
spectra of the dimeric higher-ordered G-quadruplexes formed

by CGGTGGT[42] and CGGAGGT.[43] In the two latter, four well-re-

solved imino protons (11.0–12.0 ppm) and intense anomeric
protons signals (5.5–6.5 ppm) were visible at temperatures up

to 65 8C. Conversely, in the NMR spectra of 1 recorded at 25
and 45 8C, all imino and anomeric signals appeared severely

broadened, thus suggesting the involvement of imino and
anomeric protons in chemical or conformational exchange

Figure 5. CD spectra of Qn distribution (dashed curve) and isolated Q1 (black
curve), Q2 (green curve), Q3 (red curve), Q4 (blue curve) G-quadruplexes.
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phenomena. The line broadening of the imino protons was so
intense as to require 10 V software amplification for signal ob-

servation (see insets in Figure S6 in the Supporting Informa-
tion). As far as the low intensity of the imino proton signals is

concerned, we hypothesize that the presence of the bulge
loops connecting the stacked G3 and G5 tetrads destabilizes

the G-quadruplex stem, thus speeding up the imino proton ex-
change with water. The anomeric proton signal broadening, in-

stead, could be the result of side-by-side aggregation of G-

quadruplex units, as seen by Hu et al. in G-wire assemblies
formed by dGMP annealed in the presence of Sr2+ .[53] As we
have shown in our previous papers,[42, 43] the anomeric protons
are located at the outer shell of 2Q-like quadruplexes, thus it is

conceivable that lateral contacts between flanking G-quadru-
plex structures participating in the Qn G-wire distribution could

be responsible for the observed anomeric signal broadening.

As we will see in the following section, AFM evidence supports
the formation of extended quadruplex layers by lateral aggre-

gation of quadruplex units. Although AFM gives us a picture of
quadruplex aggregates deposited on mica surfaces, we believe

that such aggregates could also form in solution considering
the relatively high ODN concentration used for the preparation

of the NMR samples (6.0 mm). In the light of this hypothesis,

the comparison of the NMR spectra recorded in the 25–85 8C
temperature range indicates that the breakdown of quadru-

plex aggregates and the melting of quadruplex units to the
random coil 1 are cooperative processes, which start at tem-

peratures between 45 and 65 8C and complete at temperatures
lower than 85 8C.

2.6. AFM Studies

Qn quadruplexes interact and self-assemble on mica surfaces in
different ways depending on their concentration in the starting

solution. The morphology of the obtained films has been in-

vestigated by AFM by using 1.6 mm and 16 mm solutions of
1 in 0.1 m phosphate buffer, at pH 7.0. Muscovite mica was

used as the AFM support both for the super-hydrophilic prop-
erty of its surface, which guarantees a lower interaction be-

tween suspended molecules in aqueous solution during the
evaporation of the solvent, and for its flatness, with less than
0.5 nm of root mean-square (r.m.s.) roughness for a 1000 V
1000 nm2 surface area. The AFM images of the G-quadruplexes

spontaneously adsorbed from 1.6 mm ODN freshly prepared
solutions showed a densely populated surface (Figure S7 in
the Supporting Information), characterized by aggregates of

different lengths and widths (x,y coordinates on panels A–C),
whereas their heights (z coordinate) are always around 2 nm.

These structures are due to the formation, after adsorption on
the mica surface, of rod-like shaped quadruplex aggregates

grown during the evaporation of a 2 mL drop of 1.6 mm solu-
tion (panel A, scale bar = 1 mm). The preferential direction of
alignment of the G-rodlets is well evident in panel B—the

scale bar is 200 nm—where aggregates with lengths from 21
up to 166 nm (average value of 60:40 nm) are shown; widths

are in the tenths of nanometers range and are always less than
100 nm; heights are almost all about 2 nm (see the statistics

panels reported in Figure S7 in the Supporting Information).
The AFM results are compatible with reported SEC results con-

sidering that, differently from height measurements, the
length and width measurements are affected by the curvature

radius of the AFM tip. The preferred orientation can be as-
cribed to the interaction between G-quadruplexes and the

mica surface. The homogeneous values of heights recorded
suggested the formation of self-assembled monolayers in the

x,y plane owing to the evaporation of the buffer solution,

which promoted lateral and longitudinal aggregation of G-
quadruplexes, the first one being favored by side-packing.

A 100-times diluted solution gave different results, as can be
noted in Figure S8 in the Supporting Information. Even if a pre-

ferred orientation could still be envisaged, the structures
seemed sparser and less ordered (see panel A); lengths are in

the same interval as before, whereas the widths are smaller,

never exceeding 30 nm, as evident from the measurements in
panel B. Also in this case, a tip radius of curvature of about

10 nm must be taken in account. This result confirmed a side-
packing mechanism in the assembly of G-structures during
evaporation of the solution. The heights are always about
2 nm as before (see measurements in panel C), again endors-

ing the hypothesis of spontaneous formation of a monolayer.
In the case of diluted starting solution, the longitudinal aggre-
gation is competitive compared with the lateral one, owing to

steric conditions during the evaporation.

3. Conclusions

In this paper, we reported the successful results of our study

aimed at the obtainment of a new kind of G-wire DNA by ex-
ploitation of p–p stacking interactions between tetramolecular
G-quadruplex building blocks incorporating a 3’–3’ inversion of

polarity site and exposing G(:C):G(:C):G(:C):G(:C) planar “sticky”
octads at both 5’-ends. The main findings of the study can be

summarized as follows: 1) the obtained G-wires are unprece-
dented and are achievable by using the short 5’CGGT3’–

3’GGC5’ G-rich ODN as the starting material in a facile and af-

fordable way; 2) the use of a tetramolecular G-quadruplex
building block to obtain DNA G-wire polymers represents

a major improvement over the use of monomolecular G-quad-
ruplexes, which, possessing different end-faces and lateral nu-

cleotide loops, could induce the formation of different kinds of
aggregates thus reducing the amount of target G-wires; 3) the

reported G-wires can be easily monitored in their formation

and length-growth by PAGE and HPLC-size exclusion chroma-
tography. We also demonstrated that the HPLC-SEC technique

can be used to determine the number of quadruplex building
blocks in each Qn G-wire, as well as to isolate and recover the

three shortest Qn species (n = 2–4).

Experimental Section

DNA Synthesis and Purification

DNA sequences d(TGGGGT) and d(CGGTGGT) were chemically syn-
thesized with an Expedite 8909 DNA synthesizer (PerSeptive Bio-
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systems, USA) using a universal CPG support purchased from Glen
Research. The syntheses were performed by adopting the standard
b-cyanoethyl phosphoramidite chemistry at 10–15 mm scale and
the products were purified as previously described.[54] The synthe-
sis of d(5’-CGGT-3’–3’-GGC-5’) (1) was performed with the same
DNA synthesizer. The inversion of polarity site within the sequence
was achieved by initially assembling the 5’-CGGT-3’ tract by using
5’-phorphoramidites and then the 3’-GGC-5’ tract with standard 3’-
phosphoramidites. After completion of the ODN sequence, the
support was treated with concentrated aqueous ammonia at 55 8C
for 15 h. The combined filtrates and washings were concentrated
under reduced pressure and purified through HPLC (JASCO
PU2089 pumps equipped with the JASCO 2075 UV detector) with
an anion exchange column (Macherey–Nagel, 1000-8/46, 4.4 V
50 mm, 5 mm) using a linear gradient from 0 to 100 % B in 30 min,
flow rate = 1 mL min@1 and detection at 260 nm (buffer A: 20 mm
NaH2PO4 aq. solution pH 7.0, containing 20 % (v/v) CH3CN; buffer
B: 20 mm NaH2PO4 aq. solution pH 7.0, containing 1 m NaCl and
20 % (v/v) CH3CN).

Annealing Procedure

The ODN concentrations were determined in water by measuring
the absorbance at 260 nm at 90 8C by using the nearest-neighbor
calculated molar extinction coefficient of 5’-CGGTGGC-3’ (e=
63 100 m@1 cm@1). The 0.1 and 1.6 mm solutions of 1 were obtained
by dissolving the lyophilized sample in 900 mm KCl and 100 mm
KH2PO4. The samples were annealed by heating at 90 8C for 10 min
and then quickly cooling to 4 8C. After the annealing procedure,
the samples were stored at 4 8C before measurements.

PAGE

Native gel electrophoresis experiments were performed on 20 %
polyacrylamide gels containing TBE (8.9 mm Tris, 8.9 mm borate,
0.2 mm EDTA, from BIORAD) and 30 mm KCl, at room temperature,
120 V for 2 h. The ODN samples, annealed at 1.6 mm single strand
concentration in 1.0 m K+ buffer, were diluted at 0.6 mm loading
concentration just before the PAGE runs. Glycerol was added (10 %
final) to facilitate sample loading in the wells. The bands were fi-
nally visualized by ethidium bromide staining in a Bio-Rad Labora-
tories Gel DocTM XR + image system.

HPLC-SEC Analyses and Isolation of Qn Species

HPLC-SEC analyses and purifications were performed with a Repro-
Sil 200 SEC column operating in the MW range of 2000–
70 000 Dalton (Dr. Maisch GmbH, 300 V 8 mm, 5 mm) eluted with
90 mm KCl and 10 mm KH2PO4/CH3CN (80:20, v/v), flow rate
0.5 mL min@1, detector at 260 nm. The analyses were performed at
room temperature.

CD

CD spectra and CD melting profiles were recorded with a Jasco
715 CD spectrophotometer (Jasco, Tokyo, Japan) equipped with
a Jasco JPT423S Peltier temperature controller in 1 mm optical
path quartz cuvettes (100 nm min@1 scanning speed, 1 s response
time). The spectra were recorded in triplicate at 4 8C from 220 to
320 nm. CD samples were prepared in potassium buffer (90 mm
KH2PO4 and 10 mm KCl) at 20 mm final single strand concentration.
The buffer baseline was subtracted from each spectrum and the

spectra were normalized to have zero at 320 nm. CD melting
curves were registered at 268 nm, 1 8C min@1 heating rate, tempera-
ture range 5–90 8C.

NMR Spectroscopy

NMR data were recorded with a Varian UNITYINOVA 500 MHz spec-
trometer equipped with a broadband inverse probe with z-field
gradient. The data were processed by using the iNMR software
package (http://www.inmr.net). One-dimensional NMR spectra
were acquired as 16384 data points with a recycle delay of 1.0 s at
25, 45, 65, and 85 8C and the spectra were apodized with a shifted
sine bell squared window function. Water suppression was ach-
ieved by including a double pulsed-field gradient spin-echo
(DPFGSE) module[55, 56] in the pulse sequence prior to acquisition.
NMR samples were prepared at the concentration of 1.6 mm single
strand in 200 mL of H2O/D2O 9:1 containing 900 mm KCl and
100 mm KH2PO4.

AFM

A XE-100 Park Systems instrument was used for the AFM imaging
of Qn G-wires. Surface imaging was obtained in non-contact mode
by using 125 mm long silicon/aluminium-coated cantilevers (PPP-
NCHR 10 m ; Park Systems; tip radius lower than 10 nm), with a reso-
nance frequency of 200 to 400 kHz and nominal force constant of
42 N m@1. The scan frequency was typically 0.5 Hz per line. When
necessary, the AFM images were processed by flattening to
remove the background slope, and the contrast and brightness
were adjusted. Muscovite mica of about 1 cm2 surface was used as
the substrate in the AFM study. Muscovite mica surfaces are typi-
cally used as AFM substrates owing to their perfect cleavage along
a <001> plane, yielding large atomically flat areas. Mica consists
of layers of an aluminium phyllosilicate lattice ionically bonded
through interstitial K+ ions. Upon cleavage, the K+ ions are highly
mobile and are readily exchanged with divalent cation species at
the solid–liquid interface. This exchange results in a positive over-
charging of the mica surface, which enables the deposition of mol-
ecules that hold a net negative charge, such as DNA.[57] Moreover,
the positive charge distribution after cleavage enables a super-hy-
drophilic surface that guarantees a lower interaction between sus-
pended biomolecules during the evaporation of aqueous solvent.
Mica was freshly cleaved by using adhesive tape prior to each dep-
osition to establish its cleanliness. Aliquots (2 mL) of the DNA/imag-
ing buffer were directly deposited by casting onto freshly cleaved
muscovite mica. After 2 min, every sample was gently washed with
deionized water and then dried by evaporation at room tempera-
ture under a ventilated fume hood.
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