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Abstract

In the year 2020, there were 105 different statutory insurance companies in Germany with

heterogeneous regional coverage. Obtaining data from all insurance companies is challeng-

ing, so that it is likely that projects will have to rely on data not covering the whole population.

Consequently, the study of epidemic spread in hospital referral networks using data-driven

models may be biased. We studied this bias using data from three German regional insur-

ance companies covering four federal states: AOK (historically “general local health insur-

ance company”, but currently only the abbreviation is used) Lower Saxony (in Federal State

of Lower Saxony), AOK Bavaria (in Bavaria), and AOK PLUS (in Thuringia and Saxony). To

understand how incomplete data influence network characteristics and related epidemic

simulations, we created sampled datasets by randomly dropping a proportion of patients

from the full datasets and replacing them with random copies of the remaining patients to

obtain scale-up datasets to the original size. For the sampled and scale-up datasets, we cal-

culated several commonly used network measures, and compared them to those derived

from the original data. We found that the network measures (degree, strength and close-

ness) were rather sensitive to incompleteness. Infection prevalence as an outcome from the

applied susceptible-infectious-susceptible (SIS) model was fairly robust against incomplete-

ness. At incompleteness levels as high as 90% of the original datasets the prevalence esti-

mation bias was below 5% in scale-up datasets. Consequently, a coverage as low as 10%

of the local population of the federal state population was sufficient to maintain the relative

bias in prevalence below 10% for a wide range of transmission parameters as encountered

in clinical settings. Our findings are reassuring that despite incomplete coverage of the pop-

ulation, German health insurance data can be used to study effects of patient traffic between

institutions on the spread of pathogens within healthcare networks.
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Author summary

Patterns of patients’ transfer between different hospitals contribute crucially to the risk of

hospital-acquired infections (HAIs) in the health care system. To quantify this risk, net-

work models can be applied. The estimated risk can be inaccurate in the case of incom-

plete data on hospital admissions, which can be a consequence of the multiplicity of

insurance companies as it is the case in Germany. To develop a better understanding of

how incompleteness of data affects network measures and the simulated spread of HAI,

we compared those measures derived from sampled, scale-up and original data, based on

hospitalization data from three AOK insurance companies. We found that common net-

work measures were affected by incompleteness, but the simulated prevalence as a mea-

sure of epidemic spread in the network was robust over a large range of incompleteness

proportions. Epidemics and the transition of the infectious diseases may be modelled on

hospital data with a coverage as low as 10% of the local population, whilst maintaining

accuracy to within 10% of the true population prevalence.

Introduction

Transfers of patients between hospitals have an important impact on transmission pathways of

hospital-acquired infections (HAIs) [1–11]. In recent years, hospital discharge databases based

on English, Dutch as well as French national medical registration datasets have been used to

construct “healthcare networks” to provide insights into patient transfer management, hospital

infection prevention and control [2, 3, 5, 7, 8, 11]. In these networks, nodes represent hospitals

and edges between pairs of nodes represent patient transfers between the linked pairs of hospi-

tals. Based on these data, network measures like degree, closeness, and also network density

were calculated [4, 5, 8]. The networks were used for simulating the spread of HAIs, evaluating

epidemic risk [1–3, 5–7, 9–11], and recommending control strategies [1, 5, 11, 12].

In Germany, a central discharge database does not exist. In 2020, there were 105 statutory

and several private health insurance companies in Germany. More than 90% of the population

are insured by any one of the statutory health insurance companies and every insurant can

freely choose any of these at any time, so that changes between companies occur frequently. It

is very challenging to obtain data from all insurance companies, so that any projects based on

empirical data will suffer from incomplete data access. Statistical properties of the network and

the modelling predictions based on these incomplete data can be biased. The incomplete data

may for example lead to missing edges in a network graph representing hospital connections.

For person-to-person contact networks, incompleteness is a common problem; thus, several

studies have focused on inferring network statistics from incomplete contact data in various

contexts [13–22]. Nevertheless, the effects of incomplete patient transfer data have not been

studied previously.

Thus, in this paper we aimed to assess how different levels of data incompleteness affect

estimates of network measures and modelled infection spread.

Materials and methods

Data processing

We used anonymized data from hospitalization databases, provided by three different German

insurance companies, specific to each region: AOK (historically “general local health insurance

company”, but currently only the abbreviation is used) Lower Saxony, AOK Bavaria, and AOK
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PLUS (merger of AOK Saxony and AOK Thuringia). AOKs are insurance companies, which

historically exclusively insured persons from the federal states where they were founded. As a

consequence, they have high coverage of the population in their own federal state and low cov-

erage outside, and can thus be used to study regional networks. In each dataset, the following

are available: anonymized patient ID, anonymized hospital facility ID, the federal state the hos-

pital is located in, admission and discharge date, main diagnosis (ICD 10 GM code) as well as

year of birth and sex of the patient.

The three datasets covered different time spans. To ensure comparability, we studied data

from each across the interval of same length of six-years. Some hospitals were not active during

the whole time and based on observed distribution of hospitalizations, we excluded hospitals

with less than 100 hospitalizations during this six-year time period from further analysis (see

S1 Fig). We also excluded all hospitals located outside the respective federal state as they did

not have the same local coverage of the studied population in their catchment area. The data-

sets contained various types of overlaps, which suggested that a patient stayed in multiple hos-

pitals on a given day [23, 24]. Overlaps can happen due to several factors. If, for example, a

hospitalization is completely included in another hospitalization at a different hospital, the

patient may have been moved from one hospital to another before returning to the originating

facility. In this case, for reimbursement purposes, the second stay had to be considered as part

of the first, resulting in the record of continuous hospitalization in the first hospital. However,

not all overlaps could be explained following this logic. If patients appeared in multiple hospi-

tals simultaneously at a one-day overlap (indicating possibly a coding error for a direct trans-

fer), we randomly chose one of hospitals. The filtering procedures are in detail in Fig 1.

Surrogate data construction

Construction of sampled and scale-up data. We considered the original data provided

by the companies as a starting point (Table 1). By randomly removing a fraction of patients

from these datasets, we obtained a subset with remaining patients, defined as sampled dataset.

In the next step, we randomly resampled patients from the sampled datasets to compensate

for the excluded patients. For each resampling, once the patient was chosen, their information

was cloned and labelled as a new patient. The progress was repeated until there was the same

number of patients in the resampled dataset as there was in the original dataset.

Network construction

Two distinct types of networks were defined to represent the patient transfer data. One type

was a time-independent (static) network, defined as a hospital network as by Iwashyna et al.

[27], where patient transfers between the hospitals within a certain period were described.

This network had N nodes and e directed weighted edges. In this network, nodes represented

the hospitals and edges starting from node i towards node j with weight indicating the total

number of patient transfers from hospital i to hospital j during the whole time period [28].

From this static network, we further extracted two different kinds of subnetworks: The first

one consisted only of patient transfers from one hospital to another with no stay at home in

between; we referred to this as the “direct hospital network”. The other network consisted

solely of indirect transfers, i.e. transfers where patients stayed at home for at least one day

between discharge from one hospital and admission to the next one. The resulting transfer net-

work, we termed the “indirect hospital network”.

The second type of network was a time-dependent (transient) two-mode network [29],

named patient-movement network (also known as affiliation or bipartite network). In this

approach, there were two distinct sets of nodes: one was the set of all individuals, and the other
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one was the set of all hospitals (as well as one community node for individuals currently not

hospitalized). In this type of network, links existed only between nodes belonging to different

sets. This network was composed of M patient nodes and N + 1 location nodes. All nodes in

this network were preserved during the covered period.

In our study, we used the static network for calculating the network measures, and the tran-

sient network for running the epidemic model, which obeyed the actual patient locations.

Description of network measures and epidemic models

Since network measures are widely utilized for describing the importance of hospitals in hospi-

tal networks, we adopted some commonly used ones for describing hospital network

structures.

Fig 1. Data filtering process.

https://doi.org/10.1371/journal.pcbi.1008941.g001

Table 1. Description of health insurance datasets.

Dataset Time span Population coverage� Hospitalization coverage�

AOK Bavaria 2010–2015 33.9% 38.3%

AOK Lower Saxony 2010–2015 30.7% 34.2%

AOK PLUS 2011–2016 44.0% 40.3%

� Percentage of population and all hospitalizations in the federal state based on the year 2015 [25, 26].

https://doi.org/10.1371/journal.pcbi.1008941.t001
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Hospital network measures. Each static weighted directed network G(E, V) with E the

edge set and V the vertex set can be represented by a N × N adjacency matrix A, defined as

Aij ¼

(wij; if fi; jg 2 E and i 6¼ j;

0; otherwise:
ð1Þ

Here, network weight wij denotes the total number of patient transfers during 6 years from

node i to j and N is the number of hospitals. To depict the network cohesion, we calculated the

network density, defined as r ¼ e
N2 where e denotes the number of network edges. Moreover,

we considered four additional network measures with further subdivision regarding to direc-

tions: in- and out-degree, in- and out-strength, the shortest path, as well as in- and out-

closeness.

Degree and strength were used for describing the transfer activity of a node. For node i, its

in- and out-degrees are defined by kin
i ¼

PN
j¼1

sgnðwjiÞ and kout
i ¼

PN
j¼1

sgnðwijÞ, respectively,

which indicate the number of neighbour hospitals of hospital i. Analogously, its in- and out-

strengths are given by sini ¼
PN

j¼1
wji and souti ¼

PN
j¼1

wij, which stand for the number of

ingoing and outgoing patients of hospital i, respectively. sgn is the sign function with

sgnðxÞ ¼

� 1 ; if x < 0;

0 ; if x ¼ 0;

1 ; if x > 0:

8
>>><

>>>:

ð2Þ

With respect to pathogen propagation, it was essential to determine the distances or short-

est paths between hospitals [8]. The shortest path through the static weighted directed network

from node i to node j is defined as dij ¼ min
h

1

wih
þ � � � þ

1

whj

 !

, h 2 V\{i, j}. It was used for cal-

culating the measure “closeness” [8, 30].

In addition, we calculated the in- and out-closeness centralities of node i: Cin
i ¼

PN
j¼1

1

dji
also

Cout
i ¼

PN
j¼1

1

dij
[8, 30]. The closeness determines the risk posed by an outbreak in any of the

other hospitals [8]. In-closeness Cin
i indicates that the outbreak risk in hospital i was triggered

by receiving patients from other hospitals. Out-closeness Cout
i shows the risk caused by hospital

i in its neighbour hospitals.

Patient-movement based epidemic models. We used a susceptible-infectious-susceptible

(SIS) model and applied parameters for hospital-acquired methicillin-resistant Staphylococcus

aureus (MRSA). Patients colonized or infected with MRSA were defined as “Infectious”. In the

following, we defined “become infected” not exclusively as infection, but also as colonization

by the pathogen. On modelling day t, we first identified the location of every patient based on

the transient network. Then, by keeping their epidemic statuses on day t − 1, we calculated the

total number of patients Nt
L as well as the number of infectious patients Nt

L;I in location L.

Finally, we ran the following epidemic models and calculated the prevalence of infection in

hospitals and the community node, defined as the proportion of infectious patients according

to the patient status on day t.
In our model, a susceptible patient became infected with probability b

t
L on day t through

contacts with infectious patients at the same location L on day t. The probability of becoming
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infected at location L on day t was

b
t
L ¼

Nt
L;I

Nt
L � 1

� b; Nt
L;I � 1 and Nt

L � 2;

0; otherwise:

8
><

>:
ð3Þ

Here, Nt
L;I denoted the number of infectious patients at location L on day t and Nt

L was the

total number of patients with t = T1, T1 + 1, � � �, T2. T1 and T2 were the start and end days of

the simulation. Here, we assumed that the population mixed homogeneously within each

location.

For the initial state of every simulation, we randomly selected 4% of the patients to be infec-

tious [31–33]. We assumed that no transmission occurred in the community node, and that

the discharged patients remained infectious until they recovered. Infectious patients recovered

spontaneously with probability γ per day. Following Scanvic et al. [34] and Donker et al. [11],

we set g ¼ 1

365
days� 1 based on the assumption that the mean time of MRSA colonization was

365 days. We assumed that the recovery probabilities in different hospitals and the community

were identical. Following the previous work of Donker et al. [11], we assumed the reference

transmission probability per patient contact to be β = 0.085 in hospital nodes and β = 0 in the

community node. Since we used stochastic approach to simulate pathogen spread within the

network, we performed 100 independent simulations for each set of values (e.g. different levels

of data incompleteness).

Measures used for comparison of network characteristics and spread of pathogens.

• Absolute value of relative bias (ARB): As different network measures, applied on the hospi-

tal network, yielded deviations in varying degrees, we computed the ARB for sampled and

scale-up datasets in comparison with the original data at node i:

ARBMðNetO;NetEÞi ¼
MðNetOÞ

i � MðNetEÞ
i

MðNetOÞ
i

�
�
�
�
�

�
�
�
�
�
;

where Mi denoted the weighted directed static network measure (degree, strength, or Close-

ness) at node i. NetO and NetE represented the network based on the original dataset and

sampled or scale-up dataset, respectively. As the nodal ARB did not take into account that

different nodes can correspond to very different number of patient hospitalizations and

transfers, we also considered the weighted ARB, defined as:

ARBw
MðNetO;NetEÞ ¼

XN

i¼1

HW
i � ARBMðNetO;NetEÞi ;

where HW
i ¼

HiðNetOÞPN

j¼1
HjðNetOÞ

, Hi was the total number of patient admissions at node i and N was

the number of hospitals.

The values for ARB and weighted ARB ranged from 0 to 1. Values close to 0 indicated that

the estimation based on the surrogate data was close to the one based on the original data.

• Cosine similarity (CS): We further applied CS as a similarity measure defined for vectors.

The value of CS was bounded between −1 and + 1, with a value of 1 for parallel vectors with

the same orientation, a value of −1 for parallel vectors with opposite orientation, and 0 for
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perpendicular vectors [35]. The local CSs of node i were defined as:

CSinðNetO;NetEÞi ¼
P

jw
NetO
ji � wNetE

ji
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jðw
NetO
ji Þ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jðw
NetE
ji Þ

2
q ð4Þ

CSoutðNetO;NetEÞi ¼
P

jw
NetO
ij � wNetE

ij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jðw
NetO
ij Þ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jðw
NetE
ij Þ

2
q ð5Þ

wNetO
ij and wNetE

ij were the numbers of total patient movements from hospital i to its neigh-

bours j in NetO and NetE during considered years, respectively. In addition, to study the

global similarity, we calculated the weighted CSs:

CSW;inðNetO;NetEÞ ¼
XN

i¼1

HW
i � CS

inðNetO;NetEÞi ð6Þ

CSW;outðNetO;NetEÞ ¼
XN

i¼1

HW
i � CS

inðNetO;NetEÞi ð7Þ

HW
i was defined as in the above section on ARB.

• Prevalence relative bias (PRB) and final PRB: To evaluate the estimation of daily preva-

lence in the SIS model, we then computed PRB as follow:

PRBðNetO;NetEÞt ¼
PrNetO

t � PrNetE
t

PrNetO
t

ð8Þ

Prt was the prevalence on day t with t = T1, T1 + 1, � � �, T2, which had been defined in the sec-

tion “Patient-movement based epidemic models”. The time-dependent PRB reflected the

underestimated proportion of the daily prevalence if PRB> 0, while PRB< 0 indicated the

overestimated proportion. Since PRB depended on time, we additionally defined a measure

“final PRB” by averaging the PRB values in their steady state.

Threshold for preservation of transmission networks regarding incompleteness. Sub-

sequently, we investigated at which threshold of incompleteness the network characteristics

were still reasonably preserved and estimates of epidemic spread are maintained. We consid-

ered error levels of 5% and 10%, measured by final PRB as acceptable. In addition to the origi-

nal transmission parameters, we studied the error levels for varying parameters for β and γ in

the patient-movement based epidemic models.

Software. R package “tnet” [36] was used for creating and analysing the hospital networks.

Own code was written for the stochastic SIS simulation. To visualize the data we used the R

package “ggplot2” [37]. For all analyses, we used R version 4.0.3 [38].

Results

Description of the AOK networks

The data from AOK PLUS included more than 40%, whereas AOK Bavaria as well as AOK

Lower Saxony included around 30% of the population of the corresponding federal states

(Table 1 in section Materials and Methods).
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The hospital network and patient characteristics of the original AOK datasets were pre-

sented in Tables 2 and 3. Based on the network densities ρDT and ρin−DT (see Table 2), we

inferred that the indirect hospital networks had much more connections than the direct net-

works. The average number of hospitalizations and average length of stay (LOS) from different

AOK datasets were close to each other, whereas the average LOS in AOK PLUS was substan-

tially higher than in the other two datasets (Table 3).

To provide further information about the data, we showed also the distribution of LOS in

S2–S4 Figs, of hospitalizations in S5 Fig, of network weights in S6 Fig, of in- and out-degrees

of each hospital in S7 and S8 Figs, and of in- and out-strengths in S9 and S10 Figs. More

detailed information about the AOK data can be also accessed in our previous work [23, 24].

Effects of incompleteness on estimated network characteristics

The static network measures: in- and out-degree, in- and out-strength, and in- and out-close-

ness were calculated for the sampled and scale-up datasets. The results were compared with

the ones evolving from the original datasets by using the evaluation measure ARB (Fig 2).

Despite the fact that there were differences in basic network properties in the various insur-

ance datasets, the ARBs of different network measures at different incompleteness levels were

similar across these datasets (see also Supporting information S11 Fig). There was also no

strong difference in ARBs between direct and indirect networks in each dataset. Among all

network measures, only strength showed a difference between sampled and scale-up datasets.

To further assess the impacts of incompleteness on network characteristics, we used cosine

similarity (CS). The findings are presented in S12–S15 Figs. The CS showed more stable results

in the dataset of the AOK PLUS, which had less area of low CS values at the same incomplete-

ness level as the other two datasets. When incompleteness reached 90%, several middle and

small hospitals displayed CS values lower than 0.6 and 0.7 in AOK Bavaria and AOK Lower

Saxony, while there were very few low CS values in AOK PLUS and only in some small hospi-

tals. The indirect hospital networks were less affected by incompleteness than the direct hospi-

tals. The scale-up of the sampled dataset to the original size provided little improvement.

Table 2. Basic description of AOK hospital networks.

Dataset No. of hospitals (N) ρDT ρin−DT �wDT �win� DT

AOK Bavaria 357 0.10 0.37 3.29 30.86

AOK Lower Saxony 211 0.13 0.41 4.47 44.47

AOK PLUS 126 0.28 0.61 12.25 144.23

The static networks had N nodes; ρ represented the network density with the subscripts “DT” and “in-DT” denoting the direct and indirect hospital networks. The “�w”

columns gave the average number of patient transfers per day between different hospitals.

https://doi.org/10.1371/journal.pcbi.1008941.t002

Table 3. Basic description of AOK patient characteristics.

Dataset No. of patients (M) Avg. No. of hospitalizations per person Avg. No. of persons per day per hospital Avg. LOS

AOK Bavaria 2,397,993 2.81 76.80 8.90

AOK Lower Saxony 1,268,239 2.72 66.23 8.88

AOK PLUS 1,410,588 2.76 136.74 9.70

The transient network included M individuals who were insured by the AOKs and were hospitalized at least once during the 6 years period. The abbreviation “Avg.” was

short for “average”, “No.” for “number”, and “LOS” for the “length of stay”.

https://doi.org/10.1371/journal.pcbi.1008941.t003
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To investigate the overall effect of incompleteness on patient transfer patterns, we calcu-

lated the weighted CS. Direct networks were affected by lower degrees of incompleteness than

indirect networks, which displayed CS above 0.98 up to incompleteness of 97–98% (Fig 3).

Effects of incompleteness on simulated spread of infections

The daily prevalence was hardly affected by incompleteness as high as 90% of the original data-

sets, when scale-up was applied (S16–S18 Figs). Even at higher incompleteness levels the scale-

Fig 2. Impact of sampling and scale-up on direct hospital network measures (visualized in boxplots). The weighted absolute value of relative biases

(ARBs) across different network measures on sampled (inset) and scale-up (main plot) datasets for various incompleteness levels. Incompleteness was

defined as the percentage of removed patients from the original datasets.

https://doi.org/10.1371/journal.pcbi.1008941.g002

Fig 3. Weighted cosine similarities (CSs). Weighted CSs in directions “in” and “out” between the sampled networks and the whole hospital networks

as a function of the incompleteness levels for three insurance datasets. The solid and dashed lines represented the weighted CSs on direct and indirect

hospital networks based on these AOK datasets, respectively.

https://doi.org/10.1371/journal.pcbi.1008941.g003
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up of the data markedly reduced the bias in estimation of prevalence, which slightly decreased

for less complete data (see S16–S18 Figs). There were fluctuations in prevalence related to holi-

days and weekends when there were fewer patients in the hospitals (see Fig 4 and S19 Fig).

This was especially true for the time between Christmas and New Year. These seasonal patterns

were consistent across years and AOK datasets. Overall, incompleteness had less impact on

prevalence in hospitals than on the prevalence in the community node.

Incompleteness threshold for preservation of transmission characteristics

After determining that the effects of incompleteness became visible, when incompleteness lev-

els surpassed 90%, we further focussed on this area and studied the higher incompleteness

more in detail (Fig 5). At this high incompleteness level, the scale-up datasets performed better

than sampled datasets. In the sampled datasets, AOK Lower Saxony appeared less robust to

higher incompleteness levels compared to the other two datasets. 10% PRB was reached

already at 90% incompleteness in the AOK Lower Saxony and at 94–95% incompleteness in

the AOK Bavaria and AOK PLUS datasets (for the community node prevalence). When addi-

tional, scale-up is applied, even higher incompleteness levels can be tolerated.

To further investigate the effects of incompleteness on the final PRBs based on the SIS

model, we used the AOK PLUS data with varying β and γ values. We could show that even

across a wide range of values (reflecting various pathogen with realistic characteristics) final

PRBs were preserved for high incompleteness levels of 96% (see Fig 6 and S20 Fig). For even

higher incompleteness levels, there was some indication that for some combination of parame-

ters final PRBs became substantially larger.

Discussion

We demonstrated that while incomplete coverage of the population affected the studied net-

work measures, this did not greatly bias the prevalence as a measure of epidemic spread until

the level of incompleteness exceeded 90% (in relation to the original dataset). Scale-up by

“cloning” the patients provided little improvement, unless for very high incompleteness levels.

Previous research demonstrated that the epidemic risk of single hospitals in the absence of

transmission models can be estimated by utilizing their network measures [31]. Unfortunately,

incomplete data would affect such estimates.

Fig 4. Prevalence in community nodes obtained from transmission model simulations for different AOK datasets. The dashed lines in each graph

point the x-axis of prevalence peaks.

https://doi.org/10.1371/journal.pcbi.1008941.g004

PLOS COMPUTATIONAL BIOLOGY Effects of incomplete inter-hospital network data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008941 May 6, 2021 10 / 18

https://doi.org/10.1371/journal.pcbi.1008941.g004
https://doi.org/10.1371/journal.pcbi.1008941


Degree and closeness displayed strong bias of around 25% at incompleteness levels of 50%–

60% and nearly 50% at an incompleteness level of 80%. This effect was mainly due to the

removal of weaker links, caused by missing patient records with transfers between particular

hospitals, which would underestimate the risk of pathogen transmission between those hospi-

tals. In case of the network measure strength, this bias was reduced to 10% or less by adopting

the scale-up method based on “cloning” of patients. However, since the scale-up could not

impute lost edges, it provided little benefit with respect to the other measures.

The CS as measures of affinity was relatively high even at high incompleteness levels, likely

due to the fact that removal of patients occurred at random, as demonstrated in previous

research [14]. German health insurance system is scattered in multiple companies, with some

of them being more similar the others in terms of insurants and some known for more specific

characteristics. Nevertheless, there is one system of hospitals where the patients are admitted.

So, the insurance datasets are likely to differ in average hospitalization rates, but they should

not generate disparate or differently weighted hospital networks.

For modelling HAI spread in the healthcare system, we used transmission parameters

based on previous research [2, 3, 7, 8, 11] and varied those across a range of clinically relevant

parameters. For example, an important factor in modelling multidrug-resistant pathogens

acquired in healthcare institutions is that patients can become carriers without displaying

symptoms of infection. Consequently, they might remain colonized for a long time, i.e. either

undetected and, therefore, not treated or because some of the pathogens are overall difficult to

Fig 5. Final PRBs of simulated networks for each AOK plotted against percentage of incompleteness.

https://doi.org/10.1371/journal.pcbi.1008941.g005
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remove, despite decolonization efforts [39]. Some estimates of clearance rate are available.

However, clearance might not be homogeneous, and some patients can carry the pathogen

much longer. If such patients are readmitted to the same hospital, or possibly to another hospi-

tal, for the same or unrelated reason, they can reintroduce the pathogen. This is particularly

the case, if such patients receive antibiotic treatment, which can lead to selection of resistant

strains and uncover a partially hidden colonization.

Prevalence estimates as a measure of epidemic spread in the network were robust until high

level of incompleteness of 90% and more. Accounting for the fact that the datasets were them-

selves subsamples of the populations of the federal states, one could assume that 0.1 times

Fig 6. Final prevalence relative biases (PRBs) in hospital nodes for varying transmission parameters. The final

PRBs in hospital nodes were calculated based on the simulations on AOK PLUS patient-movement networks, built by

scale-up at incompleteness levels of 96% and 98%. In (a) we presented the final PRBs in hospital nodes for different

values of β. In (b) we presented the final PRBs in hospital nodes for different values of γ.

https://doi.org/10.1371/journal.pcbi.1008941.g006
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30–40%, i.e. a minimum coverage of 3–4% of the local population is required to represent the

patient-movement network structure in the region relevant for pathogen transmission. In each

region, typically several insurance companies have a larger share of 5% of coverage, although

above 10% there usually only few, with AOKs insuring 30% or more of the local population in

most federal states, followed by possibly other more local insurance companies and any of the

three largest countrywide companies. In this sense for each federal state in Germany, there are

3–5 potential data sources for such analyses, which fulfil the requirement of the coverage of

more than 10% of the local population. They would provide basis for robust modelling of path-

ogen spread in regional hospital networks. Conversely, for the whole of Germany there 1–2

health insurance companies which fulfil this criterion in most of the federal states, in addition

to the composite of all local AOKs taken together.

Limitations

We used data from only three insurance companies from selected regions, so that our findings

might not be generalizable to other regions of Germany or to other countries. Also, there

could be differences between insurance companies with respect to characteristics of the insur-

ants, which could again affect generalization of our findings even within the studied regions.

For example, a dataset from an insurance company with younger insurants who have less hos-

pitalizations could tolerate lower fraction of the included population before too many transfer

links are lost and epidemic model results are biased. In addition, we used only a relatively sim-

ple transmission model, and more complex infections could bring additional problems not

addressed in our analyses. We assumed that all susceptible patients had the same probability of

becoming infected within each hospital although it is known that the physical and organiza-

tional structures of a hospital affect these numbers [40, 41]. In our model, we also neglected

the existence of smaller subunits as hospital wards. Patients are likely to transmit the pathogen

to patients in the same ward and not to all patients in the hospital. Finally, we investigated only

a range of assumptions regarding transmission parameters in the epidemiological model.

While our focus was on parameters observed for MRSA and other multidrug-resistant patho-

gens transmitted in the hospitals, it could be that some specific pathogens were not covered in

the chosen range or that new pathogens will emerge with different characteristics.

Conclusions

Although hospital network measures were biased when incompleteness levels were high, net-

works based on incomplete data still maintained similar patient transfer patterns. In addition,

even up to high levels of incompleteness, simulated infection prevalence in SIS transmission

models displayed only small bias. At the upper boundary of incompleteness levels, scale-up

improved the robustness of patient-movement based transmission model. While incomplete-

ness of patient transfer data remains a challenge, our findings are reassuring that across a

broad range of assumptions, robust estimates can be reached despite incomplete data.

Supporting information

S1 Fig. Distribution of number of hospitalizations per hospital in the three AOK datasets

including hospitals with less than 100 hospitalizations during six-year time period. The x-

axis represents hospitals, ranked from largest to smallest (left to right) based on the number of

hospitalizations that occurred there. The dash lines indicate the bounds of 100 hospitaliza-

tions.

(EPS)

PLOS COMPUTATIONAL BIOLOGY Effects of incomplete inter-hospital network data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008941 May 6, 2021 13 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008941.s001
https://doi.org/10.1371/journal.pcbi.1008941


S2 Fig. Density distribution of length of stay based on age and sex categories in AOK

Bavaria. The upper and lower panels show the distributions for female and male patents,

respectively.

(EPS)

S3 Fig. Density distribution of length of stay based on age and sex categories in AOK

Lower Saxony. The upper and lower panels show the distributions for female and male pat-

ents, respectively.

(EPS)

S4 Fig. Density distribution of length of stay based on age and sex categories in AOK

PLUS. The upper and lower panels show the distributions for female and male patents, respec-

tively.

(EPS)

S5 Fig. Distribution of number of hospitalizations per hospital in the three AOK datasets.

The x-axis represents hospitals, ranked from largest to smallest (left to right) based on the

number of hospitalizations that occurred there.

(EPS)

S6 Fig. Distribution of weights for hospital edges. Here, the “Direct” and “Indirect” indicates

the direct and indirect hospital networks, respectively.

(EPS)

S7 Fig. Distribution of degrees on direct hospital networks. The x-axis represents hospitals,

ranked from large to small (left to right) based on the number of hospitalizations that occurred

there.

(EPS)

S8 Fig. Distribution of degrees on indirect hospital networks. The x-axis represents hospi-

tals, ranked from large to small (left to right) based on the number of hospitalizations that

occurred there.

(EPS)

S9 Fig. Distribution of strengths on direct hospital networks. The x-axis represents hospi-

tals, ranked from large to small (left to right) based on the number of hospitalizations that

occurred there.

(EPS)

S10 Fig. Distribution of strengths on indirect hospital networks. The x-axis represents hos-

pitals, ranked from large to small (left to right) based on the number of hospitalizations that

occurred there.

(EPS)

S11 Fig. Impact of sampling and scale-up on static direct hospital subnetwork measures in

boxplots. We plotted the weighted absolute value of relative biases (weighted ARBs) across dif-

ferent network measures on sampled (inset) and scale-up (main plot) static hospital networks

for various incompleteness levels of patient removed. The boxplots showed the progressive dis-

parities of ARBs of diverse network measures as incompleteness increases. Each row specified

the type of hospital subnetwork and the legend in the right side showed the corresponding net-

work measures. Each column involved the graphs from the same AOK data.

(EPS)

PLOS COMPUTATIONAL BIOLOGY Effects of incomplete inter-hospital network data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008941 May 6, 2021 14 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008941.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008941.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008941.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008941.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008941.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008941.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008941.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008941.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008941.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008941.s011
https://doi.org/10.1371/journal.pcbi.1008941


S12 Fig. Cosine similarities (CSs) in direction “In” between sampled and original hospital

networks according to 9 incompleteness levels. The right y-axis displays incompleteness lev-

els. The bar plots on the top of the heat maps indicate hospital sizes, ranking from highest to

lowest (left to right) based on the number of hospitalizations that occurred there, which also

defines the x-axis.

(EPS)

S13 Fig. Cosine similarities (CSs) in direction “Out” between sampled and original hospi-

tal networks according to 9 incompleteness levels. The right y-axis displays incompleteness

levels. The bar plots on the top of the heat maps indicate hospital sizes, ranking from highest

to lowest (left to right) based on the number of hospitalizations that occurred there, which also

defines the x-axis.

(EPS)

S14 Fig. Cosine similarities (CSs) in direction “In” between scale-up and original hospital

networks according to 9 incompleteness levels. The right y-axis displays incompleteness lev-

els. The bar plots on the top of the heat maps indicate hospital sizes, ranking from highest to

lowest (left to right) based on the number of hospitalizations that occurred there, which also

defines the x-axis.

(EPS)

S15 Fig. Cosine similarities (CSs) in direction “Out” between scale-up and original hospi-

tal networks according to 9 incompleteness levels. The right y-axis displays incompleteness

levels. The bar plots on the top of the heat maps indicate hospital sizes, ranking from highest

to lowest (left to right) based on the number of hospitalizations that occurred there, which also

defines the x-axis.

(EPS)

S16 Fig. Daily prevalence PRBs in AOK Bavaria according to incompleteness levels equal

or above 90%. The red and dark blue dashed lines indicate the bounds of 5% and 10% estima-

tion biases.

(EPS)

S17 Fig. Daily prevalence PRBs in AOK Lower Saxony according to incompleteness levels

equal or above 90%. The red and dark blue dashed lines indicate the bounds of 5% and 10%

estimation biases.

(EPS)

S18 Fig. Daily prevalence PRBs in AOK PLUS according to incompleteness levels equal or

above 90%. The red and dark blue dashed lines indicate the bounds of 5% and 10% estimation

biases.

(EPS)

S19 Fig. Prevalence in hospital nodes obtained from transmission model simulations for

different AOK datasets. The dashed lines in each graph point towards the x-axis of prevalence

peaks.

(EPS)

S20 Fig. Final prevalence relative biases (PRBs) in community nodes for varying transmis-

sion parameters. The final PRBs in community nodes were calculated based on the simula-

tions on AOK PLUS patient-movement networks, built by scale-up at incompleteness levels of
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96% and 98%. In (a) we presented the final PRBs in community nodes for different values of β.

In (b) we presented the final PRBs in community nodes for different values of γ.

(EPS)
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André Karch, Hannan Tahir, Mirjam Kretzschmar, Rafael Mikolajczyk.

Formal analysis: Hanjue Xia, Johannes Horn.

Funding acquisition: Rafael Mikolajczyk.

Investigation: Hanjue Xia.

Methodology: Hanjue Xia, Johannes Horn.

Software: Hanjue Xia.

Supervision: Rafael Mikolajczyk.

Validation: Hanjue Xia.

Visualization: Hanjue Xia.

Writing – original draft: Hanjue Xia.

Writing – review & editing: Hanjue Xia, Johannes Horn, Monika J. Piotrowska, Konrad
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