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Abstract: Cryptotanshinone (CTS) is an important active ingredient of Salvia miltiorrhiza Bge. In recent years, its remarkable 
pharmacological effects have triggered extensive and in-depth studies. The aim of this study is to retrieve the latest research progress 
on CTS and provide prospects for future research. The selection of literature for inclusion, data extraction and methodological quality 
assessment were discussed. Studies included (1) physicochemical and ADME/Tox properties, (2) pharmacological effects and 
mechanism, (3) conclusion and bioinformatics analysis. A total of 915 titles and abstracts were screened, resulting in 184 papers 
used in this review; CTS has shown therapeutic effects on a variety of diseases by modulating multiple molecular pathways. For 
example, CTS primarily targets NF-κB pathway and MAPK pathway to have a therapeutic role in cardiovascular diseases; in cancer, 
CTS shows superior efficacy through the PI3K/Akt/mTOR pathway and the JAK/STAT pathway; CTS act on the Nrf2/HO-1 pathway 
to combat neurological diseases. In addition, key targets of CTS were predicted by bioinformatics analysis, referring to disease 
ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis, with R Studio; 
AKT1, MAPK1, STAT3, P53 and EGFR are predicted to be the key targets of CTS against diseases. The key proteins were then 
docked by Autodock software to preliminarily assess their binding activities. This review provided new insights into research of CTS 
and its potential applications in the future, and especially the targets and directly binding modes for CTS are waiting to be 
investigated. 
Keywords: cryptotanshinone, pharmacological effects, molecular mechanism, bioinformatics analysis

Introduction
Salvia miltiorrhiza Bge. is a widely used herb throughout the world, particularly in China, where it has been used for 
millennia.1 It is predominantly found in China, particularly in humid regions with a temperate climate and an abundance 
of light. Additionally, it is found in Mongolia, Korea, Japan, the United States, and New Zealand.2 In traditional 
medicine, Salvia miltiorrhiza is regarded as a substance that promotes blood circulation and eliminates blood stasis, 
nourishes the blood, tranquilizes the mind, and regulates menstrual bleeding. Given its superior efficacy, modern 
medicine utilizes it to treat a range of diseases, including liver diseases and tumors.3 To date, numerous chemical 
compounds have been extracted from the Salvia miltiorrhiza. These include hydrophilic phenolics, such as salvianolic 
acid, rosmarinic acid, and caffeic acid, as well as lipophilic diterpene quinones, including tanshinone IIA and cryptotan-
shinone, etc. Additionally, the plant has been found to contain other beneficial secondary metabolites, including 
polysaccharides and alkaloids, which exhibit promising pharmacological activities.4 Being one of active ingredients in 
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this herb medicine,1,2 cryptotanshinone (CTS) (Figure 1) has subsequently received a large number of modern pharma-
cological studies, suggesting its great medicinal potential.5–9

Currently, there have been several reviews retrieving the anti-cancer activities and molecular mechanism of CTS, 
however, the reviews about CTS’s multifunction are limited up to the end of 2020.5–7 Therefore, an update systematic 
review on the ingredient, especially focusing on its multiple pharmacological effects and mechanism, is helpful to 
supporting future investigation for the active ingredient’s potential applications.

In this paper, the last progress of research is updated on pharmacological effects and molecular mechanisms of CTS 
against various diseases, such as cancerous, cardiovascular, neurological, respiratory and motor system diseases. 
Especially, much new knowledge, such as about urinary system protection, motor system protection, and respiratory 
system protection, endocrine system protection, and mechanisms of the CTS, is retrieved in the review. Meanwhile, this 
paper further provides an updated systematic prediction of the possible mechanisms and targets of CTS against diseases 
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through bioinformatics analysis, including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Disease 
Ontology Semantics and Enrichment (DOSE) analysis, with the reported genes or proteins related to CTS’s pharmaco-
logical effect.

Methods
The following terms were searched in the PubMed, and Web of Science databases “(cryptotanshinone) AND (“2017/01/ 
01”[Date - Publication]: “2024/08/01”[Date - Publication])” and “(ALL=(cryptotanshinone)) and DOP=“(2017–01-01 / 
2024-08-01)”. 08–01)”. As a result, 417 and 498 records were collected from the two databases, individually. Documents 
related to tanshinone IIA, tanshinone I, and dihydrotanshinone I studies were manually excluded. Subsequently, studies 
related to the preparation, synthesis, optimization of processes, derivatives, biotransformation transformation, analytical 
methods of cryptotanshinones were excluded based on the title, abstract, and content of the article (113 of the excluded 
papers were accompanied by reasons for exclusion). Finally, 184 eligible articles were included. According to prisma 
statement,10,11 the prisma flowchart for this review is shown in Figure 2.

Physicochemical and ADME/Tox Properties
Physicochemical Properties
Cryptotanshinone (Molecular Formula: C19H20O3, WM: 296.39, pKa: 4.9) (Figure 1), a heterocyclic diterpenoid quinone, 
orange needle-like crystals, soluble in dimethyl sulfoxide, methanol, chloroform and ether.12,13 Oil-water partition 
coefficient LogP: 3.44, slightly soluble in water (0.00976 mg/mL).14

Pharmacokinetics
In an in vitro assay, the gastrointestinal absorption transport properties of CTS (bidirectional transport assay in Caco-2 
cells) Papp (a→b): 0.98×10-6 cm/s; Papp (b→a): 8.36×10-6 cm/s.15 In human trials, cryptotanshinone blood levels were 

Figure 1 Meta-Analyses (PRISMA) flowchart for inclusion and exclusion of literature in this review.
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below 88 ng/mL after 24h of oral administration of tanshinone capsules containing 88 mg CTS in healthy Chinese 
volunteers.16 All the above studies showed that CTS was poorly absorbed orally. Studies have shown that the distribution 
of CTS in the body 48h after oral administration: liver ˃ lung ˃ prostate ˃ kidney ˃ heart ˃ plasma ˃ spleen ˃ brain.17 

UDP-glucuronosyltransferase (UGT) and CYP enzymes are able to breakdown CTS to create hydroxylation products, 
S-cysteine binding reaction products, and other complicated reaction products. Currently, 45 CTS metabolites have been 
discovered.18 Among them, Tanshinone IIA, the dehydrogenation product of CTS, has now been shown to possess 
numerous pharmacological activities such as anticancer, anti-Almozheimer’s disease and cardiovascular protection,19 

which responds to the great drug-forming potential of CTS. CYP enzymes and UGT enzymes are major metabolic 
enzyme systems in humans, and CTS has the ability to inhibit CYP enzyme activity, activate PXR and induce UGT gene 
expression.20,21 Therefore, attention should be paid to drug-drug interactions when using CTS containing preparations in 
combination with other drugs.

Bioavailability
Low bioavailability of CTS has been reported, which may be closely related to the in vivo metabolism of CTS and 
P-glycoprotein (P-gp) mediated efflux.22 This significantly affects the potential for the prescription drug development of 
CTS, for which researchers have used a variety of approaches to improve the bioavailability of CTS. Initially, the 

Figure 2 The structure of cryptotanshinone.
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bioavailability of CTS can be improved through drug interactions. Studies have shown that CTS improves the efficacy of 
anticoagulants. For example, CTS is able to significantly inhibit the hydroxylation of warfarin by interfering with 
CYPase-mediated warfarin metabolism, and increasing the steady-state concentration of warfarin in the body and 
prolonging the duration of action of the drug.23 In addition, the active ingredients of S. miltiorrhiza act synergistically 
to enhance the oral absorption of CTS. Researchers used UPLC-MS/MS to determine the plasma concentrations of 
tanshinone and polyphenols in rats to study their pharmacokinetic interactions, and found that the polyphenolic 
components affected the pharmacokinetics of CTS and significantly improved the oral bioavailability of CTS.24 

Firstly, studies have shown that synergistic effects between CTS and drugs are associated with P-gp mediated glyco-
protein efflux,25,26 inhibition of transporter proteins27 and liver microsomal CYP enzyme system.28 Secondly, the 
synthesis of CTS derivatives may elevate bioavailability of CTS. Some researchers designed and synthesized 45 aromatic 
ring hybrid derivatives of CTS and investigated the cardioprotective effects of the derivatives by in vitro hypoxia/ 
reoxygenation model.29 The results showed that the synthesized CTS derivatives had higher polarity and better biological 
activities. Moreover, with the advancement of modern science and technology, CTS is able to be made into solid 
dispersions,30 liposome preparations,31 nano-loaded particles29 and other novel drug delivery systems to enhance the 
bioavailability of CTS.

Potential Toxicity
Results from in vitro cell experiments indicate that pretreatment with 10 µM CTS for 24 hours did not cause observable 
damage to H9c2 cardiomyocytes, however, when treated with 3 µM CTS for the same duration, there was a significant 
decrease in proliferation observed in human fibroblast-like synovial cells (FLS).32 This evidence suggests a potential 
adverse impact of CTS and varying degrees of toxicity in different types of tissue cells. However, current research papers 
lack a comprehensive dual interpretation of CTS potency and toxicity. As the administered dose increases, the drug 
toxicity would potentially become evident. Future studies should consider the dual role of potency and toxicity to fully 
harness the potential of CTS from a clinical perspective. Studies demonstrate that LD50 of a S. miltiorrhiza injection 
containing the main ingredient CTS,31 is 68.72 g/kg, and both chromosomal aberration and mouse bone marrow 
micronucleus tests indicate no genotoxicity of the injection.33 In an acute toxicity study, intravenous administration of 
CTS at a dose of 32 g/kg did not cause death or other toxicity in rats. In the subchronic toxicity study, triglyceride and 
body weight reductions were detected without lethal effects.33 In the zebrafish model, zebrafish embryos were retarded at 
a teratogenicity index (TI) of 2 for CTS, and this teratogenic effect was mitigated with time. Additionally, other 
teratogenic effects of CTS included scoliosis, abnormal yolk sac/tail development and pericardial edema.34 Despite the 
absence of evidence indicating that CTS exhibits pronounced acute toxicity, the possibility of its toxicity cannot be 
disregarded. The efficacy of drugs should base on safety, and future research should focus on elucidating whether 
prolonged CTS administration may result in adverse effects on normal tissues and organs or exacerbate the risk of organ 
damage.

Clinical Studies
Salvia miltiorrhiza Bge. has a long history of use in the treatment of cardiovascular disease. In recent years, several 
clinical trials have been developed with the aim of comprehensively examining its safety and efficacy. In addition to their 
efficacy in the treatment of cardiovascular disease, danshen preparations have been demonstrated to improve the 
prognosis of patients undergoing percutaneous coronary intervention.35,36 Furthermore, danshen preparations are utilized 
in conjunction with other proprietary Chinese medicines for the management of cardiovascular disease, stroke, and 
alcoholic fatty liver disease.37–39 Furthermore, a review of the existing literature revealed that, while there are currently 
no clinical trials investigating CTS, tanshinone IIA, which shares a similar structural composition with CTS, has been 
approved for use as a proprietary drug (tanshinone IIA sodium sulfonate) and has already been the subject of several 
clinical trials.40 A comparison of cryptotanshinone with tanshinone IIA indicates that both belong to the group of 
chemical compounds known as diterpene quinones, and that they are similarly characterized by low bioavailability. This 
undoubtedly presents a significant challenge for the clinical translation of the drug. Despite the numerous studies on 
CTS’s pharmacological activity, the issue of bioavailability remains a significant challenge at clinical levels. The use of 
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tanshinone IIA as a reference for improving solubility through salt formation has the potential to significantly enhance 
the pharmaceutical potential of CTS and facilitate its clinical application.

Pharmacological Effects and Mechanism of CTS
Cardiovascular System Protection
Protection of Cardiac Ischemia/Reperfusion Injury
Ischemia/Reperfusion Injury (IR) is a pathological process that causes further damage to the myocardium after blood 
flow is restored to the myocardium under ischemic conditions. Reperfusion results in more severe pathological outcomes 
in ischemic tissues of the heart.41 Mechanisms of IR include oxidative stress, impaired mitochondrial energy 
metabolism,42 inflammatory responses43 and intracellular Ca2+ overload.44 Firstly, CTS enhances cell viability through 
downregulation of ERK and NF-κB pathways, promotes Bcl-2 anti-apoptotic gene expression and inhibits ROS and 
MDA production, which ameliorates myocardial oxidative stress and inhibits apoptosis.43 Second, CTS suppresses 
cysteine 3 cleavage and cardiomyocyte apoptosis through upregulation of the MAPK3 pathway, thus exerting 
a protective effect against IR.40 Third, under normal physiological conditions, intracellular and extracellular Ca2+ are 
maintained in balance. During myocardial hypoxia/reoxygenation injury, Ca2+ plays a signaling role by activating CaM 
kinase (CaMK), which promotes cardiomyocyte death in IR injury.44 CTS reduces intracellular CaM and CaMKII δ 
expression and protects damaged cardiomyocytes.45 In addition, intracellular PDK4 upregulation leads to cardiomyocyte 
hypoxia and induces I/R injury.46 Studies have shown that CTS effectively inhibit PDK4 expression and improve cellular 
metabolism.47

Protection of Atherosclerosis
The generation of atherosclerosis typically follows a specific pattern. Firstly, damaged endothelial cells secrete oxidized 
low-density lipoprotein (LDL) into the bloodstream where it accumulates. In response to stimuli such as oxidized LDL 
and proinflammatory mediators, endothelial cells produce monocyte chemoattractant protein-1(MCP-1).48 Secondly, 
MCP-1 attracts monocytes across the gaps between endothelial cells, and enters the damaged site selectively. Finally, 
these monocytes bind to endothelial adhesion molecules and penetrate the intima layer, where they further differentiate 
into macrophages. Macrophages recognize oxidized and aggregated modified LDL through scavenger receptors before 
engulfing the large amounts of LDL present in the affected area and forming foam cells.49 On the one hand, oxidatively 
modified low-density lipoprotein (Ox-LDL) in mRNA significantly induces intercellular adhesion molecule-1 (ICAM-1), 
vascular cell adhesion molecule-1 (VCAM-1), E-selectin (an important factor associated with atherosclerosis) and 
promotes the progression of atherosclerosis. A study has shown that CTS is able to reduce the concentration of body 
fat as well as serum cholesterol and triglyceride levels,49 and CTS inhibits IKKβ-IκB via NF-κB pathway interactions 
and phosphorylation-mediated p65 nuclear translocation reduces the expression of ICAM-1, VCAM-1 and E-selectin,50 

and exerting anti-atherosclerotic effects. On the other hand, CTS weakens the progression of atherosclerosis induced by 
oxLDL through the pathway involving Lectin-like oxidized LDL receptor-1 (LOX-1).51 It also has a protective effect on 
injured endothelial cells by hindering TNF-α induced monocyte adhesion and restraining the production of ICAM-1 and 
VCAM-1 molecules.52 Additionally, it inhibits angiogenesis and migration through VEGFR2 and PKM2 signaling 
pathways,53,54 and offers protective effects against atherosclerosis. Furthermore, studies on zebrafish and mice models 
suggest that CTS has a potent anti-angiogenic effect, which is possibly due to its mechanisms of transcription of TNF-α 
through NF-κB and STAT3 pathways and mRNA stability associated with TNF-α transcription achieved by CTS.55

As the atherosclerotic disease progress, the generated lipids and foam cell death debris accumulate and continue to 
generate fibrous plaques. Additionally, some smooth muscle cells (SMC) enter a proliferative state, migrate beyond the 
intima, and secrete extracellular matrix to create fibrous caps, which in turn cause pathological events such thrombosis, 
acute coronary syndrome, and myocardial infarction.41 The partial re-differentiation of SMCs into dividing and macro-
phage-like cells results in subsequent inflammatory reactions, cell necrosis, and cyto-calcification.56 The results of an 
in vitro experiment suggest that CTS may exert its anticoagulant effects through the cyclooxygenase-2/mPGES-1/ 
endothelial prostaglandin EP3 pathway, and subsequent animal experiments demonstrate that CTS selectively reduces 
EP3 isoform expression, which provides a theoretical basis for subsequent in-depth studies on the anti-atherosclerotic 
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effects of CTS via this pathway.57 Studies conducted in animal models have shown that CTS possesses protective effects 
against atherosclerosis. In zebrafish model studies, CTS reduces oxidative stress injury and inhibits thrombosis through 
the coagulation cascade.58 Further studies have demonstrated that CTS has antithrombotic actions by blocking COX-1 
and TNF-α to drastically diminish phenylhydrazine induced endogenous thrombosis and decrease TXA2-mediated 
platelet aggregation to control the coagulation cascade.59 Studies in rats showed that CTS pre-protection significantly 
reduced ischemia induced apoptosis and endothelial activating cytokines (ET-1, vWF, P-selectin), and exerting 
a protective effect against myocardial infarction.43

Protection of Cardiac Hypertrophy
Under normal physiological conditions, cardiac myocytes can exhibit an increase in cell size without change in number, 
a physiological effect that facilitates the function and efficiency of cells to enhance their work,60 and a compensatory 
response to maintain cardiac function. However, when external stimuli (such as hypertension, diabetes mellitus, and 
myocardial infarction) continue to act on the heart muscle cells, this process becomes pathological and eventually leads to 
heart failure (HF).61 Cardiac hypertrophy in the pathological state leads to decreased cardiac contractility and adaptability, 
and ventricular remodeling, which in turn leads to cardiac fibrosis and cardiomyocyte death.62 Angiotensin II (Ang II) binds 
to endothelin receptor-1 and induces myocardial hypertrophy by generating activated nuclear protein kinase D (PKD),63 and 
CTS reduces Ang II-stimulated NOX-2 and NOX-4 expression and reactive oxygen species production, ameliorating cardiac 
fibrosis through ERK1/2 pathway.64 In addition, the p38/MAPK pathway in pathological cardiac hypertrophic cells controls 
cell growth and poor gene expression,65 and studies have shown that CTS regulates the STAT3 pathway during early 
adipogenesis to inhibit preadipocyte differentiation.66 In an in vitro study, CTS was experimentally found to downregulate 
the expression of p38/MAPK and Smad signaling in mesenchymal stem cells,67 and the finding contributes to further 
research on the protective effect of CTS on cardiac hypertrophy. In addition, the latest experimental results showed that CTS 
not only effectively alleviated cardiac hypertrophy, but also alleviated fibrosis, and effectively inhibited the mRNA 
expression of fibrosis-related biomarkers Tgfb, Ccn2, Col1a1 and Col3a1 in mice.27

Protection of Myocarditis
Cardiac inflammation (CI) is an inflammatory disease that occurs due to the mediation of inflammatory cytokines, 
typically caused by either an overactive immune system or external infections. The progression of myocarditis can lead 
to various heart diseases and even heart failure (HF).68 Inflammatory triggers, such as endogenous signals (such as 
HMGB-1), are recognized by cardiac pattern recognition receptors (PRRs) and bind to these receptors primarily located 
on the plasma membrane or inclusions, including Toll-like receptors (TLRs).69,70 CTS ameliorates Ang II induced TLR 4 
inflammatory vesicle activation-mediated myocardial injury via the EPK pathway,71 or exerts anti-inflammatory effects 
via TLR 4 mediated downregulation of IL-1β, IL-6, TNF-α, COX-2 and iNOS in microglia.25

Subsequently, the receptor emits inflammatory signals that act on effector cells or the complement system. Research 
demonstrates that CTS targets Ca2+ to inhibit the activation of NLRP3 inflammasome and reduces reactive oxygen 
species (mtROS) production during the activation process to prevent inflammasome-mediated diseases. Results from 
subsequent cell transfection experiments showed that CTS specifically inhibits the activation of NLRP3.72 Additionally, 
in vitro cell experiments show that CTS inhibits biofilm formation of Staphylococcus aureus by reducing the production 
of PIA, ATLE, and AAP, indicating therapeutic effects against endocarditis caused by Staphylococcus epidermidis. In 
vivo animal model studies show that CTS is able to reduce DOX induced cardiac toxicity in rats with heart failure 
through p38 pathway, and indicating protective effects on the heart.31

In brief, CTS showed huge potential in the treatment of cardiovascular diseases and the summary of the effect 
mechanism on the reported is shown in Figure 3 and Table 1.

Anti-Cancer Effect
Anti-Proliferation
Abnormal cell growth is a key factor in cancer development and is closely linked to the signaling pathways and protein 
expression associated with cell cycle-related growth. The PI3K/Akt/mTOR, JAK/STAT3, and AMPK pathways play 
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crucial roles on promoting abnormal cell growth in cancers.73 Studies have indicated that CTS has the ability to target the 
PI3K/Akt/mTOR pathway, thereby inhibiting the growth of multiple types of cancer cells including liver cancer,74 breast 
cancer,75 colorectal cancer,76 and lung cancer.77 Additionally, upstream proteins such as IGF and GPFR, as well as 
regulatory factors like PTEN, are involved in this pathway.78 For example, by inhibiting the IGF-1R-mediated PI3K/Akt 
pathway, CTS suppresses the proliferation of lung cancer cells,77 GPFR, a seven-transmembrane protein important for 

Figure 3 The main targets and pathways affected by CTS against cardiovascular system, nervous system, and urinary system diseases. 
Notes: The symbols “ ↓ ”, “ ↑ ”, “ ┤ ” and p indicate downregulation, upregulation, inhibition and phosphorylation of proteins, respectively, and the line with arrows “ → ” 
indicates single transduction.

Table 1 Studies on Anti-Cardiovascular Disease Effect of CTS

Author and 
Year

Disease/Model Animal/Cell Dose Effect

Wang et al 202134 Disease: Cardiac ischemia/perfusion re- 

injury 
Model: 
In vivo: Ligation of left anterior 

descending coronary artery 
In vitro: Hypoxic chamber with 95% N2 

and 5% CO2

Animal: 
Neonatal C57/B6J 
mouse 

Cell: 
Cardiomyocytes

In vivo: 0, 1, 2 mg/kg, 

In vitro: 0, 10, 20 μM

Reduce apoptosis

Liu et al 201745 Disease: Myocardial ischemia 
Model: 
In vitro: Hypoxic chamber with 95% N2 

and 5% CO2

Cell: 
Cardiomyocytes

In vitro: 0.054, 
0.108 μg/mL

Inhibition of calcium overload, 
antioxidant, anti-apoptosis

Zhao et al 201650 Disease: Atherosclerosis 

Model: 
In vitro: ox-LDL (10 μg/mL) cell model

Cell: Primary 

HUVEC cells

In vitro: 50 nM Inhibition of adhesion molecule 

expression

(Continued)
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the growth and proliferation of its target cells,79 also mediates the regulatory effect of CTS on the PI3K/Akt/mTOR 
signaling pathway to inhibit the growth of ER-negative breast cancer cells.72 Moreover, CTS alters the stability of PTEN 
in cell experiments and gene silencing experiments, thus regulating the phosphorylation of downstream pathways and 
resulting in an anticancer effect on cell proliferation.80 Downstream targets of CTS through the PI3K/Akt/mTOR 
pathway include NF-κB and GSK-3β. For instance, CTS causes apoptosis by regulating the PI3K/Akt/NF-κB signaling 
pathway and amending the expression of Bax and Bcl-2.81 It can also restrict the G0/G1 cell cycle and induce apoptosis 
in non-small cell lung cancer cells by means of the PI3K/Akt/GSK3β pathway.82 Furthermore, research indicates that 
CTS may act as a potential inhibitor of SIRT3, which has been demonstrated to impede colorectal cancer proliferation by 
targeting SIRT3 proteins and arresting the cell cycle in the S phase.83

The STAT family of transcription activators play a significant role in the proliferation, apoptosis, and regulation of the 
tumor microenvironment. Hence, they are considered an effective anti-cancer target.84 CTS functions as an efficient 
STAT3 inhibitor, and combination of CTS with paclitaxel is able to suppress tumor cell growth through JAK/STAT3 
signaling pathway suppression and promote apoptosis.85 What’s more, research has shown that CTS induce renal 
carcinoma cell and gastric cancer cell apoptosis by inhibiting the JAK/STAT3 pathway and suppressing 
proliferation.86,87 In addition to effectively inhibiting STAT3 expression, CTS may also exert an anticancer effect by 
inhibiting other members of the STAT family, such as STAT1 and STAT5.88

Table 1 (Continued). 

Author and 
Year

Disease/Model Animal/Cell Dose Effect

Liu et al, 201551 Disease: Atherosclerosis 
Model: 
In vivo: Feeding induced atherosclerosis 

In vitro: carried out in oxidized LDL 
(oxLDL)-stimulated HUVECs

Animal: (ApoE-/- 
) mice, 

Cell: HUVEC cells

In vivo: 15, 45 mg/kg 
In vitro: 2.5, 5, 

10 μM

Inhibition of adhesion molecule 
expression

Saviano et al 

202257

Disease: Thrombosis 

Model: 
In vivo: The mouse tail was cut 5 mm 

from the tip of the tail to induce bleeding

Animal: CD-1 

mice

In vivo: 3 mg/kg Anticoagulant

Sheng et al 202058 Disease: Thrombosis 
Model: 
In vivo: PHZ (0.75 μM) embryo damage 

model

Animal: 
Genetically 

modified zebrafish

In vivo: 2 μg/mL Inhibition of oxidative stress, 
coagulation cascade response

Li et al 202159 Disease: Thrombosis 

Model: 
In vivo: 1-phenyl 2-thiourea (0.2 mm) 
embryo damage model

Animal: 
Zebrafish embryo

In vivo: 1 μg/mL Inhibits oxidative stress, anti- 

inflammatory, inhibits thrombosis

Zhang et al 202143 Disease: Coronary embolism 

Model: 
In vivo: Coronary microembolization 

surgery

Animal: SD rats In vivo: 5, 15, 45 mg/ 

kg

Inhibition of endothelial activation, 

cardiomyocyte oxidative stress and 
apoptosis

Ma et al 201464 Disease: Cardiac fibrosis 
Model: 
In vivo: Ligation of left anterior 

descending coronary artery, 
In vitro: Ang II (100 nM) cell model

Animal: SD rats 
Cell: CF cells

In vivo: 30, 60 mg/kg, 
In vitro: 10, 20 μM

Inhibits oxidative stress, fibrosis

Abbreviations: CTS, Cryptotanshinone; H2O2, Hydrogen peroxide; Ox-LDL, Oxidized low-density lipoprotein; HUVEC, Human umbilical vein endothelial cells; ApoE, 
Apolipoprotein E; AngII, Angiotensin II; PHZ, phenyl hydrazine; SD, Sprague Dawley.
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In addition to its known mechanisms of action, CTS has been found to also impede cancer cell proliferation through 
alternative molecular targets or pathways. First, CTS activates the AMPK/TSC2 axis to suppress downstream protein mTORC1 
signal transduction, thus hindering cancer cell growth.78 Second, cyclin-dependent kinase (CDK) is be capable of stimulating 
continuous cell proliferation,89 and CTS acts as a novel CDK4 inhibitor by down-regulating the expression of mutant oncogene 
Kras to block the transition of cells from G0/G1 phase to S phase, thereby inhibiting cancer cell growth.47 What’s more, studies 
have demonstrated that CTS may target TAZ downstream of Hippo, attenuating the stemness of NSCLC by translocating from 
the nucleus to the cytoplasm.90

Suppression of Invasion and Metastasis
Angiogenesis during cancer metastasis is closely related to the recruitment of metalloproteinases (MMP family),91 and 
CTS decreases MMP expression and increases metallopeptidase (TIMP) expression to inhibit invasion and metastasis in 
colon and non-small cell lung cancers.92–94 During angiogenesis, EMT activation converts epithelial cells into mesench-
ymal cells, which is produced by N-cadherin or E-cadherin-mediated cell-cell interactions,91 and CTS downregulates the 
mTOR/β-catenin/N-cadherin signaling pathway and reduces N-cadherin expression thereby inhibiting bladder cancer cell 
invasion and metastasis.95 In addition, focal adhesion kinases (FAK) are a class of non-receptor protein tyrosine kinases 
(PTKs) in the cytoplasm that promote invasion and metastasis of cancer cells,96 and CTS downregulates FAK and C-myc 
transcription to inhibit ovarian cancer cell metastasis.97

Inducing Autophagy
Autophagy is a biological process in which lysosomes degrade their own proteins and organelles under the regulation of 
ATG genes,98 and autophagy is able to inhibit tumor growth to promote tumor apoptosis and has an inhibitory effect on 
tumor development to some extent.99 On the one hand, CTS has the ability to regulate the Atg5 gene in cancer cells, 
enhance the expression of Beclin-1 and LC3-II, and trigger autophagy in cancer cells via the traditional Beclin-1 
signaling route.75,100 On the other hand, CTS promotes autophagy in HCT116 colon cancer cells by enhancing 
endoplasmic reticulum stress, which later affects downstream Bad/Bcl-2 expression to promote apoptosis.101 Given 
that CTS inhibits P-gp mediated efflux93 and its antitumor activity, CTS induces ROS production, promotes cellular 
autophagy and leads to cancer cell death in multi-drug resistant colon cancer.102

Promoting Apoptosis
Apoptosis is the process of programmed cell death that occurs in organisms under physiological or pathological 
conditions.103 Imbalances in the regulation of cell proliferation and death are central to cancer development, where 
DNA damage and external signaling can trigger apoptosis.104 CTS is an active herbal substance with great potential for 
fighting cancer, as it upregulates the Bax/Bcl-2 ratio through multiple signaling pathways such as JNK/p38, PI3K/Akt, 
JAK/STAT3, and NF-κB, overexpresses Caspase family proteins, and induces apoptosis in various types of cancer cells, 
including gastric cancer,105 liver cancer,74 colon cancer,93 and cholangiocarcinoma.81 The transcription factor p53 is 
upstream of the apoptotic signaling pathway, and it targets the PUMA promoter region to promote apoptosis.74 CTS not 
only upregulates p53 gene expression for apoptosis induction,106 but also increases PUMA protein expression to further 
exert a potent anticancer effect.107 Additionally, CTS induces necroptosis by increasing Caspase-3 protein levels via the 
JNK/p38 pathway in gastric cancer cell lines, and activates the RIP1/RIP3/MLKL pathway for Ca2+ and ROS- 
overexpression induced necroptosis in NSCLC cells.108

Immunomodulation
Tumor immunotherapy is an emerging therapy that activates the specific response of the body’s immune system to fight 
tumors.109 Based on the therapeutic principles of tumor immunotherapy, numerous bioactive compounds derived from 
plant sources have shown remarkable anti-tumor efficacy.110 CTS has significant anti-cancer potential and acts on 
multiple pathways in the human immune system to achieve therapeutic effects.

CTS not only targets and inhibits THEMIS2/MET signal transduction, which reduces stemness and chemical 
resistance in cancer cells,111 but also collaborates with hesperetin to inhibit JAK2/STAT3 phosphorylation, resulting in 
tumor antigen-specific Th1 immunity.112 Moreover, some studies have shown that CTS down-regulates the TRAF6/ 
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ASK1 signaling pathway, and stimulates macrophages TAM to differentiate into the M1 phenotype, inhibits breast cancer 
cell proliferation, and induces autophagy.113 In addition, cryptotanshinone also has activity against bladder cancer 
through inhibition of NLRP 3 expression.114 In one study on liver cancer, CTS combined with arsenic trioxide enhanced 
AMPK phosphorylation which promoted TAM differentiation into the M1 phenotype, and accelerated glycolysis in 
tumor tissue.115 Besides, CTS also is combined with other treatment methods to regulate the immune system’s anti- 
cancer effects. For instance, when CTS is used in conjunction with the immune checkpoint inhibitor PD-L1, it enhances 
specific immune responses and memory responses.116

Reducing Drug Resistance
Drug resistance in tumor cells is a significant cause of tumor treatment failure. The mechanisms behind this include the 
efflux of drugs by transporter pumps, expression of proto-oncogenes or oncogenes, DNA repair, and tumor stem cells.117

The etiology of Chronic Myelogenous Leukemia (CML) is associated with the generation of BCR-ABL fusion genes, 
which could be a target for the treatment of chronic granulocytic leukemia.118 CTS could act as an inhibitor of STAT5 or 
STAT3 (BCR-ABL downstream protein) to downregulate C-myc in CML and reverse BCR-ABL kinase non-dependent 
drug resistance.88

To enhance the sensitivity of anticancer drugs, several therapeutic approaches are used with CTS. CTS enhances 
DNA damage induced by the chemotherapeutic drug cisplatin to improve drug efficacy.119 Additionally, CTS reverses 
drug resistance in breast cancer by inhibiting the formation of membrane protein BCRP oligomers, independent of ERα 
receptors.120 Moreover, CTS improves the effectiveness of gefitinib in human lung cancer H1975 cells.121 It is worth 
noting that the synergistic administration of CTS and temozolomide reverses the repair effect of MGMT on DNA damage 
in cancer cells, thereby enhancing the apoptosis induced by temozolomide alkylation.122

Adjusting Glycolysis
Cancer cells undergo metabolic reprogramming to switch to a “glycolytic-led” metabolic mode, ensuring their survival 
and meeting their energy needs. This metabolic switch affects various functions of cancer cells, such as proliferation, 
apoptosis, and metastasis.123–125 Studies have shown that CTS inhibits the expression of tumor tissue-associated 
glycoproteins, including GLUT1/2, LDHA, HK2, and PKM2.111,126 It suggests that CTS may impact glycolysis in 
tumor cells through certain key signaling pathways, which ultimately affects their growth and proliferation.

For example, CTS inhibits ATP production in ovarian cancer cells, induces activation of AMPK, which controls the 
energy reduction process, and inhibits glycolysis and oxidative phosphorylation (OXPHOS),123 Further studies showed 
that both AMPK inhibitors and silencing AMPK could partially reverse the therapeutic effects of CTS.124 In addition, in 
hepatocellular carcinoma, STAT3 may regulate glycolysis through the HK2 pathway.127 Further studies have revealed 
that STAT3 inhibits the transcriptional activity of downstream SIRT3 to regulate glycolysis and proliferation in breast 
cancer cells.128 In addition, PKM2, which is a rate-limiting enzyme in glycolysis, is downregulated by CTS to inhibit the 
proliferation, migration, and invasion of breast cancer cells through the PKM2/β-Catenin pathway.129

Summarily, CTS also showed promising potential in the treatment of cancers with the effect mechanism via multiple 
targets and pathways (Figure 4 and Table 2).

Nervous System Effects
Alzheimer’s Disease
According to reports, CTS has a Papp (a→b) in the blood-brain barrier (BBB) cell model of 1×10−7 cm/s to 1×10−6 cm/s,131 

indicating that CTS can be transported through the BBB and absorbed into the brain, and providing a solid scientific premise 
for its use in the treatment of Alzheimer’s Disease (AD). AD is a complex degenerative nerve disease that is currently believed 
by the mainstream view of scientific research to have its primary cause in the deposition of extracellular β-amyloid protein 
(Aβ), and leading to the development of neuroinflammatory plaques, or the intracellular hyperphosphorylation and accumula-
tion of Tau microtubule-associated protein as neurofibrillary tangles.132 Scientific research has shown that CTS has good 
pharmacological activity in improving Aβ deposition and Tau hyperphosphorylation.133

Drug Design, Development and Therapy 2024:18                                                                             https://doi.org/10.2147/DDDT.S494555                                                                                                                                                                                                                       

DovePress                                                                                                                       
6041

Dovepress                                                                                                                                                           Zheng et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


A study to examine the effect of CTS on short-term working memory in male CD mice with AD.134 They used 
a Y-maze task and analyzed hippocampal tissues to measure the amount of change in Aβ1-42 protein expression. The 
results showed that CTS attenuated Aβ1-42 induced learning deficits, demonstrating its anti-Alzheimer’s disease 

Figure 4 The main targets and pathways of CTS against cancer. 
Notes: The symbols “ ↓ ”, “ ↑ ”, “ ┤ ” and p indicate downregulation, upregulation inhibition and phosphorylation of proteins, respectively, and the line with arrow “ → ” 
indicates single transduction.

Table 2 Studies on the Anti-Cancer Action of CTS

Author and Year Disease/Model Animal/Cell Dose Effects

Luo et al 202074 Disease: Liver cancer 

Model: 
In vivo: Cell derived xenograft

Animal: BALB/c 

naked mouse 

Cell: Huh7, 
MHCC97-H cells

In vivo: 50 mg/kg 

In vitro: 0, 3, 6, 12 μM

Inhibit proliferation, increases 

autophagy, apoptosis

Vundavilli et al 2021130 Disease: Colon cancer Cell: HT29 cells, 

HCT116 cells

In vitro: 20 μM Induction of apoptosis

Liang et al 2018126 Disease: Colon cancer 

Model: 
In vivo: Cell derived xenograft 
model

Animal: naked 

mouse 

Cell: HT1116, SW3 
cells

In vivo: 10 mg/kg 

In vitro: 50 μM

Inhibit proliferation

Huang et al 2022112 Disease: Triple-negative breast 

cancer

Cell: MDA-MB, 

Hs5T cells

In vitro: 20 μM Inhibition of proliferation, 

invasion, cancer stemness
Noori et al 2022111 Disease: Lymphoma 

Model: 
In vivo: Delayed type 
hypersensitivity model

Animal: BALB/c 

mice

In vivo: 20 mg/kg Inhibit proliferation

Yen et al 2022113 Disease: Triple-negative breast 

cancer

Cell: RAW 264.7, 

MDA-MB-231 cells

In vitro: 20 μM Inhibition of proliferation, 

migration

(Continued)
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Table 2 (Continued). 

Author and Year Disease/Model Animal/Cell Dose Effects

Shi et al 202075 Disease: Lymphoma Cell: SKBR-3 cells In vitro: 5 μM Inhibits proliferation, growth

Terado et al 202247 Disease: Pancreatic, colon cancer Cell: MIAPaCa-2, 
BxPC3, DLD1 cells

In vitro: 0, 10, 20 μM Inhibits proliferation, growth

Dong et al 201888 Disease: Leukaemia Cell: K562, K562/ 

ADR cells

In vitro: 0, 1, 2.5, 5, 7.5, 

10, 20, 30 μM

Inhibits proliferation and 

reduces drug resistance
Yang et al 2018128 Disease: Ovarian cancer 

Model: 
In vivo: cell derived xenograft 
model

Cell: A2780 cells In vivo: 10 mg/kg 

In vitro: 0, 5, 10 μM

Inhibits proliferation and 

increases apoptosis

Wang et al 201785 Disease: Squamous carcinoma of 

the tongue

Cell: CAL27, SCC9 

cells

In vitro: 0, 5, 8, 10, 

16 μM

Inhibits proliferation, migration, 

and increases apoptosis
Fu et al 202113 Disease: Colon cancer Cell: HCT116, 

SW620 cells

In vitro: 0, 1, 10 μM Inhibits growth, proliferation, 

and promotes apoptosis.

Zhang et al 201877 Disease: Colon cancer 
Model: 
In vivo: Syngeneic model

Animal: BALB/c 
mice 

Cell: CT26, 

HUVEC cells

In vivo: 20, 80 mg/kg 
In vitro: 0, 1, 5, 10, 

20 μM

Inhibition of growth, 
proliferation, and invasion

Chen et al 201787 Disease: Kidney cancer 

Model: 
In vivo: Cell derived xenograft 
model

Animal: Naked 

mouse 

Cell: A498, ACHN 
cells

In vivo: 5 mg/kg 

In vitro: 0, 2.5, 5 μM

Inhibits proliferation and 

promotes apoptosis

Guo et al 202297 Disease: Ovarian cancer 

Model: 
In vivo: Orthotopic ovarian cancer 

mouse model

Animal: NSG mice 

Cell: OVCAR3, 
HEYA8 cells

In vivo: 5 mg/kg 

In vitro: 0, 5, 10, 20 μM

Inhibition of proliferation, 

growth, migration

Wang et al 201994 Disease: Non-small cell lung 
cancer

Cell: A549 cells In vitro: 20 μM Inhibition of proliferation, 
invasion

Liu et al 202090 Disease: Glioma 

Model: 
In vivo: Cell derived xenograft 

model

Animal: BALB/c 

mouse  
Cell: U3 cells

In vivo: 25 mg/kg 

In vitro: 0, 1.25, 2.5, 5, 
10, 20 μM

Inhibition of proliferation, 

invasion, migration

Ni et al 2021120 Disease: Lymphoma Cell: MCF-7, MDA- 
MB-231 cells

In vitro: 5, 10, 20 μM Reducing drug resistance

Liu et al 2017105 Disease: Gastric cancer 

Model: 
In vivo: Cell derived xenograft 

model

Animal: BALB/c 

mouse 
Cell: AGS, MKN- 

28, MKN-45 cells

In vivo: 1, 10 mg/kg 

In vitro: 10 μM

Inhibits growth and 

proliferation and promotes 
apoptosis

Xu et al 2017102 Disease: Colon cancer Cell: SW620, 

Ad300 cells

In vitro: 10 μM Promotes autophagy, apoptosis

Zhao et al 2022108 Disease: Non-small cell lung 
cancer 

Model: 
In vivo: Cell derived xenograft 
model

Animal: C57BL/c 
mice

In vivo: 15, 30 mg/kg Promotes necrotic apoptosis

Kim et al 201882 Disease: Non-small cell lung 

cancer

Cell: A549, H460 

cells

In vitro: 0, 10, 20, 40µM Inhibits growth and 

proliferation and promotes 
apoptosis

(Continued)
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pharmacological effects by improving Aβ deposition. In a more detailed mechanistic study, researchers established 
a transgenic Caenorhabditis elegans model of AD. They found that CTS inhibited ROS and downregulated the expression 
of the ACHE gene ACE-2, suggesting that CTS could regulate ACHE gene expression to attenuate Aβ aggregation 

Table 2 (Continued). 

Author and Year Disease/Model Animal/Cell Dose Effects

Liu et al 2019108 Disease: Lewis lung cancer 

Model: 
In vivo: Cell derived xenograft 

model

Animal: C57BL/c 

mice  
Cell: A549 cells

In vivo: 10 μg/mouse 

In vitro: 0, 1.25, 2.5, 5, 
10 μM

Inhibits proliferation and 

promotes immune response

Jin et al 202090 Disease: Non-small cell lung 
cancer

Cell: A549, H1299 
cells

In vitro: 0, 1, 5, 10, 
20 μM

Proliferation inhibition, cancer 
stem cell differentiation

Chen et al 201778 Disease: Rhabdomyosarcoma, 

prostate cancer, breast cancer

Cell: Rh30, MCF-7, 

MEF cells

In vitro: 0, 2.5, 5, 10, 

20 μM

Inhibit proliferation

Zhou et al, 2020129 Disease: Lymphoma Cell: MCF-7, MDA- 

MB-231 cells

In vitro: 0, 5, 10, 20 μM Inhibition of proliferation, 

migration, invasion

Cai et al 2022121 Disease: Lung cancer 
Model: 
In vivo: Cell derived xenograft 

model

Animal: BALB/c 
mice 

Cell: H1975 cells

In vivo: 20 mg/kg 
In vitro: 5 μM

Inhibits proliferation and 
reduces drug resistance

Jiang et al 2022115 Disease: Liver cancer 

Model: 
In vivo: Cell derived xenograft 
model

Animal: BALB/c 

mice 

Cell: Hepa1-6, 
macrophage cells

In vivo: 40 mg/kg 

In vitro: 0, 0.5, 2.5, 5 μM

Inhibit proliferation

Yu et al 2018107 Disease: Salivary gland tumors Cell: MEC-1 cells In vitro: 10, 14 μM Promote apoptosis

Jiang et al 2023100 Disease: Oral squamous cell 
carcinoma 

Model: 
In vivo: Cell derived xenograft 
model

Animal: Naked 
mouse 

Cell: HSC-3, HN-6 

cells

In vivo: 30 mg/kg 
In vitro: 0, 10, 20 μM

Promoting autophagy

Ma et al 202392 Disease: Breast cancer Cell: MCF-7 cells In vitro: 2.5, 5, 7.5, 10, 

12.5, 15, 17.5, 20 µM

Inhibition of invasion and 

metastasis
Tang et al 2024114 Disease: Bladder Cancer Cell: SV-40 cells In vitro: 2, 4 µM Improvement of the immune 

microenvironment

Zhu et al 2023122 Disease: Glioblastoma Cell: LN229, U87- 
MG cells

In vitro: 4 µM Reduce drug resistance

Wang et al 2024123 Disease: Ovarian cancer Animal: Naked 

mouse 
Cell: A2780, 

Caov3, IOSE80 cells

In vivo: 10 mg/kg 

In vitro: 0, 2, 4, 6 μM

Inhibition of glycolysis and 

oxidative phosphorylation

Cheng et al 2024124 Disease: Cutaneous melanoma 
Model: 
In vivo: The allograft tumor model

Animal: Naked 
mouse 

Cell: B16F10, A375 

cells

In vivo: 10 mg/kg 
In vitro: 0, 5, 10, 20 μM

Adjust glycolysis

Abbreviations: HUVEC, Human umbilical vein endothelial cells; Huh7, Hemochromatotic; MHCC97-H, Human high metastatic liver cancer cells; HT29, Human colorectal 
adenocarcinoma cells; HCT116, Human colorectal carcinoma cells; Hs5T, 5-Hydroxytryptamine; ADR, Human breast cancer adriamycin-resistant cell line; RAW 264.7, 
Mouse mononuclear macrophages cells; MDA-MB-231, Human breast cancer cells; SKBR-3, Human breast adenocarcinoma cells; MIAPaCa-2, Human pancreatic cancer cells; 
BxPC3, Human in situ pancreatic adenocarcinoma cells; DLD1, Human colorectal adenocarcinoma epithelial cells; K562, Human chronic myeloid leukaemia cells; A2780, 
Human ovarian cancer cells; CAL27, Human tongue squamous carcinoma cells; SCC9, Human tongue squamous cell carcinoma; SW620, Human colorectal adenocarcinoma 
cells; CT26, Mouse colon cancer cells; A498, Human kidney cancer cells; ACHN, Human renal cell adenocarcinoma cells; NSG, Non-obese diabetes-protein kinase DNA- 
activated catalytic combined immune deficiency; OVCAR3, Human ovarian cancer cells; HEYA8, Human ovarian cancer cells; A549, Human pulmonary carcinoma cells; U3, 
Human bladder cancer cells; MCF-7, Human breast cancer cells; AGS, Human gastric adenocarcinoma cells; MKN-28, Human gastric cancer high metastatic cells; MKN-45, 
Human gastric cancer cells; SW620, Human colorectal adenocarcinoma cells; Ad300, Human colorectal adenocarcinoma cells; H460, Human macrophage lung cancer cells; 
H1299, Human non-small cell lung cancer cells; Rh30, Human rhabdomyosarcoma cells; MEF, Mouse embryonic fibroblasts; H1975, Human lung adenocarcinoma cells; 
Hepa1-6, Mouse liver cancer cells; MEC-1, Human chronic B-cell leukaemia cells.
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levels.135 Furthermore, network pharmacology combined with studies on cellular models demonstrated that CTS also 
activated the PI3K/Akt/GSK3β pathway to inhibit Tau hyperphosphorylation.136

Researchers also created CTS derivatives from the oxygen-containing products of Cryptobacterium hidradi biotransforma-
tion in order to more effectively use CTS for the treatment of neuroinflammation brought on by AD. These derivatives had 
anti-neuroinflammatory effects by inhibiting the TLR 4 mediated MAPK signaling pathway and had higher bioavailability and 
stronger bioactivity in comparison to CTS.69 It is worth mentioning that in recent years a combination of computerized virtual 
screening and scientific experiments have been favored, such as simulating the binding of CTS and AD disease proteins and 
finding potential molecular targets on the basis of which the scientific hypothesis was validated by cellular and animal 
experiments.132,134 This provides viable ideas for finding potential targets for small molecule drugs against the disease.

Parkinson’s Disease
Parkinson’s disease (PD) is a progressive movement disorder caused by changes in various molecular processes such as 
mitochondrial function and calcium homeostasis.137 One potential treatment for PD is CTS, which has been shown to 
reduce oxidative stress damage to neuronal cells.

A study demonstrated the effectiveness of CTS in treating PD.138 They found that CTS significantly improved the 
expression of tyrosine hydroxylase, which is the rate-limiting enzyme in catecholamine neurotransmitter synthesis. CTS 
also inhibited MPTP induced dopaminergic cell loss and delayed the progression of PD. Further studies revealed that 
CTS increased the expression activities of antioxidant enzymes such as SOD, GSH-Px, and CAT, which reduced 
oxidative stress in neuronal cells and thus exerted anti-PD effects.

In a hiNPC-induced in vitro model, CTS was shown to significantly reduce mitochondrial reactive oxygen species and 
increase mitochondrial membrane potential through mitochondrial repair.139 This effect was mediated by the Nrf-2 
pathway. Additionally, CTS reduced MPP induced cellular oxidative stress and apoptosis, indicating that STAT3 may be 
a potent target of CTS against PD.140

Protection of Ischemic Stroke
Ischemic stroke (ISD) is a cerebral blood clot or interruption of cerebral blood flow caused by an etiology such as cardiac 
and arterial embolism,141 whose molecular mechanisms involve cellular excitotoxicity, mitochondrial dysfunction, 
platelet activation, and cell death processes.142 Researchers used an animal model to investigate the protective effects 
of tanshinones on cerebral ischemic injury in rats, and found that tanshinone components inhibited platelet aggregation 
and attenuated permanent brain injury in rats.143 Further studies showed that CTS restored the protein level of FOXP4 
and phosphorylation of STAT5 at a median effective concentration (EC50) of 485.1 µg/mL, suggesting that CTS could 
exert therapeutic effects on ischemic stroke in MCAO rats through the STAT pathway.144

Cerebral Ischemia/Reperfusion Injury (I/R)
Brian Ischemia Reperfusion Injury (BIRI) is a pathological phenomenon in which brain tissue damage is exacerbated 
when blood flow recanalization is restored after ischemic stroke.138 CTS not only regulates microglia polarization to 
protect against BIRI,145 but also activates the Nrf2/HO-1 signaling pathway to inhibit OGD/R induced oxidative stress 
and neuronal apoptosis in hippocampal neurons.146

Neuroprotection
Neuroinflammation is linked to the development of degenerative neurological diseases.147 CTS has anti-inflammatory 
properties that regulate the Nrf2/HO-1 pathway through the PI3K/Akt signaling pathway, mitigating microglial inflam-
matory response, and decreasing the release of pro-inflammatory mediators such as IL-1β, IL-6 and TNF-α, and 
protecting neurons from inflammatory damage.148

Moreover, CTS significantly inhibits inflammation induced neuropathic pain. It relieves oxaliplatin induced nerve 
pain149 and alleviates monosodium urate induced neuropathic pain150 while inhibiting the chronic constrictive injury 
induced postoperative neuropathic pain and its inflammatory progression in rats by suppressing the PI3K/Akt signaling 
pathway.145 Furthermore, CTS exhibits neuroprotective effects, including inhibition of Aβ aggregation and 
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cerebrovascular endothelial cell inflammatory responses to counteract vascular dementia (VD),151 and promotion of 
neuronal growth and memory improvement via the extracellular ERK1/2 signaling pathway.152,153

Digestive System Protection
Inflammatory Bowel Disease (IBD) is a chronic and recurrent inflammatory disease of the gastrointestinal tract.154 One 
potential treatment for IBD is CTS, which has shown promising results in animal models of the disease.

In a mouse model of ulcerative colitis (UC) induced by sodium dextran sulfate, CTS significantly improved the 
pathological changes of colonic tissues and reduced inflammation. CTS inhibited the expression of COX-1, COX-2, 
RIP3, NF-κB, and p65, as well as the secretion of TNF-α and IL-6. These findings suggest that the efficacy of CTS in 
treating ulcerative colitis is correlated with its anti-inflammatory effect.

In depth studies have shown that CTS regulates STAT3 phosphorylation to restore the balance of Th17/Treg cells in 
UC, which is an important mechanism in the pathogenesis of IBD.155 Furthermore, CTS has also shown potential 
medicinal value in chemotherapy induced colitis disease models. It has been reported to significantly increase serum TG/ 
TC levels and effectively alleviate 5-fluorouracil (5-FU) and irinotecan (CPT-11) induced colitis by modulating fecal 
bacteria-mediated lipid metabolism in colon cancer mice.156

Urinary System Protection
Ischemia/reperfusion injury (I/R) is a major cause of kidney damage and organ function loss.157 Increased production of 
ROS and activation of apoptotic pathways are key contributors to kidney I/R injury.

In vitro experiments have shown that CTS downregulates PI3K/Akt pathway phosphorylation, inhibits Bax and 
Caspase-3 activity, and decreases Bcl-2 expression in HK2 cells.158 CTS exerts protective effects on renal tubular 
epithelial cells by inhibiting hypoxia/reoxygenation induced oxidative stress and apoptosis. Further animal experiments 
have shown that the anti-apoptotic effect is associated with inhibition of the p38/MAPK pathway.159

As inflammatory injury persists, renal fibrosis may occur.160 However, CTS pretreatment has been shown to 
significantly attenuate the pathological process induced by renal IR and inhibit apoptosis and inflammatory responses. 
NF-κB signaling may be involved in these effects.159 The Nrf2/HO-1 pathway may be a compensatory mechanism for 
the NF-κB induced inflammatory response as inflammation progresses and leads to renal interstitial fibrosis. CTS has 
been found to have a direct antifibrotic effect by blocking NF-κB and Nrf-2/HO-1 signaling in a Unilateral Ureteral 
Obstruction (UUO) model.161

Motor System Protection
Due to the potent anti-inflammatory properties of CTS, it has demonstrated efficacy in treating various types of joint 
diseases. First, Osteoarthritis (OA) is an irreversible damage to articular cartilage induced by cartilage extracellular 
matrix (ECM) deposition.162 Studies have shown that CTS has efficacy in preventing IL-1β induced inflammation and 
improving OA progression.150 miRNAs, as a class of important regulators of biological functions, are closely related to 
the pathogenesis of OA, where miR-106a-5p prevents OA cartilage degradation and ameliorates cartilage damage by 
directly targeting GLIS3, and CTS regulates the PAX5/miR-106a-5p/GLIS3 axis to protect chondrocytes from 
damage.163 CTS additionally has the ability to regulate the methylation of miR-574-5p and modify the production of 
YAF2 to decrease apoptosis in cytosolic chondrocytes, according to RT-PCR and other experiments.164 Second, 
rheumatoid arthritis (RA), as a class of autoimmune diseases, has a pathological process associated with synovial tissue 
proliferation and inflammatory development.165 Th cells play a significant role in immunological disease regulation, and 
Th17 and Treg homeostasis are crucial in the development of rheumatoid arthritis (RA). Since IL-6/STAT3 is required for 
the development of Th17 and Treg cells, CTS is able to promote the restoration of homeostasis in these cells.166 In 
addition, CTS treatment is also efficacious in osteoporosis (OS), and its molecular mechanism is associated with CTS 
inhibition of ERK phosphorylation and NF-κB activation in Bone Marrow-derived Macrophages (BMM).167
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Respiratory System Protection
CTS has therapeutic effects mainly on pulmonary fibrosis and lung inflammation in the respiratory system. On the one 
hand, a work showed that CTS reduced pulmonary inflammatory infiltration in radiation induced lung injury (RILI) rats, 
with a significant decrease in α-SMA levels and a significant elevation in MMP-1 expression.168 This study suggests that 
CTS has good therapeutic effects on pulmonary fibrosis, but the exact molecular mechanism remains to be explored. In 
a more in-depth study, it was shown that CTS firstly alleviated pulmonary fibrosis via inhibition of the TGF-β/Smad 
pathway. Luciferase reporter gene assay showed that CTS inhibited the transcriptional activity of STAT3; overexpression 
of STAT3 attenuated the CTS inhibition of TGF-β1 induced COL-I and α-SMA. This information suggests that CTS may 
block the TGF-β/Smad signaling pathway and STAT3 to prevent lung fibrosis.169 This series of studies demonstrates the 
unparalleled medicinal value of CTS, the active ingredient of herbal medicine, in the treatment of pulmonary fibrosis. On 
the other hand, considering the anti-inflammatory activity of CTS, it not only plays a role in attenuating the allergic 
airway inflammatory response by inhibiting p38 phosphorylation and downregulating NF-κB pathway,170 also exerts 
anti-inflammatory effects by inhibiting STAT3 phosphorylation and further inhibiting TWEAK and TGF-β1 signaling in 
airway smooth muscle cell.171

Endocrine System Protection
The therapeutic effects of CTS on the endocrine system are mainly in the treatment of polycystic ovary syndrome and 
improvement of benign prostatic hyperplasia. Polycystic ovarian syndrome (PCOS) is one of the most common endocrinological 
disorders, mainly manifested by menstrual disorders caused by excessive androgens, infertility and other.172

First, high expression of CTBP1-AS is one of the important causative factors of PCOS, and a clinical trial showed 
that CTBP1-AS expression levels were significantly upregulated in PCOS patients compared with controls, and CTS 
treatment significantly inhibited CTBP1-AS levels.173 Second, the expression of inflammatory factors is induced by 
HMGB1, which is known to be able to activate the TLR4 signaling pathway and NF-κB. This enhances the pathological 
process of PCOS.174 Researchers found that CTS downregulates the HMGB1/TLR4/NF-κB pathway to alleviate 
PCOS.175 Furthermore, it has been shown that CTS inhibits iron death, reduces ROS production and inhibits HMGB1/ 
MAPK/ERK signaling pathway transduction for medicinal efficacy in an in vivo rat model of PCOS.176

In addition, it shown that CTS inhibits Androgen/Androgen receptor (AR) signaling pathway and EGFR/STAT3 axis 
to regulate the balance of proliferation and apoptosis and reduce fibrosis to improve the development of Benign Prostatic 
Hyperplasia (BPH).177

Others
CTS has certain antibacterial and antiviral abilities, such as CTS inhibits the formation of staphylococcal surface 
biofilm,62 and exerts antibacterial effects through synergistic use with aminoglycosides and phosphomycin drugs to 
disrupt the cell wall and inhibit protein and nucleic acid synthesis.178,179 CTS plays a therapeutic and protective role 
against also inhibiting COVID-19 virus DNA replication.180

CTS has some therapeutic effects on skin-related diseases, such as CTS is able to regulate skin microbiome and lipid 
metabolism to alleviate acne and acne induced inflammation,181 attenuate psoriatic hyperplasia by inhibiting STAT3 
activation,182 and inhibit STAT3 phosphorylation and T cell proliferation to alleviate the progression of systemic lupus 
erythematosus.183

An in vitro experiment showed that 0.02–0.1µM of CTS could effectively reduce UV radiation induced ROS 
production in HaCaT cells and HFF-1 cells, and this effect was associated with CTS activation of Nrf2-mediated 
antioxidant signaling pathway and activation of AMPK/SIRT1/PGC-1α signaling pathway to improve mitochondrial 
dysfunction.184 In addition, CTS alleviates CoCl2 induced hypoxic retinal disease by reducing transcript levels and 
protein expression of HIF-1α and mRNA to protect retinal pigment epithelial cells.185,186

What’s more, CTS significantly reduced placental and blood serum insulin levels in gestational diabetic mice and 
ameliorated their oxidative stress and inflammatory responses by modulating NF-κB signaling.187,188

The main effects of cryptotanshinone against disease and related molecular mechanisms in Table 3.
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Table 3 Disease and Mechanisms of the Major Action of CTS

Author and Year Diseases Mechanism Effects

Zhao et al 2022108 Non-small cell lung 
cancer

Upregulated the RIP1/RIP 3/MLKL pathway Promoting the necrotizing apoptosis

Kim et al 201882 Non-small cell lung 

cancer

Downregulation of the PI3K/Akt/GSK-3β pathway Inhibit growth, proliferation, and 

promote apoptosis
Jin et al 202090 Non-small cell lung 

cancer

Up-regulating the Hippo pathway Inhibition of proliferation

Zhang et al 201877 Lung cancer Downregulation of the IGF-1R/PI3K/Akt pathway Inhibition of proliferation and migration
Luo et al 202074 Liver cancer Downregulation of the PI3K/AKT/mTOR pathway Inhibit proliferation and increased 

autophagy and apoptosis

Han et al 201984 Liver cancer Down-regulation of the JAK2/STAT3 and TLR7/ 
MyD88/NF-κB pathway

Inhibit proliferation, growth, and 
promote apoptosis

Jiang et al 2022115 Liver cancer Up-regulation the AMPK signaling pathway Inhibition of proliferation
Chen et al 2024124 Melanoma Activation of AMPK and down-regulation of the HIF- 

1 ɑ / PFK pathway

Inhibition of proliferation

Liang et al 2018126 Colorectal cancer Inhibition of the STAT3 and p-STAT3 proteins Inhibition of proliferation
Terado et al 202247 Colorectal cancer Inhibition of RKAS protein activation Inhibition of proliferation and growth

Zhang et al 201876 Colorectal cancer Reduced the MMP / TIMP ratio and inhibited the 

PI3K / Akt / mTOR pathway

Inhibit the growth, proliferation, and 

invasion
Song et al 202383 Colorectal cancer Inhibition of the SIRT3 protein Inhibition of proliferation

Yang et al 2018128 Oophoroma Inhibition of the STAT3/SIRT3 pathway Inhibited proliferation and increased 

apoptosis
Wang et al 2024123 Oophoroma Downregulation of the GLUT1/HK2/PKM2/LDHA 

pathway

Inhibit proliferation and promote 

apoptosis

Dong et al 201888 Chronic myelocytic 
leukemia

Inhibition of STAT5 phosphorylation Inhibit proliferation and reduce drug 
resistance

Ni et al 2021120 Breast cancer Inhibition of the BCRP protein activity Reduce drug resistance

Noori et al 2022111 Breast cancer Reduce the JAK2/STAT3 phosphorylation Inhibition of proliferation
Shi et al 202075 Breast cancer Downregulation of the PI3K/AKT pathway Inhibition of proliferation and growth

Chen et al 201778 Breast cancer Upregulating the AMPK/TSC2 pathway Inhibition of proliferation

Zhou et al 2020108 Breast cancer Downregulation of the PKM2/β-catenin pathway Inhibit the proliferation, migration, and 
invasion

Ma et al 202392 Breast cancer Overexpression of Bax/Bcl-2 ratio; inhibition of 

MMP2 and MMP9 proteins

Inhibition of migration, and invasion

Huang et al 2022112 Sanyin breast cancer Downregulation of the THEMIS2 protein Inhibit proliferation, invasion, and 

cancer stemness

Ye et al 2022113 Sanyin breast cancer Downregulation of the TRAF6/ASK1 pathway Inhibition of proliferation and migration
Yu et al 2018107 Saliva gland tumor Inhibition of the STAT3/PUMA pathway Promote apoptosis

Cao et al 202487 Gastric cancer Downregulation of the JAK2/STAT3 pathway Inhibition of proliferation

Wang et al 202134 Cardiac ischemia / 
perfusion reinjury

Up-regulation of the MAPK pathway Reduced in normal cell apoptosis

Liu et al 201745 Ischemia myocardial Suppressed CaM and CaMKII δ expression and 

promoted RyR 2 and PLB expression

Inhibition of calcium overload

Zhao et al 201865 Atherosclerosis Inhibition of the NF-κB pathway Inhibition of the focal adhesion molecule 

expression

Saviano et al 202257 Thrombus Downregulation of the Cyclooxygenase-2/mPGES-1/ 
EP3 pathway

Anticoagulation

Zhang et al 202143 Coronary embolism Inhibition of the NF-κB pathway Inhibition of oxidative stress

Rahman et al 201666 Obesity Up-regulation of the p38 / MAPK pathway Inhibition of brown adipose tissue 
differentiation

Wu et al 202025 Neuroinflammation Downregulation of the MAPK pathway Inhibition of neuroinflammation

(Continued)
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Outlook
Bioinformatics serves as a powerful analytical approach, and the integration of bioinformatic analysis with a diverse 
array of analytical tools enables us to identify potential molecular targets for natural small molecules.189,190 On the basis 
of continuously updated literature, we explored the potential pathways and targets of CTS by bioinformatics analysis,191 

and based on the results of the analysis, we put forward a novel speculation on the potential targets of CTS.
Firstly, DO enrichment analysis (Figure 5) showed that CTS possessed significant anti-tumour activity against several 

types of tumours, especially peripheral nervous system tumours, motor nervous system tumours, ovarian cancers and 
benign tumours. Although the effect of CTS on ovarian cancer has been reported in the literature, little literature has 
focused on its efficacy and related molecular mechanisms in peripheral nervous system and motor nervous system 
tumours. In addition, the enrichment results suggest that CTS has good pharmacological activity against ischaemic 
diseases, so the pharmacological activity and molecular mechanisms associated with it deserve more in-depth 
exploration.

Secondly, KEGG enrichment analysis (Figure 5) showed that CTS involves molecular pathways including tumor 
metabolism, tumor drug resistance, lipids and atherosclerosis, AGE signalling pathway, endocrine resistance and so on. It 
is worth mentioning that among the results obtained from this bioinformatic analysis, Lipid and atherosclerosis, 
Shigellosis, AGE-RAGE signalling pathway in diabetic complications, Endocrine resistance, and Proteoglycans in cancer 
(the top 20 in KEGG enrichment results) were first enriched. These four new pathways accounted for 1/5 of the top 20 

Table 3 (Continued). 

Author and Year Diseases Mechanism Effects

Maione et al 2018134 Alzheimer’s disease Downregulation of the NF-κB/IkB-α pathway Anti-inflammatory, neuroprotective 

conditions
Lyu et al 2022136 Alzheimer’s disease Downregulation of the PI3K/Akt/GSK22β pathway Reduces tau hyperphosphorylation and 

restores synaptic function

Fei et al 2017143 Parkinson’s disease Promoting the NRF2 protein expression To restore the mitochondrial function
Xu et al 2022146 Parkinson’s disease Downregulation of the Nrf2/HO-1 pathway Inhibition of oxidative stress and 

apoptosis

Zhang et al 2019148 Inflammation and 
neuropathic pain

Downregulation of the PI3K/Akt pathway and 
inhibiting the NLRP3 protein

Inhibition of inflammation and 
neuropathic pain

Figure 5 The dotplots of DO and KEGG analysis using the reported proteins or genes for CTS against diseases (2017–2024). 
Abbreviations: DO, Disease ontology; KEGG, Kyoto encyclopedia of genes and genomes pathway; CTS, Cryptotanshinone.
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pathways in the KEGG enrichment results, however, the mechanisms related to these pathways have been rarely studied, 
and the targets behind these pathways are still unclear. Therefore, it is still promising to use advanced techniques to 
clarify the key pathways involved, elucidate the drug-protein/gene binding forms, and explore the potential pharmaco-
logical activities of CTS.

Subsequently, GO enrichment analysis (Figure 6) showed that CTS mainly affects cellular components distributed in 
cell membrane or organelle membrane, cytoplasmic vesicle lumen or cytoplasm, and influences oxidative stress, 
apoptosis, and cell proliferation through binding to enzymes. Based on the results of the above analyses, we have 
made a speculation that the potential molecular targets of CTS may be located in organelle membranes and affect the 
biological functions of cells by binding to enzymes in the membranes. The above results deserve to be further verified by 
high-throughput experimental techniques such as in vivo and ex vivo experiments and histological analyses.

To further explore the potential connections of the CTS target proteins, we input the targets reported in the literature 
into the STRING web server to obtain the potential Protein Protein Interaction Networks (PPIs).192 As shown in Figure 7, 
92 nodes and 232 edges were generated in the PPI network after setting the minimum interaction score to 0.9 and hiding 
the isolated nodes. As shown in Figure 7, we have ranked the proteins in the network by the degree of the nodes. The 
most highly correlated eight proteins in the PPI network are TP53 (degree: 25), STAT3 (degree: 23), MAPK1 (degree: 
20), AKT1 (degree: 18), PTPN11 (degree: 17), PIK3CA (degree: 17), BCL2L1 (degree: 16) and EGFR (degree: 15). We 

Figure 6 The dotplots of GO analysis using the reported proteins or genes for CTS against diseases (2017–2024). 
Abbreviation: GO, gene ontology.
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speculate that there are still potential targets of CTS that have not yet been demonstrated by research. In addition, 
although there is a large body of literature suggesting that CTS can affect the expression of these proteins, the exact 
molecular mechanisms, and the effects of CTS on biological functions through these target proteins need to be explored 
in depth by researchers.

Subsequently, we used Autodock Tools 1.5.7 for molecular docking of target proteins with CTS. Following pretreat-
ment of the docking molecules, the CTS (ZINC: 000002109876) binding scores to TP53 (PDB no. 6my0), STAT3 (PDB 
no. 6gfa), MAPK1 (PDB no. 2ojj), AKT1 (PDB no. 6hhg), PTPN11 (PDB no. 6bmu), PIK3CA (PDB no. 6r9v), BCL2L1 
(PDB no. 1lxl) and EGFR (PDB no. 2ity) and the binding active sites were as shown in Figure 8.

As shown in the Figure 8, CTS binds to TP53 and forms a hydrogen bond with the amino acid residue MET-1584, 
measuring 3.6 Å in length. It also binds to STAT3 protein, forming two hydrogen bonds with the amino acid residue 
KYS-271, with lengths of 2.8 Å and 3.2 Å respectively. Additionally, it binds to MAPK1, establishing a hydrogen bond 
with the amino acid residue VAL-304, which measures 1.9 Å. Moreover, CTS binds to AKT1 protein, forming two 
hydrogen bonds with the amino acid residues ALA-329 and ARG-328, with bond lengths of 1.9 Å and 2.2 Å 
respectively. Furthermore, when bound to PTPN11, CTS forms a hydrogen bond with the amino acid residue GLN- 
446, measuring 2.0 Å. Bound to PIK3CA, it forms two hydrogen bonds with the amino acid residues VLEU-54 and 
VLEU-55, measuring 2.8 Å and 3.2 Å respectively. In total, it forms four hydrogen bonds with the amino acid residues 
LEU-570, LYS-548, and VAL-572, measuring 2.5 Å, 3.0 Å, 2.3 Å, and 3.5 Å respectively. Moreover, CTS binds to 
BCL2, forming a hydrogen bond with the amino acid residue GLN-3, with a length of 1.9 Å. Lastly, it binds to EGFR, 
forming hydrogen bonds with the amino acid residues ARG-889 and GLY-863, with lengths of 3.4 Å and 2.0 Å 
respectively. Despite the extensive literature demonstrating the impact of CTS on the expression of these proteins and 
their regulation of associated signalling pathways, there is limited direct evidence regarding their specific targets and 
binding sites. Our docking results, however, clearly illustrate the binding of CTS to these proteins. Based on these 
findings, we predict the binding scores and hydrogen bond lengths, indicating potential interactions between CTS and its 

Figure 7 PPI network using the reported proteins or genes for CTS against diseases (2017–2024). 
Abbreviations: PPI, Protein-protein interactions; CTS, Cryptotanshinone.
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target proteins. It is important to note that further mechanistic studies are required, particularly focusing on the active 
sites and binding modes of CTS in direct association with these target proteins. The results of our target prediction offer 
new insights for future researchers to explore the untapped research potential of CTS through comprehensive pharma-
cological investigations.

Conclusion
Since 1990, over 300 research papers on CTS have been published on the PubMed database. Among these, approximately 
40% (118 papers) are related to the anticancer activity of CTS. CTS has been shown to promote autophagy and apoptosis in 
cancer cells, inhibit cancer cell proliferation and differentiation, suppress cancer cell migration and invasion, improve the 
tumor microenvironment, and reduce extracellular matrix formation. CTS shows promising pharmacological activity against 
more than 10 cancers, including breast, liver, non-small cell lung and tongue squamous cell carcinomas. This suggests that 
CTS is a natural small molecule with significant anticancer potential. However, there is still no new CTS-based drugs on the 
market. Therefore, future research is able to focus on further exploring potential molecular targets of CTS, comprehensively 
elucidating the pharmacology and toxicology of CTS, and promoting the development of new CTS-based drugs.

It is worth noting that among the 19 research papers published on PubMed in 2023, only 3 are related to the 
anticancer effects of CTS. The other 16 papers cover various pharmacological research directions, including anti- 
inflammatory, anti-fibrotic, and other pharmacological activities, exploration of drug targets, the role and mechanism 
of CTS in combination therapy with clinical drugs, and the preparation of novel nanoscale formulations. This indicates 
that researchers are increasingly interested in the multi-target and multi-pathway pharmacological effects of CTS and its 
potential clinical applications. This shift also provides insights into future research directions for CTS.

While CTS possesses excellent pharmacological activity, its low bioavailability and potential toxicity have been 
significant challenges for its development into drugs. To address this issue, researchers have been working on developing 
CTS derivatives, studying the synergistic effects of CTS with clinical drugs, and developing novel nanoscale formula-
tions to enhance efficacy and reduce toxicity. While CTS exhibits promising pharmacological activity, its low bioavail-
ability and potential toxicity present significant hurdles in the development of a viable pharmaceutical product. To 
address this issue, researchers have been developing CTS derivatives, investigating the potential for CTS to act 
synergistically with clinical drugs, and developing novel nanoscale formulations to improve efficacy and reduce toxicity. 
At this stage of research, there is a paucity of reports on the enhancement of drug bioavailability by the modification of 
delivery systems, and the scientific research on this topic remains promising. Furthermore, despite the extensive research 
literature on the pharmacological activity and molecular mechanism of CTS, there is a paucity of clinical studies on CTS. 

Figure 8 Molecular docking results of eight proteins with CTS.
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The safety and efficacy of CTS in humans remain unknown, which presents a significant challenge for the clinical 
translation of CTS. As a promising natural small molecule compound, CTS still requires further investigation of its key 
drug targets in future studies. In light of these considerations, it is imperative to enhance the bioavailability of CTS by 
optimizing the delivery system and to initiate clinical trials on CTS.
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