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The potency of the synthetic opioid fentanyl and its increased clinical availability has

led to the rapid escalation of use in the general population, increased recreational

exposure, and subsequently opioid-related overdoses. The wide-spread use of fentanyl

has, consequently, increased the incidence of in utero exposure to the drug, but the

long-term effects of this type of developmental exposure are not yet understood. Opioid

use has also been linked to reduced mitochondrial copy number in blood in clinical

populations, but the link between this peripheral biomarker and genetic or functional

changes in reward-related brain circuitry is still unclear. Additionally, mitochondrial-related

gene expression in reward-related brain regions has not been examined in the context of

fentanyl exposure, despite the growing literature demonstrating drugs of abuse impact

mitochondrial function, which subsequently impacts neuronal signaling. The current

study uses exposure to fentanyl via dam access to fentanyl drinking water during

gestation and lactation as a model for developmental drug exposure. This perinatal

drug-exposure is sufficient to impact mitochondrial copy number in circulating blood

leukocytes, as well as mitochondrial-related gene expression in the nucleus accumbens

(NAc), a reward-related brain structure, in a sex-dependent manner in adolescent

offspring. Specific NAc gene expression is correlated with both blood mitochondrial copy

number and with anxiety related behaviors dependent on developmental exposure to

fentanyl and sex. These data indicate that developmental fentanyl exposure impacts

mitochondrial function in both the brain and body in ways that can impact neuronal

signaling and may prime the brain for altered reward-related behavior in adolescence

and later into adulthood.
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accumbens, gene expression
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INTRODUCTION

Opioid use in the United States has dramatically increased in
recent years, with death by opioid overdose reaching epidemic
proportions (1, 2). Despite the high potential for opioid misuse
and abuse, they remain some of the most effective treatments
for pain management available. More recently, the synthetic
opioid fentanyl, which is 50–100× more potent than morphine,
has become both commonly prescribed and commonly added
to illicit drugs increasing both use in the general population
and opioid-related overdose deaths (1, 2). The rise in both
use and misuse of opioids seen in the general population has
also been observed among pregnant women, increasing both
in utero exposure to opioids and increasing the occurrence of
neonatal opioid withdrawal syndrome (NOWS) (3–6). Previous
work in both humans and rodents has shown that developmental
exposure to traditional opioids like morphine and heroin
can lead to behavioral and developmental differences into
adolescence and adulthood, including altered attention, stress
responsivity, and learning and memory (7–10). Recently, studies
examining the impact of developmental exposure to fentanyl
have revealed changes in behavior and somatosensory processing
into adolescence and adulthood (11, 12).

In addition to the many neurobiological changes in reward
related processing, and cycles of negative affect that are associated
with opioid use, escalation of use, and substance use disorders
(13–18), opioid exposure is also associated with high degrees
of oxidative stress and oxidative damage both centrally and
peripherally (19–23). Patients with opioid use disorders show
higher levels of oxidative and inflammatory markers in blood
serum (24), and are more likely to show markers of metabolic
syndrome, indicative of increased risk for mortality due to
heart disease or diabetes (25). Multiple pre-clinical studies have
shown metabolic disruptions and oxidative damage in brain
tissue after morphine or heroin exposure (19, 26). Oxidative
damage in the form of increased reactive oxygen species and
decreased antioxidant enzyme activity caused by drug use can
lead to mitochondrial dysfunction and neurotoxicity as well
as other cellular damage (22, 26). Mitochondria specifically
both absorb inflammatory and metabolic damage (27–29) and
mediate brain function, neuroplasticity, and early life brain
development (30–34).

Mitochondrial dynamics and changes therein due to stress,
damage or altered energy requirements impact mitochondrial
copy number, the ratio of mitochondrial DNA to nuclear DNA,
which can be used as a proxy for mitochondrial function (35,
36). While brain tissue is not readily available from patient
populations and does not allow for repeated sampling over

Abbreviations: NAc, Nucleus Accumbens; EPM, elevated plus maze; Cycs,
cytochromeC; Park2, parkin; Pink1, PTEN induced kinase 1; Tomm20, translocase
of outer mitochondrial membrane 20; Drp1, dynamin-related protein 1; Fis1,
mitochondrial fission 1 protein; Mfn1, mitofusin 1; Mfn2, mitofusin 2; Opa1,
OPA1 mitochondrial dynamin like GTPase; Egr3, Early Growth Response 3;
Nrf1, nuclear respiratory factor 1; Nrf2, erythroid 2 like 2; Pgc1α, peroxisome
proliferator-activated receptor gamma coactivator 1-alpha; Polγ, DNA Polymerase
Subunit Gamma-1; Tfam, mitochondrial transcription factor transcription factor
A; Tfb1, Mitochondrial transcription factor B1.

the course of development, mitochondrial copy number in
blood leukocytes is readily accessible in both clinical and pre-
clinical samples. Indeed, understanding how peripheral blood-
derived mitochondrial DNA copy number is associated with
gene expression and mitochondrial function in other tissues
is an active and important avenue of investigation (36). With
respect to opioid use, mitochondrial copy number is reduced
and markers of mitochondrial damage are increased in both
human heroin users and rats exposed to chronic morphine (37).
In the rats, mitochondrial copy number was also reduced in
brain tissue, specifically the hippocampus (37). In cell culture,
acute fentanyl and methadone, but not morphine, specifically
negatively impact mitochondrial morphology and function (38,
39). It is currently unclear how the changes in mitochondria,
accumulating mitochondrial damage, and other behavioral
effects of opioid use are related. While mitochondrial function in
reward-related brain areas, such as NAc, does regulate anxiety-
like behaviors in rodent models (40–42), work on how altered
mitochondria function contributes to increases in psychiatric
symptoms and mood disorders in individuals with opioid use
disorders or opioid exposure (43–45) is still needed.

The relationship between opioid use and mitochondrial
function is still actively being explored and the current study
sought to determine if developmental exposure to fentanyl
causes long-lasting changes in peripheral and central markers
of mitochondrial dynamics comparable to those observed
after adult opioid use. Further, we sought to understand
how peripheral markers of mitochondrial dynamics relate to
mitochondrial gene expression in the reward-related brain
regions critical for mediating opioid use, escalation of use, and
opioid use disorder, specifically the nucleus accumbens (NAc)
(46–48). Neuronal morphology and signaling changes in NAc
have been shown to be critical for regulating both reward
and anxiety- and depression-like behaviors (49, 50). Finally, we
examined how both blood mitochondrial copy number and NAc
gene expression correlated with behavioral measures of anxiety-
like behavior and body weight. In this study we expand on
the previously developed model of perinatal fentanyl exposure
(11, 12) to explore the effects on blood mitochondrial copy
number and expression of mitochondrial-related genes in NAc in
adolescent mice. In this pre-clinical model, the perinatal period
of mouse development consisting of gestation through weaning
roughly corresponds to the full gestational period in humans, due
to the developmental differences between species (51, 52). To our
knowledge, this is the first study to examine mitochondrial copy
number or NAc gene expression after developmental fentanyl
exposure and subsequent forced abstinence.

METHODS

Animals
All procedures were conducted in accordance with the Guide for
the Care and Use of Laboratory Animals and approved by the
Institutional Animal Care and Use Committees at the University
ofMaryland School ofMedicine. Male and female C57BL/6J mice
were bred to generate developmentally drug-exposed offspring in
our facility. After verification of dam pregnancy by copulatory
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plug, sires were removed, and water was replaced with fentanyl-
containing water or vehicle (see below). Vehicle controls received
plain tap water. Water was monitored daily for consumption
and replenished as necessary until litters were weaned at P21.
After weaning, offspring were housed two to five per cage in
single-sex groups, in a temperature- and humidity-controlled
vivarium. Food and water were available ad libitum, and lights
were maintained on a 12-h cycle.

Drugs
At the time of pregnancy confirmation 10µg/mL fentanyl citrate
(Cayman Chemical; Cat# 22659) in tap water, or plain tap
water (vehicle) was administered as the only source of available
drinking water. This concentration has been reported previously
for use in this developmental exposure model and was selected
because mice will readily consume this dose, yet it does not cause
motor deficits and is well-below LD50 of fentanyl inmice (11, 12).
This dose has previously been shown to induce spontaneous
withdrawal signs after weaning, but is not sufficient to disrupt
maternal care behavior (11, 12).

Behavior
After weaning at P21, offspring were left undisturbed until
beginning behavioral testing. Each animal underwent an elevated
plus maze (EPM) test and splash test, with 24 h separating each
test. Twenty-four hours after the final behavioral test on day
P35 body weight was measured and tissues were collected. The
tissues used for analysis here were obtained from a subset of mice
whose developmental exposure to fentanyl and behavioral testing
results have been previously published by Alipio et al. (11). Tissue
analysis was conducted on all 12 of the male water and male
fentanyl mice, while a subset of the female mice were used: 17/22
female water and 17/31 female fentanyl mice. These mice include
offspring from 7 different dams receiving water and 10 dams
receiving fentanyl. Average litter size was 6 pups for both groups
(Mean, SEM -Water: 6.14, 0.553; Fentanyl: 6.4, 0.476). Mice were
habituated to the testing room before all behavioral procedures.

To measure anxiety-like behavior, mice were placed in the
center of the EPM and were allowed to roam freely for 5min,
as described previously (11, 53, 54). Time spent in the open and
closed arms of the maze in addition to the number of times
the mouse entered one of the open arms were measured using
computer tracking software (TopScan CleverSys, Reston, VA).
Open/Closed ratios were calculated by dividing the time spent
in the open arms by the time spent in the closed arms.

The splash test was used to measure affective state as has been
described previously (11, 54). Mice were placed in an empty
glass cylinder and their dorsal coat surface was sprayed three
times with a 10% sucrose solution. Five min video recordings
were experimenter scored by a blinded experimenter for time
spent grooming.

Tissue Collection
Twenty-four hours following the final behavioral assay, brains
were removed, and trunk blood was collected. Blood was
collected in a 1.5mL microcentrifuge tube containing 10
µL EDTA (0.5M, Invitrogen, Cat#15575) to reduce clotting,

vortexed and stored at −80◦C until further processing. Brains
were place on ice, cut into 1mm sections using a brain block
(Braintree Scientific), and 14-gague punches surrounding the
anterior commissure, encompassing both NAc core and shell,
were collected (2 per animal). Tissue punches were stored at
−80◦C until further processing.

DNA Extraction and Analysis
Trunk blood was thawed and homogenized to break up any clots.
DNA was extracted from whole blood using a QiaAmp DNA
Micro Kit (Qiagen, Germantown, MD; Cat# 56304) following
manufacturer instructions. DNA quality and concentration were
measured on a Nanodrop (Thermo Scientific), and DNA was
diluted to 2 ng/µL for qPCR with PerfeCTa SYBR Green FastMix
(Quantabio, Beverly, MA; Cat# 95072). To measure relative
mitochondrial copy number, expression of the mitochondrial
gene NADH dehydrogenase 1 (mt-Nd1) was compared to
the nuclear gene glyceraldehyde 3-phosphate dehydrogenase
(Gapdh) using the 2−11Ct method. Forward and reverse primer
sets are as follows (F, R; 5′-3′): Gapdh AGGTCGGTGTGAACGG
ATTTG, TGTAGACCATGTAGTTGAGGTCA; mt-Nd1 TACA
ACCATTTGCAGACGCC, TGTGAGTGATAGGGTAGGTGC.
Data was further normalized within sex, such that male animals
exposed to fentanyl were compared to male controls and female
animals that received fentanyl were compared to female controls.

RNA Extraction and Analysis
RNA was extracted from NAc tissue punches using Trizol
(Invitrogen) and the MicroElute Total RNA Kit (Omega;
Cat# R6831) with a DNase step (Qiagen, Germantown, MD;
Cat# 79254). RNA quantity and concentration were measured
on a Nanodrop (Thermo Scientific), and 400 ng of RNA
was used to synthesize complementary DNA using a reverse
transcriptase iScript complementary DNA synthesis kit (Bio-
Rad, Hercules, CA; Cat# 1708891). Resulting cDNA was diluted
to a concentration of 2 ng/µL, which was used to measure
relative mRNA expression changes via quantitative PCR with
PerfeCTa SYBR Green FastMix (Quantabio, Beverly, MA; Cat#
95072). Sixteen nuclear mitochondrial related genes were tested,
and the primer sets are as follows (F, R; 5′-3′): Cycs TACATGCT
ACCACGGCTCTC, TGAGGTGACATGCCCCTATT; Drp1
GGGCACTTAAATTGGGCTCC, TGTATTCTGTTGGCGT
GGAAC; Egr3 CCGGTGACCATGAGCAGTTT, TAATGGGC
TACCGAGTCGCT; Fis1 GGCTGTCTCCAAGTCCAAATC,
GGAGAAAAGGGAAGGCGATG; Mfn1 TATCGATGCCTT
GCGGAGAT, GGCGAATCACAACACTTCCA; Mfn2 GGAG
ACCAACAAGGACTGGA, TGCACAGTGACTTTCAACCG;
Nrf1 AGACCTCTGCTAGATTCACCG, CCTGGACTTCAC
AAGCACTC; Nrf2 TCTACTGAAAAGGCGGCTCA, TTGC
CATCTCTGGTTTGCTG; Opa1 CAGCTCAGAAGACCTT
GCCA, TCCTTCAACAAGCTGAGGCT; Park2 GCACCTCA
AGCAAGAATGAC, TACAGATGAGTGGGTCAGAGC; Pgc1α
CGACCATGGTGTTGTTCTTG, ATGGCAGCGACTCCAT
ACTC; Pink1 GGGCTACTGTGTCCTGATGT, CTACTCCA
GCTTGTCCCCTG; Polγ ACTCCTGGAACAGTTGTGCT,
CGTCCATCTACTCAGGACGG; Tfam TTTGTTGTGTGT
GGGTGCTC, CGAAGGGCCATCCCTGTAT; Tfb1m TACG
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FIGURE 1 | Mitochondrial copy number in blood and gene expression in NAc after developmental fentanyl exposure. (A) Developmental fentanyl decreases blood

mitochondrial copy number in male, but not female adolescent mice. (B) Developmental fentanyl increases mRNA expression of Tfam in NAc in female, but not male

mice. *p < 0.05.

CCCTTGATAGAGCCCA, TCCTTCGAAACTGAAACGCA;
Tomm20 CTGTGCTCTGGGCACTTAAC, AGGGTGCACACA
GGTCTAAT.

All biological samples were run in duplicate, and samples were
excluded from analysis if duplicates were not within one CT
value. Further, some samples did not yield sufficient RNA to run
all genes tested, therefore, these samples were not run for all 16
genes. Quantification of mRNA changes was performed using the
2−11Ct method, using Gapdh and respective male and female
control groups to normalize expression as described above.

Statistics
All statistics were performed using GraphPad Prism version
9.1.2 for Windows (GraphPad Software, San Diego, California
USA, www.graphpad.com). Behavioral data for the subset of
mice used for tissue analysis were analyzed with two-way
ANOVAs with Sidak post-hoc tests to compare within sex. Group
data was analyzed for outliers using Grubb’s-test, and outliers
were removed from further analysis (no more than one per
group). Relative DNA and RNA concentrations were compared
within sex with unpaired t-tests when assumptions of equal
variance were met and a Welch’s corrected t-test when this
assumption was violated. Data are presented as mean± sem with
individual data points overlaid. Simple linear regressions were
used for correlations.

RESULTS

To determine if developmental fentanyl exposure is sufficient to
modulate peripheral mitochondria, we measured mitochondrial
copy number in blood collected from P35 adolescent mice that
had been exposed to fentanyl from conception through weaning.

We did not observe an effect in female mice (Welch’s corrected
t = 0.677, df = 20.82, p > 0.05), however, blood mitochondrial
copy number was significantly reduced in male mice that had
received perinatal fentanyl as compared to control male mice
(Figure 1A: t = 3.005, df= 24, p= 0.0061).

Opioid exposure and withdrawal in adulthood can cause both
oxidative stress as well as gene expression changes in multiple
brain regions (22, 25, 37, 39). Opioids are also highly addictive
drugs with high abuse potential, and as such, readily engage
reward-related brain circuitry during drug exposure (48, 55–
58). Therefore, we examined the expression of multiple genes
related to mitochondrial function in the NAc to determine if
the peripheral changes in mitochondria are related to central
changes in mitochondrial-related pathways in a reward-related
brain region. These data are summarized in Table 1.

We examined genes related broadly to multiple facets of
mitochondrial function. Genes related to regulating the balance
of mitochondrial fission and fusion to maintain mitochondrial
number include the fission-related proteins dynamin-related
protein 1 (Drp1) and mitochondrial fission 1 protein (Fis1),
the fusion-related proteins mitofusin 1 and 2 (Mfn1, Mfn2),
and OPA1 mitochondrial dynamin like GTPase (Opa1) (59).
Gene expression for these fission and fusion-related proteins was
not changed in NAc in either sex by developmental exposure
to fentanyl. Genes involved in mitochondrial function, health,
stress-resistance, mitophagy, and protein transport including
cytochrome C (Cycs), parkin (Park2), PTEN induced kinase 1
(Pink1), and translocase of outer mitochondrial membrane 20
(Tomm20) (60) were also not changed in NAc in either sex after
developmental fentanyl exposure.

Finally, we examined expression of genes related to
transcription and transcriptional regulation of both nuclear
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TABLE 1 | Relative gene expression of nuclear mitochondrial related genes in NAc.

Control Fentanyl

Gene Sex n Mean 95% CI n Mean 95% CI Analysis p-value Sig

Fission- and fusion-related genes

Drp1 Female 10 1.00 0.6707–1.329 8 0.8643 0.7428–0.9858 Welch’s t-test 0.3798 n.s.

Male 10 1.00 0.8393–1.161 8 0.8145 0.4416–1.187 t-test 0.2666 n.s.

Fis1 Female 12 1.00 0.820–1.180 11 1.067 0.8969–1.238 t-test 0.556 n.s.

Male 11 1.00 0.9138–1.086 11 0.8957 0.7357–1.056 t-test 0.2157 n.s.

Mfn1 Female 12 1.00 0.8323–1.168 12 1.032 0.8772–1.187 t-test 0.7603 n.s.

Male 11 1.00 0.9288–1.07 11 0.9784 0.8127–1.14 Welch’s t-test 0.7938 n.s.

Mfn2 Female 12 1.00 0.9157–1.084 12 1.021 0.9245–1.118 t-test 0.7197 n.s.

Male 12 1.00 0.9372–1.063 10 0.9929 0.8878–1.098 t-test 0.8943 n.s.

Opa1 Female 12 1.00 0.8864–1.114 9 1.022 0.9368–1.108 t-test 0.7443 n.s.

Male 12 1.00 0.9033–1.097 11 1.076 0.9393–1.213 t-test 0.3194 n.s.

Mitochondrial function, health, stress-resistance, mitophagy, and protein transport

Cycs Female 9 1.00 0.7999–1.200 11 0.9385 0.7798–1.097 t-test 0.5868 n.s.

Male 11 1.00 0.8917–1.108 9 1.735 0.7091–2.760 Welch’s t-test 0.1383 n.s.

Park2 Female 10 1.00 0.8322–1.168 12 1.061 0.9342–1.189 t-test 0.5148 n.s.

Male 11 1.00 0.9005–1.099 9 1.01 0.8131–1.207 t-test 0.916 n.s.

Pink1 Female 10 1.00 0.7716–1.228 12 0.7191 0.8210–1.287 t-test 0.7191 n.s.

Male 11 1.00 0.8355–1.164 9 0.8873 0.6134–1.161 t-test 0.4136 n.s.

Tomm20 Female 10 1.00 0.8274–1.173 12 1.159 1.012–1.307 t-test 0.1313 n.s.

Male 11 1.00 0.8941–1.106 9 0.925 0.6860–1.164 Welch’s t-test 0.524 n.s.

Nuclear transcription factors and transcriptional co-activators

Egr3 Female 12 1.00 0.7853–1.215 12 0.9545 0.8528–1.056 Welch’s t-test 0.6794 n.s.

Male 12 1.00 0.8669–1.133 11 1.125 0.8940–1.356 t-test 0.2994 n.s.

Nrf1 Female 11 1.00 0.8882–1.112 12 0.923 0.8101–1.036 t-test 0.2969 n.s.

Male 11 1.00 0.9055–1.095 11 0.9437 0.7722–1.115 t-test 0.5289 n.s.

Nrf2 Female 12 1.00 0.7022–1.298 12 0.9898 0.7989–1.181 t-test 0.9502 n.s.

Male 10 1.00 0.8929–1.107 9 1.234 0.4896–1.978 Welch’s t-test 0.4934 n.s.

Pgc1α Female 12 1.00 0.7647–1.235 10 0.9395 0.7330–1.146 t-test 0.6785 n.s.

Male 10 1.00 0.8878–1.112 8 0.8442 0.4007–1.288 Welch’s t-test 0.4451 n.s.

Mitochondrial transcriptase and transcription factors

Polγ Female 9 1.00 0.9216–1.078 10 1.059 0.8985–1.219 Welch’s t-test 0.4693 n.s.

Male 11 1.00 0.9416–1.058 7 0.99 0.5802–1.400 Welch’s t-test 0.9549 n.s.

Tfam Female 12 1.00 0.8794–1.121 10 1.183 1.043–1.322 t-test 0.0381 *

Male 11 1.00 0.8720–1.128 10 0.8953 0.7612–1.030 t-test 0.2207 n.s.

Tfb1m Female 10 1.00 0.88490–1.151 9 0.946 0.8401–1.052 t-test 0.5231 n.s.

Male 11 1.00 0.9189–1.081 6 1.142 0.6122–1.672 Welch’s t-test 0.5254 n.s.

Significant results in bold.

*p < 0.05, n.s. = not significant.

and mitochondrial genome genes, broad regulators of overall
patterns of gene expression (61, 62). Transcription factors
and transcriptional co-activators that regulate nuclear genes
related to mitochondrial function including Early Growth
Response 3 (Egr3), nuclear respiratory factor 1 (Nrf1), nuclear
factor, erythroid 2 like 2 (Nrf2), and peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (Pgc1α) were
not changed in NAc in either sex after developmental fentanyl
exposure. DNA Polymerase Subunit Gamma-1 (Polγ), a
mitochondrial DNA polymerase which conducts mitochondrial
DNA replication was not altered by developmental fentanyl,
however, the mitochondrial transcription factor transcription

factor A (Tfam) increased expression in female mice that had
been developmentally exposed to fentanyl (Figure 1B). Tfam
expression was not changed in male mice, nor were changes
observed in either sex of transcription factor B1, mitochondrial
(Tfb1). Notably, the change in expression of Tfam is double
dissociated from the mitochondrial copy number finding in
male mice.

While many of the genes examined did not show statistically
significant differences, we noticed high degrees of variability
in gene expression for many genes, therefore, we decided to
explore if this variability in gene expression was related either
to peripheral mitochondrial copy number, performance in the
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FIGURE 2 | Blood mitochondrial copy number correlates with NAc gene expression in female mice. In female control mice blood mitochondrial copy number

correlates with (A) NAc expression of Drp1 (B) Mfn2, and (C) Nrf2. Blood copy number and NAc gene expression are depicted as fold change. *p < 0.05.

measured behavioral tests, or other factors that may relate to
overall metabolic function, specifically body weight at the time
of sacrifice. The behavioral data used here represents a subset
of the previously published animals (11) used for the molecular
analysis. In this subset of animals, male animals showed increased
anxiety-like behavior in the EPM, indicated by a reduced ratio
of time spent in the open arms of the maze over the time
spent in the closed arms, but there was no effect in females
(mean ratio, SEM - male control: 0.4081, 0.07036; male fentanyl:
0.1919, 0.02859; female control: 0.3661, 0.0441; female fentanyl:
0.3318, 0.0401) [main effect of drug F(1,54) = 7.419, p = 0.0087;
post-hoc male adjusted p = 0.0082, female adjusted p > 0.05].
There was a main effect of sex in the splash test, with females
spending more time grooming [F(1,54) = 10.48, p = 0.0021],
however there was no effect of fentanyl or interaction (mean
seconds, SEM - male control: 99.01, 5.497; male fentanyl: 81.83,
11.30; female control: 117.2, 4.954; female fentanyl: 112.8, 8.543).
Finally, while males weighed more than females [F(1,54) = 5.622,
p= 0.0213], we did not observe an effect of fentanyl on weight at
this time point in this cohort (mean grams, SEM - male control:
18.21, 0.6542; male fentanyl: 18.82, 0.4767; female control: 17.2,
0.6829; female fentanyl: 17.11, 0.4271). We performed Pearson
correlations on our copy number, gene expression and behavioral
data and all correlations are described in Supplementary Table 1.
Blood mitochondrial copy number showed a significant positive
correlation with NAc Drp1, Mfn2, and Nrf1 in female control
mice (Figure 2) but shows no relationship with NAc gene
expression in female mice exposed to fentanyl or male mice of
either condition. Specifically, there was no correlation between
blood copy number with NAc Tfam expression in female
mice, which was significantly increased in fentanyl-exposed
mice. While developmental fentanyl does not change blood
mitochondrial copy number in female adolescent mice, it does
seem to disrupt the correlations with NAc gene expression
seen in control mice, possibly indicating an uncoupling of
peripheral and central mitochondrial function potentially unique
to female mice, or a more complex relationship between NAc
gene expression and blood mitochondria copy number in the
context of developmental drug exposure.

Conversely, the ratio of time spent in the open/closed arms
of the elevated plus maze, an indicator of anxiety-like behavior,
showed no correlation with gene expression in control animals,
but is correlated with a number of genes in animals that had been
exposed to fentanyl (Figure 3). In female mice EPM open/closed
ratio negatively correlates with both Drp1 and Pgc1α expression
in NAc (Figure 3A). In male animals, EPM open/closed ratio
positively correlates with NAc expression of Fis1, Park2, and
Tomm20 (Figure 3B). Time spent grooming in the splash test did
not correlate with NAc gene expression for either sex under either
drug exposure condition. Body weight positively correlated with
NAc Tfb1 expression in male control mice, and negatively with
Tfb1 in female mice exposed to fentanyl (Figure 3C). In male
mice exposed to fentanyl body weight was negatively correlated
with NAc expression of Pink1 (Figure 3D).

DISCUSSION

Opioid exposure is related to increased oxidative damage
and mitochondrial damage in adulthood, and many negative
impacts of chronic opioid use can be particularly long-lasting
if the drug is encountered during development, leading to
altered behavior and neurological function (9, 20, 24, 63).
Opioid use and opioid use disorders are also associated with
an increase in psychiatric mood symptoms as well as mood
and anxiety disorders (43, 44). The current study examined
how developmental exposure to the synthetic opioid fentanyl
altered blood mitochondrial copy number, mitochondrial gene
expression, and how these measures related to each other
and anxiety-like behaviors in adolescent male and female
mice. We showed that developmental exposure to fentanyl
reduces blood mitochondrial copy number in male mice and
increases NAc expression of Tfam mRNA in female mice.
Additionally, mice exposed to fentanyl showed different patterns
of correlation between blood mitochondrial copy number,
anxiety-like behavior, weight, and NAc gene expression in a
sex-dependent manner.

Mitochondria are particularly impacted by oxidative stress
both as producers and scavengers of reactive oxygen species, and
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FIGURE 3 | NAc mitochondrial gene expression correlates with anxiety-like behavior and weight. (A) In female mice developmentally exposed to fentanyl, NAc

expression of Drp1 and Pgc1α correlate with behavior in the EPM, represented as the ratio of open/closed arm time. (B) In male mice developmentally exposed to

fentanyl, NAc expression of Fis1, Park2, and Tomm20 correlate with behavior in the EPM, represented as the ratio of open/closed arm time. (C) NAc expression of

Tfb1 positively correlates with weight at P35 in female mice developmentally exposed to fentanyl and negatively correlates with weight in male control mice. (D) In

male mice developmentally exposed to fentanyl, NAc expression of Pink1 negatively correlates with weight at P35. Gene expression is depicted as fold change. *p <

0.05; **p < 0.01.

in turn are a critical mediator in downstream cellular processing
and homeostatic changes in response to such oxidative stress.
Mitochondrial DNA is particularly susceptible to oxidative
damage compared to nuclear DNA, as it both lacks protective

histone proteins and mitochondria have less robust DNA-
repair machinery than nuclei (64). The mitochondrial genome
is maintained in a highly dynamic equilibrium, existing in
multiple copies per cell, with 1–10 copies per mitochondrion
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and multiple mitochondria per cell, depending on cell type
(35, 65). Because the mitochondrial genome codes for most of
the enzymatic subunits needed for oxidative phosphorylation,
mitochondrial copy number can be used as an indicator of
mitochondrial biogenesis (35, 66), and changes in mitochondrial
copy number may contribute to oxidative stress, inflammation,
and mitochondrial dysfunction (67, 68).

Mitochondrial dysfunction has been linked to disorders from
diabetes, to cancer, and more recently to stress, psychiatric
illnesses and substance use disorders (28, 69–74). Mitochondria
copy number is increased in patients with bipolar disorder
(75, 76), early childhood maltreatment or adversity (77), and
increased in the prefrontal cortex and hippocampus of rats that
had undergone cocaine self-administration, but is decreased in
human heroin users and mice and rats exposed to chronic heroin
(37). Our findings here mimic the decrease in copy number
seen in male rodents, despite the developmental exposure and
abstinence at the time of tissue collection used here. In the
human patients, copy number did partially recover 3 months
after initiation of heroin abstinence, although even after 6
months copy number had not fully recover to control levels (37).
The clinical population represented female patients, although
we did not observe changes in copy number in female mice.
Further work will be needed to determine if opioids impact
mitochondrial copy number comparably in men and women.
Sex differences in substance use, substance use disorders, and
successful abstinence have been readily observed for multiple
used drugs, including opioids (78–82). A unique feature of the
current study is the consistency of gestational fentanyl exposure
in utero as our sample represents multiple litters consisting of
both males and females. Fentanyl dose during the post-natal
period was dependent on individual variance in pup milk or
water consumption until weaning.

Although a growing number of studies are examining
peripheral copy number, fewer studies are relating this measure
to changes in other tissues, including the brain. In neurons,
mitochondrial quality control and proper functioning impacts
many aspects of cellular function related to signaling and circuit
function (31). Specifically, in addition to providing the high
levels of ATP necessary to maintain electro-chemical gradients,
mitochondria buffer both intracellular calcium and reactive
oxygen species, influence apoptosis, and have been shown
to be critical for dendritic spine formation (31–33). Further,
mitochondria and mitochondrial related genes in the NAc
specifically have been shown to mediate behavioral responding
for cocaine in a mouse model of substance use disorder (34,
83, 84), indicating mitochondrial function in NAc as a specific
node for influencing the response to addictive drugs. Of the genes
examined in NAc here, only Tfam showed increased expression.
Interestingly, Tfam, because it binds to the mitochondrial DNA
as a transcription factor, also has been shown to protect
mitochondrial DNA from damage due to oxidative stress (61, 85,
86). Thus, it is possible there may be oxidative damage in NAc
caused by developmental fentanyl exposure, and the increased
expression of Tfam may be neuroprotective in female mice,
consistent with their unchanged blood copy number. The sex-
specific nature of this effect, and the lack of changes in other

genes of interest may indicate tight regulation of mitochondrial
function in NAc through development and during adolescence
despite the drug exposure. Future studies should examine more
direct measures of mitochondria in NAc, such as copy number.
Heroin can reduce mitochondrial copy number in hippocampus
indicating drug exposure can influence copy number in brain
(37), but copy number can vary independently with brain
region, and changes in one area may not predict changes in
other connected brain regions (87). Importantly, differences in
oxidative damage or gene expression may vary even within the
NAc itself, as the NAc core, medial shell, and lateral shell all
have previously described variance in regulating reward-related
behaviors (88–92). The tissue used in this study included all
subregions of the NAc, and future work will be needed to
further dissect any unique subregion responses to developmental
fentanyl. Mitochondrial morphology in NAc, regulated by many
of the genes examined here, is also responsive to both drug
exposure (34) and trait-anxiety measures possibly established
during development (40). Fentanyl does impact mitochondrial
morphology in neuronal-like NG108–15 cells (39), but this has
not been demonstrated in any neuronal type in vivo. Further,
the impact of developmental fentanyl exposure on mitochondria
may be cell-type selective; beyond neurons, astrocyte function
is altered by opioid exposure (93–95) and it is possible that
changes in these glial cells or the immune-related microglia
mimic changes seen in peripheral immune cells.

Our data indicate that blood mitochondrial copy number
does vary systematically with NAc mitochondrial-related nuclear
genes, specifically Drp1, Mfn1, and Nrf1, with higher copy
number corresponding to higher gene expression. Drp1 regulates
mitochondrial fission, promoting the formation of more
mitochondria. In the brain, Drp1 is involved in new dendritic
spine formation (33). While opioid exposure is linked to a
decrease in dendritic spines, due to internalization of mu
opioid receptors (96, 97), the correlation described here is in
female mice specifically, which were resistant to both changes in
blood copy and changes in EPM anxiety-like behavior, although
fentanyl did disrupt the correlation with NAc gene expression.
Mfn2 is usually considered a fusion-related protein (98), but
it also plays critical role in mediating mitochondrial contact
points with the endoplasmic reticulum independent of fusion
and its expression in NAc has been linked to anxiety-like
behaviors (40). Nrf1, as a nuclear transcription factor, regulates
expression of other mitochondrial related genes including
those related to mitochondrial respiratory function as well as
genes involved in RNA metabolism, DNA damage repair, and
ubiquitin-mediated protein degradation (99). While the role
of mitochondrial related gene expression and function in NAc
with respect to drug exposure is still a relatively new area
of investigation, mitochondrial function within reward circuits
has already been linked repeatedly to anxiety-like behaviors
(41). Specifically, expression of mitochondrial related genes,
mitochondria complex I and II function, and mitochondrial
respiratory capacity impact both trait anxiety and expressions
social dominance (40, 100, 101). Further, increases in ventral
tegmental area dopamine input to NAc or D1-dopamine receptor
agonism in NAc can increase both mitochondrial respiratory
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activity and facilitate social dominance expression in previously
identified higher-anxiety rats (102). Both NRF1 and NRF2
regulate mitochondrial function in reward-related brain regions
(103, 104), and global NRF2 knockdown is sufficient to decrease
open arm time in rats in an EPM (104). NRF1 knockdown
did not impact EPM behavior, but did alter expression of other
mitochondrial-related proteins in the amygdala, hippocampus
and prefrontal cortex (103). Since affect, mood, and anxiety are
all impacted by drug use (57, 105–107), including opioid use
(43, 44) and withdrawal (108), altered mitochondrial function
may be a common underlying mechanism for trait anxiety or
altered anxiety-like behavior after exposure to opioids and other
drugs. Future work on both the genes of interest identified here
and other mitochondrial processes is needed to fully understand
their role in regulating behavior after drug exposure.

While these relationships with NAc gene expression exist
in control animals, developmental fentanyl presented other
relationships with gene expression, which negatively correlated
with EPM behavior in female mice and positively in male
mice. Both Drp1 and Pgc1α, the genes correlated in female
mice, have both been shown in NAc to mediate enhanced
behavioral responding to cocaine (34, 83), and here higher
expression is related to less time spent in the open arms
of the EPM. Conversely, Fis1, Park2, and Tomm20 all have
functions in mitochondrial degradation pathways (109–112),
potentially indicating higher degrees of mitochondrial damage
or turn over in male mice after fentanyl which also have
reduced blood copy number and significantly reduced open
arm time in the EPM (11). Fentanyl also produced negative
correlations between body weight and NAc expression of Pink1
in male mice and with Tfb1 in female mice. Pink1is protective
against mitochondrial dysfunction (113), and as a mitochondrial
transcription factor Tfb1 might have the same protective effects
for mitochondrial DNA as Tfam. Future studies will be needed
to further understand the relationship between weight, NAc gene
expression, and opioid exposure. While some genes did correlate
with behavior, Tfam did not, indicating that developmental
fentanyl causes dissociable changes in the periphery and in
NAc, and each of these tissues independently relate to behavior.
Further, the sex differences seen here in both EPM behavior and
in gene expression correlations are consistent with previous work
showing important sex differences in NAc gene expression in
the context of resilience to stress (114) and sex differences in
the NAc proteome after exposure to nicotine, a commonly used
drug (115).

It is important to note that in this study it is impossible to
distinguish if the changes and relationships described here are
due to the fentanyl exposure itself or due to the experience of
going through withdrawal from the fentanyl after weaning. This
regimen of fentanyl exposure is sufficient to induce spontaneous
withdrawal signs (12), and it is unclear if the changes in behavior
during adolescence are a prolonged result of withdrawal-related
plasticity (58), or indicative of shifted baselines in stress reactivity
caused by developmental insult (6, 9, 10). It is also possible,
that the developmental timing of withdrawal (at weaning rather
than at birth) may be significant. As mitochondria in the
brain and body have been previously shown to modulate

responses to both acute psychological stress (27), and mediate
some of the developmental impacts on the brain of early-life
stress (30), it is possible the effects seen here represent the
mitochondrial response to opioid withdrawal (116–118). Future
studies involving both continuous access to fentanyl and longer
periods of abstinence into adulthood will be necessary to resolve
this distinction and determine the persistence of these effects.

Taken together, these data indicate developmental fentanyl
exposure has similar effects on offspring mitochondrial copy
number as adult opioid use potentially including oxidative
damage that disturbs mitochondrial function. Changes in the
NAc are only one component of the reward circuits that may
be impacted by this developmental opioid exposure and future
work should examine the impacts on other brain regions,
which may show stronger more significant relationships with
blood mitochondrial copy number or behavior than those
demonstrated here. The relationships with brain gene expression
and behavior indicate coordinated responding throughout the
body to the developmental insult of fentanyl exposure and future
studies should further explore this relationship to better predict
health and supplement treatment for infants with prenatal
opioid exposure.
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