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Abstract

Cryo-electron microscopy (cryo-EM) has become one of important experimental methods in structure determination.
However, despite the rapid growth in the number of deposited cryo-EM maps motivated by advances in microscopy
instruments and image processing algorithms, building accurate structure models for cryo-EM maps remains a challenge.
Protein secondary structure information, which can be extracted from EM maps, is beneficial for cryo-EM structure
modeling. Here, we present a novel secondary structure annotation framework for cryo-EM maps at both intermediate and
high resolutions, named EMNUSS. EMNUSS adopts a three-dimensional (3D) nested U-net architecture to assign secondary
structures for EM maps. Tested on three diverse datasets including simulated maps, middle resolution experimental maps,
and high-resolution experimental maps, EMNUSS demonstrated its accuracy and robustness in identifying the secondary
structures for cyro-EM maps of various resolutions. The EMNUSS program is freely available at http://huanglab.phys.hust.e
du.cn/EMNUSS.
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Introduction
Advances in microscopy instruments and image processing
algorithms have led to an increasing number of cryo-electron
microscopy (cryo-EM) maps [1–3]. The ‘resolution revolution’ in
cryo-EM has paved the way for the determination of structures
of previously intractable biological systems at unprecedented
resolution [4–14]. However, the goal of cryo-EM is not to obtain
the 3D maps but to determine the detailed atomic structures
[15–25].

It is challenging to build accurate structure models for cryo-
EM maps [26]. Rigid fitting and flexible fitting are commonly
used methods to fit atomic structures into EM maps, but they are
only possible if template structures are available. Without tem-
plate structures, de novo modeling tools are needed to build full-
atom models into EM density maps. However, the application
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of de novo modeling tools is limited because of their precarious
accuracy. Owing to these difficulties, there is still a gap between
the number of maps and the number of reconstructed/modeled
3D structures. As of 7 October 2020, there were 12 531 EM
maps deposited in Electron Microscopy Data Resource, with only
6085 associated structures deposited in the Protein Data Bank
(PDB)[27].

Protein secondary structure information, which can be
extracted from maps, is demonstrated to be beneficial for
both template-based fitting and de novo modeling [26]. PF2fit,
which is a rigid fitting method, matches the detected secondary
structures of the density map with the secondary structure units
of the atomic model [28]. In 2017, Dou et al. [29] developed a
flexible fitting method guided by the correspondence between
the α-helices in the cryo-EM map and those in the model.
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For those de novo modeling methods, secondary structure
information plays a vital role. For example, EM-Fold places
the secondary structure elements predicted from sequence to
detected α-helix density rods [16]. Iterative secondary structure
refinement was also used by Pathwalking [17].

With the exponentially increasing number of deposited EM
maps, various algorithms have been developed for secondary
structure detection in cryo-EM maps. Traditional methods detect
density regions that correspond to typical α-helices or β-sheets
[30–33]. Recently, deep learning has also been applied in the task
of secondary structure classification for EM maps. In the recent
decade, many attempts had been made to develop deep learning
frameworks for secondary structure prediction in cryo-EM maps
[34–36], including state-of-the-art Emap2sec [37] and Haruspex
[38].

Emap2sec was developed for EM maps of intermediate reso-
lutions (middle resolution), which shows promising results and
provides a novel approach to structural interpretation of maps at
intermediate resolution. The updated version, Emap2sec+ [39],
extended the method to detect nucleic acid region in EM maps
and adopted a more advanced convolutional neural network
architecture, ResNet [40]. Emap2sec and Emap2sec+ perform
classification for each voxel in given EM map with a stride of
2 Å. However, there are limitations with the methods. On one
hand, the input of Emap2sec are cubic voxels of side length
11 Å, which is shorter than the length of an average α-helix
with 10 residues (15 Å), thus may lead to reduced accuracy. On
the other hand, Emap2sec/Emap2sec+ may also be incompatible
with large EM maps since these maps have astronomical number
of voxels. Haruspex was developed to detect nucleotides and
protein secondary structure in high-resolution EM maps using
a U-Net (UNet)-style [41] deep learning architecture. The full
convolutional architecture of Haruspex enables its fast and accu-
rate prediction even on personal laptops without GPU. Neverthe-
less, there are also limitations for Haruspex. For convenience,
Haruspex rescales the grid interval of a cryo-EM map to 1.1 Å
if it is outside [1.0, 1.2] Å. However, the inconformity of grid
interval will confound the feature extraction of convolution
layers. In addition, Haruspex tries to predict the ‘unassigned’
regions for a given EM map. Such ‘unassigned’ regions may cause
imbalance on classification and reduce the predictive power of
Haruspex.

To overcome the shortcomings of existing approaches, we
have introduced a novel secondary structure determination
framework for cryo-EM maps at both high and intermediate res-
olutions, named EMNUSS. EMNUSS adopts a three-dimensional
(3D) nested UNet architecture [42] that can fast and accurately
predict protein secondary structures for cryo-EM maps of varied
sizes. EMNUSS showed a significantly improved performance
on three datasets including simulated maps, middle resolution
experimental maps and high-resolution experimental maps.

Methods
Network architecture

We adopted a nested UNet architecture to assign secondary
structure for EM density maps. Figure 1 shows an overview of the
EMNUSS architecture. Nested UNet (UNet++) [42] starts with an
encoder subnetwork or backbone followed by a decoder subnet-
work. 3D maxpooling layer with stride of 2 was used as down-
sampling, and trilinear interpolation layer with zoom factor of
2 was used as upsampling. Compared with the UNet used by
Haruspex, UNet++ has dense skip connections on skip path-
ways, which improves gradient flow. Moreover, the deep super-

vision used in UNet++ enables model pruning and improves
performance. The input of our network are density chunks with
a grid interval of 1.0 Å. The chunk size was set to 40 × 40 ×
40 in order to cover the secondary structure element including
surrounding interaction partners. The output of our network are
annotated chunks of the same size. Each voxel in the annotated
chunk has three channels containing the probabilities that this
voxel is close to an α-helix residue, a β-strand residue or a coil
residue.

Data collection

To be comparable with existing methods, the test sets of simu-
lated maps and middle resolution maps used in Emap2sec were
also used to evaluate our EMNUSS. For simulated maps, the
authors of Emap2sec collected a nonredundant set of 2000 SCOPe
structures [43]. we used the e2pdb2mrc.py program from the
EMAN2 package [44] (v.2.11) to generate simulated EM maps for
each structure at resolutions of 6.0 and 10.0 Å. Maps simulated
from 34 structures were used as test set (Supplementary Table
1) and maps simulated from the remaining 1964 structures were
used to train our EMNUSS.

For experimental maps at middle resolution, the test set of
43 experimental EM maps at 5–10 Å resolution in Emap2sec
was used to evaluate EMNUSS (Supplementary Table 2). Instead
of using 4-fold cross-validation like Emap2sec, we decided to
build a nonredundant training set for middle resolution maps.
All the EM density maps at 5–10 Å resolution that have asso-
ciated PDB models were downloaded from EMDataResource.
Any PDB structure and its corresponding EM map that met the
following criteria were removed: (i) including nucleic acids, (ii)
containing backbone atoms only, (iii) including missing chain,
(iv) severe misfits between map and deposited model and (v)
having any chain with over 30% sequence identity with any chain
in the test set. In order to ensure criteria (iv), we calculated
the cross-correlation between the deposited map and the map
simulated from deposited model at the same resolution using
UCSF chimera. The value of 0.65 was chosen as the threshold
of cross-correlation. Afterwards, all the remaining maps were
manually checked. Finally, the remaining training cases were
clustered using a greedy algorithm. Two models are considered
to be similar if any chain in the first model has >95% sequence
identity with any chain in the second model. Case with the
largest number of similar cases was chosen as a representa-
tive of the biggest cluster, and then the biggest cluster was
removed from calculation. This procedure was repeated until
all the cases are clustered. The final nonredundant training set
consists of the representatives of each cluster. A total of 120
experimental EM maps with resolution ranging from 5.0 to 9.5
Å were retained as training set for experimental maps at middle
resolution (Supplementary Table 3).

For experimental maps at high resolution, all the EM den-
sity maps with resolutions ranging from 2.0 to 4.0 Å that have
associated PDB models were downloaded from the EMDB. Any
PDB structure and its corresponding EM map that met the fol-
lowing criteria were removed: (i) including nucleic acids, (ii)
containing backbone atoms only, (iii) including missing chain
and (iv) severe misfits between map and deposited model. The
remaining models were clustered using greedy algorithm at 30%
sequence identity cutoff. A total of 468 experimental EM maps
with resolution ranging from 2.0 to 4.0 Å were retained as the
dataset for experimental maps at high resolution (Supplemen-
tary Table 4). The training and testing were performed on this
dataset using 3-fold cross-validation.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab156#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab156#supplementary-data
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Figure 1. (A) The network architecture of EMNUSS consists of multiple interconnected layers, shown as gray cubes. Layers are connected by convolution blocks.

Number of channels is labeled on each cube, and the size is labeled on the top of each cube. Yellow arrows indicate conventional convolutions, green arrows indicate

3D maxpooling with stride of 2 and red arrows indicate trilinear interpolation with zoom factor of 2. Blue dotted lines indicate skip connections. The results of the

encoder–decoder subnetworks are concatenated together (purple lines) and give the secondary classification through a convolution layer. (B) The convolution block

used to connect two layers. The combination of 3D convolution layer, 3D Batch normalization layer, and ReLU activation layer is used twice in each convolution block.

‘In’, ‘Mid’ and ‘Out’ indicate the numbers of channels. The number of ‘Mid’ channels is equal to the number of ’Out’ channels.

Data processing of training maps

The grid size of the maps was unified to 1.0 Å by applying
trilinear interpolation. For training, the ground truth secondary
structure of each voxel was assigned according to the closest
backbone atom (N, C or Cα atom) within 3.0 Å, which was
annotated using STRIDE [45]. Residues with structure codes of
H, G or I were labeled as α-helices (Helix). Residues with codes of
B/b or E were labeled as β-strands (Sheet). The rest residues were
labeled as Others. All the unassigned voxels (no backbone atom
within 3.0 Å) were marked and excluded from training. Namely,
the unassigned voxels will not contribute to the loss during
training. The input density chunks of EMNUSS were of size 40
× 40 × 40, and the output predicted chunks of EMNUSS were of
the same size. The input density maps (and their corresponding
annotated ground truth maps) were cut into overlapping boxes
of size 60 × 60 × 60 with a slide stride of 30. Density values
of each map were clipped to be equal or greater than 0.0, and
then normalized in each box to the range 0–1.0 by the maximum
density value of each box. To ensure effective training, boxes that
have ≥95% unassigned voxels were excluded from training.

Network training

Different EMNUSS models were trained for the datasets with
different resolution ranges and all the training parameters were

the same for different models. In total, 10% of the training maps
were used as validation set during network training. Afterwards,
all the maps from the training set and validation set were cut
into boxes of size 60 ×60 × 60. The input training data were aug-
mented through random 90◦ rotations and by randomly cropping
the input 60 × 60 × 60 box into a 40 × 40 × 40 chunk. The network
was implemented with Pytorch. For each model, the network
was trained for at most 300 epochs with 180 boxes employed in
one batch. Adam optimizer was adopted to minimize the cross-
entropy loss for the prediction. The loss is weighted by [0.25, 0.5,
0.25], which is roughly the reciprocal of the ratio for the numbers
of voxels of three secondary structures (Helix, Sheet and Others)
in the dataset. The initial learning rate was set to 1e-3, and no
L2 regularization was applied (weight_decay = 0). Learning rate
decay was adopted. Namely, the learning rate will be reduced
to 1/2 of its current value if the average loss on training set
does not descend for 4 epochs. The training procedure will
be stopped when the learning rate reaches a minimum value
of 1e-5. The model with the least validation loss was used in
evaluation.

Evaluation of the EMUSS

We tested our EMNUSS on three different test sets. For each case
in the test set, the EM density map was cut into boxes of size
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Table 1. Average voxel F1 scores and residue Q3 accuracies of EMNUSS, Emap2sec and Haruspex on the simulated map test set for different
secondary structure classes. The maps are simulated from the PDB structures at two different resolutions: 6.0 and 10.0 Å

Metric Method 6.0 Å 10.0 Å

Overall Helix Sheet Others Overall Helix Sheet Others

Voxel F1 score EMNUSS 0.902 0.922 0.864 0.865 0.880 0.899 0.843 0.836
Emap2sec 0.796 0.844 0.755 0.713 0.757 0.791 0.729 0.664
Haruspex 0.329 0.171 0.237 0.532 0.292 0.191 0.012 0.543

Residue Q3 accuracy EMNUSS 0.918 0.941 0.927 0.863 0.900 0.915 0.921 0.838
Emap2sec 0.831 0.866 0.866 0.718 0.798 0.843 0.839 0.681
Haruspex 0.415 0.117 0.257 0.885 0.402 0.139 0.002 0.944

Figure 2. Comparison of EMNUSS, Emap2sec and Haruspex for different secondary structure classes on the simulated map test set, where the results of Emap2sec were

taken from the literature [38]. (A) Average voxel F1 scores on the simulated maps at 6 Å. (B) Average residue Q3 accuracies on the simulated maps at 6 Å. (C) Average

voxel F1 scores on the simulated maps at 10 Å. (D) Average residue Q3 accuracies on the simulated maps at 6 Å.

60 × 60 × 60 with a slide stride of 30. Each box was normalized
and then cropped into a 40 × 40 × 40 chunk from the center.
Only the cube of size 30 × 30 × 30 at the center of each chunk
was used to reconstruct the annotated map. In order to compare
our results with Emap2sec, similar evaluation criteria were used.
Secondary structure annotation by EMNUSS was evaluated at the
voxel and amino acid residue levels. For each voxel in the map,
the ground truth secondary structure was taken from the closest
Cα atom within 3.0 Å, which was defined by STRIDE annotation.
The secondary structure of a Cα atom was considered as cor-
rectly predicted if the majority of neighboring voxels that were
within 3.0 Å of the atom have the correct secondary structure
assignment. As the background in the EM map does not contain
atomic information, we have also excluded those background

voxels below a certain density threshold from the experimental
maps. Therefore, each voxel in the EM map will have one of the
three secondary structure classes (Helix, Sheet or Others) in our
EMUSS model. To test the robustness of EMUSS, two different
values of density thresholds were used in this study: 0.0 or the
author-recommended contour level. A residue is defined to be
below the threshold if any voxel around this residue (within 1.0
Å) has a density value below threshold. F1 score, which is the
harmonic mean of the precision and recall of the assignments,
was used to evaluate the performance of EMNUSS on voxels
level. For the residue-level evaluation, residue Q3 accuracy was
reported, which is the fraction of correctly assigned residues for
the entire protein and for each of the three secondary structure
classes.
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Figure 3. Examples of the secondary structure assignment by EMNUSS for the simulated maps at resolutions of 6.0 and 10.0 Å, where helices, strands and coils are

colored in red, green and blue, respectively. The raw EM density map in transparent gray is overlapped with deposited PDB structure on the left side of each subfigure

and the annotated map predicted by EMNUSS is on the right. (A) 6 Å simulated map for SCOPe entry d1kafa_. (B) 6 Å simulated map for SCOPe entry d1atia1. (C) 10 Å

simulated map for SCOPe entry d1b33n_. (D) 10 Å simulated map for SCOPe entry d2cz4a1. (E) SCOPe entry d1a26a1, where the β-bridge structure (in black circle) is

successfully detected by EMNUSS for 6 Å (middle) and 10 Å (right) simulated maps.

Comparison with related works.

EMNUSS was compared with Emap2sec on the test set of sim-
ulated maps and middle resolution maps. For the test set of
simulated EM maps, we simply used the benchmarking values
published in Emap2sec paper. For the test set of middle reso-
lution EM maps, the trained models of Emap2sec taken from
Code Ocean [46] were used. The input density data of Emap2sec
were voxels of size 11 Å × 11 Å × 11 Å. The grid size of the
maps was unified to 1.0 Å by applying trilinear interpolation
of the electron density in the maps. The data were obtained
from a map by traversing along the three dimensions of the
voxels with a stride of 2.0 Å. As shown in Supplementary Table
2, compared with Phase 1, the Phase 2 network of Emap2sec
performed worse, especially for those coil regions, such that in
the following discussion we only compare EMNUSS to Phase 1 of
Emap2sec.

EMNUSS was also compared with Haruspex on all three
test sets. The Haruspex model was taken from the authors’
Github repository at https://github.com/thorn-lab/haruspex.
The output of Haruspex was the annotated map of four channels
representing codependent probabilities for four classes (‘helix’,
‘sheet’, ‘nucleotide’ or ‘unassigned’). Since nucleic acids were
excluded from the test sets used in this study, the ’nucleotide’
channel of Haruspex was ignored in classification.

Results and discussion
Secondary structure prediction for simulated maps

We first evaluated the performance of EMNUSS on the test set
of 34 diverse SCOPe [43] protein domain structures. EM density
maps are simulated from these structures at two different reso-
lutions, 6.0 and 10.0 Å. Figure 2 shows a comparison of EMNUSS
and Emap2sec in secondary structure detection at the voxel
and residue levels. The corresponding benchmarking results
are listed in Table 1. It can be seen from the figure that our
EMNUSS significantly outperformed Emap2sec on the simulated
map set. For the maps simulated at 6.0 Å, EMNUSS achieved
an average overall voxel F1 score of 0.902, compared with 0.796
by Emap2sec (Figure 2A). The average voxel F1 scores for three
different secondary structure classes were 0.922, 0.864 and 0.865
for Helix, Sheet and Others, respectively. At the residue level,
EMNUSS also achieved a high-average overall residue Q3 accu-
racy of 0.918, which is much higher than 0.831 by Emap2sec.
The average residue Q3 accuracies for three secondary structure
classes were 0.941, 0.927 and 0.863 for Helix, Sheet and Others,
respectively. Compared with the maps simulated at 6.0 Å, there
was a slight decline in the performance of EMNUSS for the maps
simulated at 10.0 Å (Figure 2B). An average overall voxel F1 score
of 0.880 and an average overall residue Q3 accuracy of 0.900
were achieved by EMNUSS, which are still significantly higher

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab156#supplementary-data
https://github.com/thorn-lab/haruspex
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Table 2. Average voxel F1 scores and residue Q3 accuracies of EMNUSS, Emap2sec and Haruspex on the middle-resolution experimental map
test set for different secondary structure classes. Two different values of threshold were used in evaluation: 0.0 or author-recommended contour
level. All the voxels or residues below this threshold were excluded from evaluation

Metric Method Threshold = 0.0 Threshold = contour

Overall Helix Sheet Others Overall Helix Sheet Others

Voxel F1 score EMNUSS 0.601 0.591 0.422 0.605 0.596 0.610 0.441 0.550
Emap2sec 0.331 0.249 0.229 0.395 0.480 0.492 0.361 0.429
Haruspex 0.498 0.480 0.333 0.512 0.501 0.487 0.336 0.507

Residue Q3 accuracy EMNUSS 0.615 0.576 0.585 0.618 0.616 0.617 0.607 0.532
Emap2sec 0.319 0.148 0.419 0.438 0.507 0.480 0.574 0.459
Haruspex 0.556 0.582 0.418 0.546 0.557 0.593 0.424 0.529

Figure 4. Comparison of EMNUSS, Emap2sec and Haruspex for different secondary structure classes on the middle-resolution experimental map test set, where the

results of Emap2sec were directly calculated using the Emap2sec program [38, 47]. (A) Average voxel F1 scores using 0.0 as the threshold. (B) Average residue Q3

accuracies using 0.0 as the threshold. (C) Average voxel F1 scores using the author-recommended contour level as the threshold. (D) Average residue Q3 accuracies

using the author recommended contour level as the threshold.

than 0.757 and 0.798 achieved by Emap2sec. The average voxel
F1 scores/residue Q3 accuracies for three different secondary
structure classes were 0.899/0.915, 0.843/0.921 and 0.836/0.838
for Helix, Sheet and Others, respectively. We also evaluated
the performance of Haruspex on this simulated map test set.
However, Haruspex was designed for experimental EM maps and
was not trained with simulated EM maps. Therefore, it did not
work well on simulated maps. The overall voxel F1 score was
only 0.329 and 0.292, and the overall residue Q3 accuracy was
only 0.415 and 0.402, respectively, for simulated maps at 6.0 and
10.0 Å. Moreover, Haruspex has difficulties in detecting helices
and sheets, resulting in low residue Q3 accuracies for helix and

sheet and an exceptionally high residue Q3 accuracy for coil. The
evaluation results for each map were listed in Supplementary
Table 1.

Figure 3 shows several examples of secondary structure
annotation by EMNUSS [47]. Figure 3A and B shows the results
for the maps simulated at 6.0 Å. Figure 3C and D shows the
results for the maps simulated at 10.0 Å. It can be seen from
the figure that the predicted secondary structures shown at
the right side agree with the ground truth secondary structure
assignment shown at the left side very well. Interestingly,
for SCOPe entry d1a26a1, the β-bridge structure between two
residues ILE_691 and HIS_742 ignored by Emap2sec was correctly

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab156#supplementary-data


Secondary structure annotation in cryo-EM maps 7

Figure 5. Examples of the secondary structure assignment by EMNUSS for middle-resolution experimental maps, where helices, strands and coils are colored in red,

green and blue, respectively. The raw EM density map in transparent gray is overlapped with deposited PDB structure on the left, and the annotated map predicted by

EMNUSS is on the right. Predicted coil regions (Others) are shown in transparency style. (A) EMD-8724 (PDB 5VOX). (B) EMD-8549 (PDB 5UIE). (C) EMD-3329 (PDB 5FVM).

(D) EMD-3201 (PDB 5FKU).

Table 3. Average voxel F1 scores and residue Q3 accuracies of EMNUSS and Haruspex on the high-resolution experimental map test set for
different secondary structure classes. Two different values of threshold were used in evaluation: 0.0 or author-recommended contour level. All
the voxels or residues below this threshold were excluded from evaluation

Metric Method Threshold = 0.0 Threshold = contour

Overall Helix Sheet Others Overall Helix Sheet Others

Voxel F1 score EMNUSS 0.838 0.860 0.731 0.791 0.846 0.878 0.755 0.775
Haruspex 0.595 0.590 0.487 0.561 0.612 0.624 0.515 0.553

Residue Q3 accuracy EMNUSS 0.852 0.876 0.826 0.779 0.861 0.893 0.849 0.754
Haruspex 0.741 0.843 0.576 0.659 0.746 0.892 0.652 0.582

detected by EMNUSS (Figure 3E). These results demonstrated
that our EMNUSS was indeed in capable of learning secondary
structure information from EM maps.

Secondary structure prediction for middle-resolution
experimental maps

Then, we compared EMNUSS with Emap2sec and Haruspex on
the middle-resolution test set of 43 experimental EM maps with
resolutions ranging from 5.0 to 9.5 Å. Two different values of
thresholds were used: 0.0 or the author-recommended contour
level. Figure 4 shows a comparison of the accuracies among the
three methods at the voxel and residue levels. It can be seen from
the figure that EMNUSS significantly outperformed Emap2sec
and Haruspex on the middle-resolution experimental maps set.
The corresponding benchmarking results are listed in Table 2.
Using the author-recommended contour level as the threshold,
EMNUSS achieved an average overall voxel F1 score of 0.596,
compared with 0.480 by Emap2sec and 0.501 by Haruspex. At the
residue level, EMNUSS achieved an average overall residue Q3
accuracy of 0.616, which is higher than 0.507 by Emap2sec and
0.557 by Haruspex. For individual secondary structure classes,
EMNUSS also achieved higher voxel F1 scores and residue Q3
accuracies than Emap2sec and Haruspex. Although Haruspex

showed a comparable performance with EMNUSS in predicting
alpha helices in terms of residue Q3 accuracies, it performed
substantially worse on predicting β-sheets and coils. See Sup-
plementary Table 2 for details of the evaluation result of each
map.

Another notable features is that there is only a little dif-
ference in performance for EMNUSS when choosing different
threshold values. However, a sharp decline in performance was
found for Emap2sec when using 0.0 as the threshold. It may
be understood because Emap2sec filtered their training voxels
according to the author-recommended contour level. In contrast,
EMNUSS was trained with chunks that were cut from raw EM
density maps, and thus, its solid performance was ensured on
the entire map.

Figure 5 shows several examples of secondary structure
annotation by EMNUSS for the experimental EM maps at
middle resolution. EMNUSS performed well on EMD-8724, a
6.8 Å map for the yeast V-ATPase in complex with Legionella
pneumophila effector SidK [48], as illustrated in Figure 5A.
EMNUSS successfully predicted most of the helix and strand
regions, and thus yielded a high overall residue Q3 accuracy of
0.789 (0.801) when using 0.0 (contour) as the threshold. Figure 5B
shows the results of EMD-8549, which is a 5.7 Å map for Vps4–
Vta1 complex [49]. EMNUSS successfully predicted most of the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab156#supplementary-data
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Figure 6. Comparison of EMNUSS and Haruspex for different secondary structure classes on the high-resolution experimental test set of 468 maps. (A) Average voxel

F1 scores using 0.0 as the threshold. (B) Average residue Q3 accuracies using 0.0 as the threshold. (C) Average voxel F1 scores using the author-recommended contour

level as the threshold. (D) Average residue Q3 accuracies using the author-recommended contour level as the threshold.

helix and strand regions except for the peripheral helices that
have relatively weak and fuzzy electron density signals in the
EM map. The overall residue Q3 accuracy was 0.709 by using
0.0 as the threshold and increased to 0.824 after excluding
those peripheral helices from evaluation by using contour as the
threshold. For EMD-3329 in Figure 5C, which is a 6.1 Å map for the
complex of Tor and Lst8 [50], EMNUSS successfully predicted the
helix region in the middle and the β-strand-rich region on both
sides and achieved high overall residue Q3 accuracies of 0.780
and 782 by using 0.0 and contour as the thresholds, respectively.
Figure 5D gives the example of EMD-3201, which is an 8.3 Å map
for E. coli replicative DNA polymerase complex in DNA-free state
[51]. EMNUSS successfully detected the overall architecture of
two β subunits on the top. However, due to the poor resolution,
EMNUSS crossed the borderline between helices and strands
for the other subunits, resulted in a lower overall residue Q3
accuracy of 0.612 (0.620) using 0.0 (contour) as the threshold,
compared with the above three examples.

Secondary structure prediction for high-resolution
experimental maps

We further compared EMNUSS with Haruspex on the high-
resolution dataset of 468 experimental maps with resolutions
ranging from 2.0 to 4.0 Å. The training and testing of EMNUSS
were performed on this dataset using 3-fold cross-validation.
Figure 6 shows the performance of EMNUSS and Haruspex at
the voxel and residue levels. The corresponding benchmarking

results are listed in Table 3. It can be seen from the figure that
EMNUSS performed significantly better than Haruspex on the
high-resolution dataset. When using 0.0/author-recommended
contour level as the threshold, EMNUSS achieved a high average
overall voxel F1 score of 0.838/0.846, compared with 0.595/0.612
for Haruspex. At the residue level, EMNUSS also achieved a
higher average overall residue Q3 accuracy of 0.852 and 0.861
when using 0.0 and contour as the thresholds, compared with
0.741 and 0.746 for Haruspex, respectively. Similar to the situa-
tion in middle-resolution test set, when using residue Q3 accura-
cies as the criteria, Haruspex showed a comparable performance
with EMNUSS on predicting alpha helices but performed sub-
stantially worse than EMNUSS on predicting β-sheets and coils.
The significantly higher voxel F1 scores for all three secondary
structure classes achieved by EMNUSS suggests the better per-
formance of EMNUSS than Haruspex. See Supplementary Table
4 for details of the evaluation results of each map.

Figure 7 shows several examples of secondary structure
annotation by EMNUSS for the experimental EM maps at
resolutions ranging from 2.0 to 4.0 Å. Figure 7A shows the results
of EMD-9195, which is a 3.1 Å map for ADP-bound human
mitochondrial Hsp60–Hsp10 football complex [52]. EMNUSS
accurately annotated most of the helix and strand regions on
this example, and thus yielded a high overall residue Q3 accuracy
of 0.906 (0.923) when using 0.0 (contour) as the threshold. A
β-strand-rich example EMD-4789 is displayed in Figure 7B, which
is a 3.2 Å map for the pore structure of Clostridium perfringens
epsilon toxin [53]. The core β-barrel region and peripheral helices

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab156#supplementary-data
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Figure 7. Examples of the secondary structure assignment by EMNUSS for high-resolution experimental maps, where helices, strands and coils are colored in red,

green and blue, respectively. The raw EM density map in transparent gray is overlapped with the deposited PDB structure on the left, and the annotated map predicted

by EMNUSS is on the right. Predicted coil regions (Others) are shown in transparency style. (A) EMD-9195 (PDB 6MRC). (B) EMD-4789 (PDB 6RB9). (C) EMD-4919 (PDB

6RLD). (D) EMD-20579 (PDB 6Q2S). (E) Enlarged view of β-sheet regions. Each subfigure corresponds to the region in black box with the same ID on (B) or (D). The density

volume of β-sheet 1 is broken along the red dotted line.

were precisely annotated by EMNUSS. The overall residue Q3
accuracies were 0.853 and 0.868 when using 0.0 and contour
as the threshold, respectively. Figure 7C gives the example of
EMD-4919, which is a 2.9 Å map for mechanosensitive channel
MSCS embedded in the membrane bilayer [54]. Although the
transmembrane helices region (at the bottom) was coated with
lipid bilayer in the EM map, EMNUSS successfully predicted
most of the helix and strand regions and achieved a high overall
residue Q3 accuracy of 0.932 (0.935) when using 0.0 (contour) as

the threshold. One of the worst predictions made by EMNUSS is
EMD-20579, which is a 3.8 Å cryo-EM map for RET/GFRa3/ARTN
extracellular complex [55] (Figure 7D). EMNUSS achieved overall
residue Q3 accuracies of 0.656 (0.659) when using 0.0 (contour)
as the threshold on this example. As shown in the figure,
EMNUSS yielded correct secondary structure annotation for
almost the whole map except for the β-sheet-rich CLD4 domains
marked by black circles. One of the possible reasons for such
wrong prediction is that the electron density volumes around
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Figure 8. Residue Q3 accuracies of EMNUSS at different map resolutions. (A) The middle-resolution set, where the linear regression line is in navy blue. (B) The

high-resolution set, where the average value for each resolution is shown in navy blue symbol, and error bars depict ±1 SD.

the β-sheets differ from typical density volumes of β-sheets.
As illustrated in Figure 7E1, the density volume for the sheet
is not completely connected. Thus, EMNUSS mistook the
β-sheet for parallel helices. Figure 7E2 is an enlarged view of the
β-barrel region in Figure 7B. The parallel β-strands can be seen
clearly from the density volume. However, high-resolution map
is indeed not essential for EMNUSS to make right predictions.
As shown in Figure 7E3, another β-sheet region was successfully
predicted for EMD-20579. Although individual β-strands are
not visible here, the electron density signals of individual
β-strands form an integrated surface, which is one of the typical
electron density signals for a β-sheet. The essential reason of
the incorrect predictions on such atypical density volumes is
that the network is somehow short sighted and not acquainted
with maps at lower resolutions. Thus, in order to improve
the performance of EMNUSS, on one hand, the receptive field
of EMNUSS should be broadened by optimizing the network
architecture. On the other hand, a more detailed division of
training maps according to resolutions is a potential way to
improve the performance of EMNUSS.

Impact of map resolution

We further explored the impact of map resolution on the accu-
racy of EMNUSS. Since there was no significant difference in the
performance of EMNUSS for choosing different threshold values,
we only discussed the results using the author-recommended
contour level as the threshold in this section.

Figure 8A shows the overall residue Q3 accuracy relative to
the map resolution on the middle-resolution set. It can be seen
from the figure that the performance of EMNUSS depends on the
resolution. The Pearson correlation coefficient between residue
Q3 accuracy and resolution was -0.746. Figure 8B shows the
overall residue Q3 accuracy relative to the map resolution on
high-resolution set. The performance of EMNUSS seems to have
no significant correlation with resolution on the high-resolution
set. The Pearson correlation coefficient between residue Q3
accuracy and resolution was only -0.138. Comparing Figure 8A
and Figure 8B, we can find that the performance of EMNUSS
has a significantly lower correlation with map resolution on
the high-resolution dataset than on the middle-resolution set.

Figure 9. Running time of EMNUSS as a function of the map size on the high-

resolution set in double logarithmic coordinates, where the power–law function

regression line is shown in navy blue.

Considering the fact that we have 300+ maps (in each cross-
validation round) as the training set for high-resolution dataset
compared with only 120 maps for middle-resolution dataset,
this phenomenon may be attributed to the fact that EMNUSS
was sufficiently trained on the high-resolution dataset. On the
contrary, in order to improve the performance and robustness
for the maps at middle resolution, more maps are needed for
training.

Running time

In addition to the high accuracy of EMNUSS, another preeminent
character of EMNUSS is its high computational efficiency. We
have measured the running times of EMNUSS for different sizes
of input maps on the test set of 468 high-resolution experimental
maps. On a NVIDIA Tesla K80 GPU device with 12 GB graphic
memory, EMNUSS can finish a prediction for any test case in
no more than 2 min. The average running time of EMNUSS
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was only 31.3 s, which is significantly faster than 70.1 s for
Haruspex. Figure 9 shows that there is a power–law relationship
between the running time of EMNUSS and the input map size.
The relationship can be fitted with the following formula:

t = 6.241x0.412 (1)

where t is the expected running time in seconds for a map of
size x MB. Therefore, the running time for EMNUSS will increase
much slower than the map size does, which is especially encour-
aging for large-size maps. For example, for EMNUSS, a 20 MB map
takes about 20 s, and a 200 MB map only costs about 1 min. The
running time–map size relationship can be understood because
a larger map may have a large proportion of backgrounds that
can be ignored by EMNUSS. See Supplementary Table 4 for the
running times of each map.

Conclusion
We developed a deep learning framework to annotate protein
secondary structures in EM density maps, which is referred to as
EMNUSS. EMNUSS was extensively evaluated on three diverse
test sets of simulated maps, middle-resolution experimental
maps and high-resolution experimental maps. It was shown that
EMNUSS significantly improved the accuracy of secondary struc-
ture detection and outperformed the existing approaches. Given
its high efficiency and accuracy, it is anticipated that EMNUSS
will serve as a valuable tool for secondary structure annotation
for cryo-EM maps and help determine atomic structures for
EM maps. With the increasing number of deposited EM density
maps, the performance of EMNUSS can be further improved. One
of our possible subsequent works of EMNUSS is to adding it into
structural modeling for EM maps.

Key Points
• Secondary structure information is valuable for the

atomic structure determination from cryo-EM maps.
• A novel deep learning framework was proposed to

detect protein secondary structures in EM density
maps.

• Our model adopts a 3D nested UNet architecture for
fast and accurate prediction.

• Our model significantly outperformed existing
approaches on both simulated and experimental EM
maps.

• Our model is robust to handle cryo-EM maps of various
sizes at both intermediate and high resolutions.
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