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Pima Indians living in Arizona have a high prevalence of
obesity, and we have previously shown that a relatively
lower energy expenditure (EE) predicts weight and fat
mass gain in this population. EE is a familial trait (herita-
bility = 0.52); therefore, in the current study, we aimed to
identify genetic variants that affect EE and thereby influ-
ence BMI and body fatness in Pima Indians. Genotypic
data from 491,265 variants were analyzed for association
with resting metabolic rate (RMR) and 24-h EE assessed
in a whole-room calorimeter in 507 and 419 Pima Indians,
respectively. Variants associated with both measures of
EE were analyzed for association with maximum BMI and
percent body fat (PFAT) in 5,870 and 912 Pima Indians,
respectively. rs11014566 nominally associated with both
measures of EE and both measures of adiposity in Pima
Indians, where the G allele (frequency: Pima Indians = 0.60,
Europeans <0.01) associated with lower 24-h EE (b = 233
kcal/day per copy), lower RMR (b = 231 kcal/day), higher
BMI (b = +0.6 kg/m2), and higher PFAT (b = +0.9%). How-
ever, the association of rs11014566 with BMI did not
directionally replicate when assessed in other ethnic
groups. rs11014566 tags rs144895904, which affected
promoter function in an in vitro luciferase assay. These

variants map to GPR158, which is highly expressed in
the brain and interacts with two other genes (RGS7 and
CACNA1B) known to affect obesity in knockout mice. Our
results suggest that common ethnic-specific variation in
GPR158may influence EE; however, its role in weight gain
remains controversial, as it either had no association with
BMI or associated with BMI but in the opposite direction
in other ethnic groups.

Obesity often aggregates in families.Household members
typically share lifestyle factors including food choices, daily
habits, and cultural views that may affect body weight;
however, studies in twins reared apart have provided
evidence that approximately two-thirds of the variability
of BMI is attributable solely to genetics (1,2). BMI is influ-
enced by both energy intake and energy expenditure (EE).
In Pima Indians living in Arizona, we have shown that a
relatively low EE predicts increases in body weight (3–5)
and fat mass (FM) (4) over time. However, this inverse
relationship is not observed in all populations (6–8), and
a positive relationship has been reported in an African
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population (9). EE varies by age and sex, but its largest
determinant is body size and composition, particularly
fat-free mass (FFM) as an indicator of the metabolically
active tissue, which accounts for ;80% of the variance in
resting metabolic rate (RMR) and 24-h EE (10). However, in
addition to age, sex, and body composition, twin studies
have also demonstrated that genetics contributes to the
interindividual variance in EE (11,12). Taken together,
these prior studies indicate that genetics has a small but
measurable effect on EE, and in Pima Indians a lower EE
predicts weight gain. Therefore, identification of genetic
variants that influence EE may uncover new metabolic
pathways that affect body weight/fatness. The aim of the
current study is to estimate the heritable portion of EE and
BMI in a family-based sample of Pima Indians and then
perform a genome-wide analysis of variants in Pima Indians
without diabetes to identify genetic variation that asso-
ciates with EE and BMI/body fatness in a fashion consistent
with the putative mechanistic relationship (e.g., low EE and
high BMI).

RESEARCH DESIGN AND METHODS

Population-Based Subjects With Outpatient Longitudinal
Measures of BMI
The study subjects reside in an American Indian community
near Phoenix, Arizona, where most individuals are of Pima
Indian heritage. From 1965 to 2007, volunteers from this
community participated in a longitudinal study of type 2
diabetes where anyone aged $5 years was invited for bi-
ennial health examinations (13). Subjects were asked to fast
prior to these exams, and glucose tolerance was assessed by
a 75-g oral glucose tolerance test. Height and weight were
also measured to calculate BMI. Data on maximum BMI,
defined as the highest BMI recorded at a medical exam
when the subject was$15 years of age and was determined
to be free from diabetes according to American Diabetes
Association diagnostic criteria (14), was available for 5,870
subjects (Table 1). Among these subjects, 2,920 were full-
heritage Pima Indian (defined as eight-eighths Pima Indian
heritage by self-report) and the remaining 2,950 were
mixed heritage, on average, six-eighths American Indian
(typically four-eighths Pima Indian and an additional two-
eighths from other related tribes). Before participation, vol-
unteers were fully informed of the nature and purpose of
the studies, and written informed consent was obtained.
The protocols were approved by the institutional review
board of the National Institute of Diabetes and Digestive
and Kidney Diseases.

Inpatient Subjects With Measures of Body Composition
and EE
Among the community members from the longitudinal
study, a subset of 917 adults who were confirmed to not
have diabetes by the oral glucose tolerance test also par-
ticipated in inpatient studies in our Clinical Research
Section and had undergone detailed measures of body
composition. Among these inpatient volunteers, 509 also

underwent a measurement of RMR by a ventilated hood
system and 419 underwent a 24-h session in a whole-room
indirect calorimeter (352 subjects underwent both measures
of RMR and 24-h EE during the same admission).

Following admission to the Clinical Research Section,
subjects were given a standard weight-maintaining diet
(50% carbohydrates, 30% fats, and 20% proteins) for 3 days
before any metabolic test was performed (15,16). Subjects
were weighed daily, and food intake was adjusted to main-
tain body weight within 61% of the weight measured the
second day of admission. Percent body fat (PFAT), FM, and
FFM were estimated by underwater weighing until August
1993 and thereafter by total body dual-energy X-ray absorp-
tiometry (DPX-1; Lunar Radiation Corp., Madison, WI). A
conversion equation was used to make measurements of
body composition comparable between the two methods
(17).

RMR was measured upon awakening after an overnight
fast using a respiratory hood system, as previously de-
scribed (18). After 10 min of acclimation to the plastic
hood, the subject’s EE was calculated every 5 min using
the equations of Lusk (19), and RMR was calculated as
the average EE over 40 min while the subject was instructed
to stay awake and motionless and then extrapolated to
24 h.

Twenty-four–hour EE and substrate oxidation were mea-
sured in a whole-room calorimeter (respiratory chamber), as
previously described (10). The volunteers entered the cham-
ber at 08:00 and remained in the chamber for 23 h and
15 min. The rate of EE was measured continuously, calcu-
lated for each 15-min interval, averaged, and then extrap-
olated to the 24-h interval (24-h EE). Four meals were
provided at 08:00, 11:00, 16:00, and 19:00, and the total
energy content was calculated using previously described
equations (20). Spontaneous physical activity (SPA) was de-
tected by radar sensors and expressed as the percentage of
time over the 15-min interval in which activity was detected
(21). The EE in the inactive awake state was calculated as
the intercept of the regression line between EE and SPA
between 11:00 and 01:00 (22). Sleeping metabolic rate was
defined as the average EE of all 15-min nightly periods
between 01:00 and 05:00 during which SPA was ,1.5%
(23). The “awake and fed” thermogenesis (AFT) was calcu-
lated as the difference between the EE in the inactive awake
state and the sleeping metabolic rate (23).

Genotypic Data for Genome-Wide Association Analysis
Genotypes for association analyses were generated using a
custom Pima Indian Axiom genome-wide array (Affymetrix,
Santa Clara, CA) in 7,701 Pima Indian samples. This array
was designed to capture common variation (minor allele
frequency [MAF] $ 0.05, or $ 0.01 for coding variants)
detected in whole-genome sequence (WGS) data of 266 full-
heritage Pima Indians from different nuclear families. We
estimated that genotypes for the 491,265 array markers
that passed quality control metrics (i.e., call rate $90%,
discrepant rate #2 pairs among 100 blind duplicate pairs,
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and lack of deviation from Hardy-Weinberg equilibrium with
a P . 1024) tag 92% of the 4.9 million common variants
with a MAF$ 0.05 detected in the genomes of full-heritage
Pima Indians (tag defined as r2 $ 0.85 within 300 kb).

Functional Analysis of GPR158 Variants
DNA fragments containing each allele homozygous at
rs11014566, rs144895904, rs34673593, and rs16925884 were
PCR amplified (rs11014566, primers forward 59-ACAGGTAC-
CATTTGTGTTAACGGCTAGA-39 and reverse 59-TCACTCGA-
GGTATAAACAATTTTGCCAT-39; rs144895904, forward 59-
ATAGGTACCAGAGATAACCGCTGTTCA-3 and reverse 59-TC-
ACTCGAGAGGCACAAATTACATAAC-39; rs16925884/rs3467
3593, forward 59-ACGGTACCTACTATTTGTTGT-GAG-39
and reverse 59-AGCTCGAGATATAAATGAATGAATTG-39).

The amplicons were inserted at KpnI and XhoI sites (under-
lined, respectively) upstream of the pGL3 promoter fire-
fly luciferase reporter vector (Promega, Madison, WI).
DNA constructs were sequenced to confirm the nucleo-
tide variants.

Murine N-42 hypothalamus cell line (Cellutions Biosys-
tems, Inc., Burlington, ON, Canada) was maintained in
DMEMmedium supplemented with 10% FBS, 1% penicillin-
streptomycin (ATCC) at 37°C, 5% CO2, and 95% air atmo-
sphere. One microgram of DNA construct and 125 ng of
pGL4 Renilla luciferase reporter vector (Promega, Madison,
WI) were transiently transfected into the cells with Lipo-
fectamine LTX (Invitrogen, Life Technologies, Carlsbad,
CA). At 48 h posttransfection, cells were harvested and a

Table 1—Anthropometric and metabolic measures of the study groups

All Males Females

Population-based longitudinal outpatient study
N 5,870 2,572 3,298
Birth year 1,966 6 16 1,967 6 16 1,966 6 16
Maximum BMI (kg/m2) 35.2 6 8.4 33.9 6 8.1 36.1 6 8.5
Age (years) 29.6 6 11.4 28.9 6 11.3 30.1 6 11.4

Body composition inpatient study
N 917 506 411
Age (years) 28.0 6 8.0 28.1 6 8.3 28.0 6 7.6
PFAT (%) 33.4 6 8.5 28.4 6 7.0 39.7 6 5.7
FM (kg) 33.0 6 14.6 29.3 6 14.0 37.6 6 13.9
FFM (kg) 62.5 6 14.2 68.8 6 13.4 54.7 6 10.9
Height (cm) 166.6 6 8.4 172.1 6 6.2 159.9 6 5.2

Respiratory chamber inpatient study
N 419 254 165
Age (years) 27.8 6 6.4 27.8 6 6.6 27.8 6 6.2
Body weight (kg) 95.3 6 22.3 98.6 6 22.7 90.2 6 20.7
BMI (kg/m2) 34.2 6 7.5 33.4 6 7.3 35.3 6 7.7
PFAT (%) 32.6 6 8.2 28.7 6 6.9 38.8 6 6.0
FM (kg) 32.0 6 13.0 29.5 6 12.9 35.8 6 12.2
FFM (kg) 63.3 6 12.6 69.0 6 10.9 54.4 6 9.5
Fasting plasma glucose concentration (mg/dL) 88.8 6 10.0 87.3 6 9.9 91.2 6 9.7
2-h plasma glucose concentration (mg/dL) 123.0 6 30.5 115.8 6 30.0 134.0 6 28.0
24-h EE (kcal/day) 2,354 6 396 2,531 6 347 2,083 6 303
Adjusted 24-h EE (kcal/day)# 0 6 142.9 0 6 147.0 0 6 136.9
SPA (%) 7.5 6 2.5 7.7 6 2.5 7.1 6 2.5
Sleeping EE (kcal/day) 1,672 6 284 1,776 6 271 1,513 6 223
Adjusted sleeping EE (kcal/day)# 0 6 135.3 0 6 144.4 0 6 120.3
AFT (kcal/14 h) 263 6 122 288 6 129 223 6 99
Adjusted AFT (kcal/14 h)# 0 6 114.8 0 6 124.2 0 6 98.6

Ventilated hood inpatient study
N 509 301 208
Age (years) 26.9 6 6.1 26.8 6 6.4 26.9 6 5.8
Body weight (kg) 93.4 6 23.0 97.3 6 24.2 87.8 6 19.9
BMI (kg/m2) 33.5 6 7.6 32.9 6 7.6 34.5 6 7.4
PFAT (%) 32.3 6 8.5 28.2 6 7.4 38.2 6 6.4
FM (kg) 31.2 6 13.5 28.9 6 13.9 34.5 6 12.2
FFM (kg) 62.2 6 12.9 68.4 6 11.6 53.3 6 8.8
Fasting plasma glucose concentration (mg/dL) 89.3 6 10.0 87.4 6 9.5 92.1 6 10.0
2-h plasma glucose concentration (mg/dL) 122.8 6 30.3 115.7 6 28.1 132.9 6 30.5
RMR (kcal/day) 1,758 6 326 1,878 6 322 1,587 6 247
Adjusted RMR (kcal/day)# 0 6 189.6 0 6 212.4 0 6 151.4

Data are mean6 SD unless otherwise noted. #All four EE measures (24-h EE, sleeping EE, AFT, and RMR) are adjusted for age, sex, FM, and
FFM by linear regression analysis; 24-h EE and AFT are further adjusted for SPA and for fasting glucose levels, respectively.
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dual-luciferase reporter assay was performed using a stan-
dard protocol (Promega, Madison, WI). Three separate trans-
fections were conducted, each transfection was repeated two
to three times (for a total of eight), and data were averaged.
Firefly luciferase activity was normalized to Renilla luciferase
activity and further normalized to pGL3 promoter lucifer-
ase activity.

Statistical Analysis
The variances in 24-h EE and maximum BMI attributable to
family membership were estimated in families with at least
two siblings by mixed-model analysis and quantified by the
root-mean-square deviation (RMSD) and by the intraclass
correlation coefficient (ICC). Heritability was estimated in
a linear mixed model from a random effect that utilized
the empirical genetic relatedness matrix (see below). Lin-
ear mixed effects analysis using the maximum likelihood
method was conducted to assess association of geno-
types with 24-h EE, RMR, maximum BMI, and PFAT with
covariates of age, sex, body composition measures (FM and
FFM, only for 24-h EE and RMR analyses), SPA (only for
24-h EE analysis), birth year (only for BMI analysis), and
the first five genetic principal components calculated from
19,991 variants randomly selected from 200-kb windows
across the genome (one variant per window). Genotype was
included as a fixed effect and analyzed as a numeric vari-
able representing 0, 1, or 2 copies of a given allele (addi-
tive model), and effects were expressed per allele copy.
Missing genotypes were imputed using WGS data of 266
full-heritage Pima Indians. The models were fitted using a
variance components covariance structure to account for
genetic relatedness among individuals. The genetic related-
ness matrix was estimated as the proportion of the genome
shared identical by descent between each pair of individuals
who had been genotyped (a total of 29,648,850 pairs).
Genomic segments shared identical by descent were
identified with the fastIBD function of Beagle package
(24) using 482,616 autosomal markers with MAF . 0.05.
Mixed models were fit using the SOLAR package (25). Val-
ues of BMI were log-transformed before analysis to approx-
imate a Gaussian distribution. Linkage disequilibrium was
determined using the Haploview program (version 4.2,
Broad Institute, Cambridge, MA). Tag variants were selected
based on the sequence data of 266 Pima genomes using the
Tagger algorithm (Haploview) with a pairwise r2 $ 0.85
taken as indicative of redundancy. The statistical difference
in mean luciferase activity detected in the functional study
was analyzed by unpaired Student t test.

To estimate the statistical power to detect a physiologically
meaningful effect of a common genetic variant on 24-h EE
that meets genome-wide statistical significance, we estimated
power for a sample size of 419 unrelated individuals, a two-
sided a = 5 3 1028, a clinically significant effect size
b = 250 kcal/day per risk allele copy, and a residual SD =
143 kcal/day (after adjustment for age, sex, FM, FFM, and
SPA) (Table 1). Using these parameters, we estimated the
power to be 0.03 or 0.38 to detect a risk allele frequency

(RAF) (defined for the allele associated with lower EE) of
0.15 or 0.50, respectively. To reduce the chance of spurious
findings (type 1 error) without undue reliance on a single EE
measure in a setting of low statistical power, we selected
variants with consistent evidence of association in two sep-
arate EE assessments, namely, 24-h EE and RMR, where each
P value was ,0.01 and the direction of risk was consistent
(i.e., the risk allele associated with lower 24-h EE being
associated with lower RMR). Variants meeting these criteria
were then analyzed for association with BMI and PFAT.

Replication Cohort
Replication of selected variants for their association with
standardized values of BMI was done in individuals without
diabetes of the Slim Initiative in Genomic Medicine for the
Americas (SIGMA) Consortium (26) after adjustment for
age, sex, and first two genetic principal components. This
replication sample consisted of four studies from Mexico or
Mexicans living in the U.S. comprising a total of 4,364
individuals without diabetes. All participants provided in-
formed consent for conducting this study. Their respective
local ethics committees approved all contributing studies.

RESULTS

Estimates of Familial Effect on 24-Hour EE and BMI in
Pima Indians
In 248 siblings from 98 Pima Indian families, family mem-
bership explained 41% of variance in unadjusted 24-h EE
(RMSD = 250 kcal/day, P , 0.001). After adjustment for
each subject’s age, sex, FM, FFM, and SPA, family member-
ship was still an independent determinant of 24-h EE
(RMSD = 77 kcal/day, P , 0.001), accounting for 34%
of the unexplained variance in 24-h EE (Fig. 1A). In 3,298
siblings from 1,131 Pima Indian families, family member-
ship was the largest determinant of maximum BMI,
accounting for one-third of BMI variance among individuals
(RMSD = 4.4 kg/m2, P , 0.001) (Fig. 1B). Inclusion of age,
sex, birth year, and Pima heritage did not alter the estimate
of family variance and slightly increased the explained var-
iance of maximum BMI from 30 to 36% (P , 0.001). Her-
itability of 24-h EE and maximum BMI was 0.52 (95% CI
0.20–0.80, P = 1.5 3 1023

, adjusted for age, sex, FM, FFM,
SPA, and first five principal components) and 0.55 (95% CI
0.51–0.60, P = 8.2 3 102148, adjusted for age, sex, birth
year, and first five principal components), respectively.

Association Analysis for Two Independent Measures
of EE
The results of the genome-wide association analyses for
24-h EE and RMR are shown in Fig. 2. The lists of variants
with P , 0.01 for each EE measure are reported in Supple-
mentary Tables 1 and 2 (effect size for 24-h EE and RMR
ranging from296 to221 kcal/day and from2132 to225
kcal/day, respectively). As anticipated, no variant achieved
genome-wide statistical significance (P , 5 3 1028) with
either EE measure. However, 138 variants had nominal
(P , 0.01), directionally consistent associations with both
24-h EE and RMR (Supplementary Table 3).
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Association Analysis for Two Measures of Body
Adiposity
The 138 variants that associated with both 24-h EE and
RMR in a directionally consistent manner were further
analyzed for association with maximum BMI (defined as
the highest BMI recorded at a longitudinal outpatient
exam) in a population-based sample of 5,870 individuals
and with PFAT in 917 subjects who had undergone
metabolic testing as inpatients. Although seven variants
had an allele that associated with a reduced EE and were
nominally associated with higher maximum BMI (Table 2)
and five variants had an allele that associated with reduced
EE and higher PFAT, only the variant with the strongest
association with maximum BMI (rs11014566 in GPR158,
P = 4.7 3 1024) also associated with increased PFAT (P =
2.9 3 1023).

The G allele at rs11014566 (frequency in full-heritage
Pima Indians = 0.60) associated with a lower 24-h EE
(b = 233 kcal/day, 95% CI 254 to 212) (Fig. 3B) and a
lower RMR (b = 231 kcal/day, 95% CI 255 to 27) (Fig.
3C). Compared with subjects homozygous for the A allele,
subjects carrying two copies of the G allele had lower EE

over the course of 24 h inside the metabolic chamber
(Δ = 22.6 kcal/h, P = 7.7 3 1023), and this was more
evident in the sleeping state (Fig. 3A). Accordingly, single
nucleotide polymorphism (SNP) rs11014566 was associated
with sleeping EE (b = 224 kcal/day, P = 1.4 3 1022) (Fig.
3D) but not with AFT (P = 0.59) (Fig. 3E) or SPA (P = 0.59).
In the larger population-based sample of 5,870 Pima In-
dians, the G allele also associated with a higher maximum
BMI (b = +1.7% � 0.6 kg/m2 per copy, 95% CI 0.7 to 2.6,
P = 4.7 3 1024) (Fig. 4A), and this association was ob-
served both in the 2,920 individuals who were full-
heritage Pima Indians (b = +1.4%, P = 2.7 3 1022) (Fig.
4B) and in the 2,950 individuals who were mixed-heritage
American Indians (b = +2.0%, P = 3.4 3 1023) (Fig. 4C) in
this population. This variant also associated with PFAT in
917 subjects with body composition measures (b = +0.9%,
95% CI 0.3 to 1.5, P = 2.9 3 1023) (Fig. 4D) with no
difference between sexes (P = 0.39). Specifically, the G allele
was associated with higher FM (b = +2.4 kg, P = 2.5 3
1024, adjusted for age, sex, and height) (Fig. 4E) and, to
a lesser extent, with higher FFM (b = +1.3 kg, P = 1.7 3
1022) (Fig. 4F).

Figure 1—Familial effects on 24-h EE and maximum BMI in American Indians. Individual values of 24-h EE (adjusted for age, sex, FM, FFM, and
SPA) (A) and maximum BMI (adjusted for age, sex, birth year, and self-reported Pima heritage) (B) of family members from the American Indian
community. Individual siblings are shown as dots while families are depicted as vertical rectangles identified by the highest and lowest sibling
value. Each family includes at least two siblings, and families are ranked according to mean value of 24-h EE (A) and BMI (B) of siblings, e.g.,
families with relatively low mean EE/BMI are located on the left side of x-axis. Heritability (h2) was estimated in a linear mixed model from a
random effect that utilized the empirical genetic relatedness matrix estimated as the proportion of the genome shared identical by descent
between each pair of siblings who had been genotyped. Mixed models for estimating heritability included age, sex, birth year (only BMI analysis),
FM (only 24-h EE analysis), FFM (only 24-h EE analysis), SPA (only 24-h EE analysis), and the first five principal components as fixed effects. The
ICC was calculated as the ratio of the variance attributable to family membership divided the total variance and expressed as the percent of total
variance in 24-h EE and BMI after adjustment for covariates. n, number of siblings; k, number of families with at least two siblings.
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Analysis of Additional Variation at the GPR158 Locus
Analyses of WGS data from 266 full-heritage Pima Indians
showed that rs11014566 tags (r2 . 0.85) three other var-
iants: rs144895904 (C/T, frequency T = 0.61, r2 = 0.99),
rs34673593 (2/AT, frequency AT = 0.57, r2 = 0.87),
and rs16925884 (C/T, frequency T = 0.60, r2 = 0.91), all
in intron 4 of GPR158. Analysis of 74 tagging variants
with a MAF$ 0.05 across the GPR158 gene (50 kb flanking
each side, chr10:25,414,290–25,941,157) determined that
rs11014566 (and its three tags) had the strongest associa-
tion with maximum BMI, and conditional analyses demon-
strated no variant in this region associated with maximum
BMI after conditioning on rs11014566 (all conditioned
P . 0.05).

The BMI risk alleles for rs11014566 and its tags show
large differences among our data and populations in the

1000 Genomes Project (1000G). For example, in our data
the G allele at rs11014566 attains the highest frequency of
0.60 in full-heritage Pima Indians and 0.48 in mixed-
heritage American Indians, whereas in the 1000G its
frequency was 0.23 in Americans, 0.11 in Africans,
and ,0.01 in Europeans (Fig. 5).

Replication Analysis in SIGMA
As no other data sets exist with genotypic data on individuals
with measures of EE, we sought to replicate our modest
association with BMI in the SIGMA consortium. In the BMI
meta-analysis of the SIGMA consortium including 4,364
Mexican individuals without diabetes (mean 6 SD age
57.9 6 8.4 years, BMI 27.5 6 4.2 kg/m2, 1,755 males),
the BMI risk alleles at both rs11014566 (b = 20.05 SD
units per copy of the G allele, frequency = 0.27, P = 0.04)

Figure 2—Manhattan plots of genome-wide association results for 24-h EE and RMR in American Indians. The negative base-10 logarithm of
the P value for the association of each genetic variant (n = 491,265, MAF$ 0.05) with 24-h EE (A) and RMR (B) after adjustment for age, sex, FM,
FFM, SPA (only 24-h EE), and the first five principal components in a mixed model that accounted for genetic relationships among individuals is
plotted against chromosome and position according to Build 37.

diabetes.diabetesjournals.org Piaggi and Associates 2289



and rs144895904 (b = 20.05 SD units per copy of the
T allele, frequency = 0.28, P = 0.01) were associated with
lower BMI in this cohort. Similar results were obtained in
sensitivity analyses including only subjects with a BMI
greater than the median value of this cohort (27 kg/m2)
or including only obese subjects with a BMI.30 kg/m2

(data not shown).

In Vitro Functional Analyses of GPR158 Variants
To determine whether rs11014566 in GPR158 and the
three variants tagged by rs11014566 had a functional im-
pact on promoter activity, these variants were analyzed in
an in vitro luciferase reporter assay. DNA regions contain-
ing either the risk or the nonrisk allele for each variant were
PCR amplified. Because of the proximity of rs16925884
(chr10:25,740,897) and rs34673593 (chr10:25,741,140),
single PCR products containing either the risk alleles or
the nonrisk alleles for both variants were amplified. The
effect of the cloned GPR158 variants on promoter activity
was assessed in a murine hypothalamus cell line, as GPR158
is endogenously expressed in the human hypothalamus at
high levels (Supplementary Fig. 1). The largest difference in
luciferase activity was observed when comparing constructs
that differed for alleles at rs144895904 (Fig. 6), where the
BMI risk allele T had on average 48% higher activity as com-
pared with the nonrisk allele C (mean 6 SEM, 1.21 6 0.09
vs. 0.82 6 0.07, P = 0.004). There was no significant dif-
ference in luciferase activity between alleles at rs11014566
(P = 0.52) or rs16925884/rs34673593 (P = 0.74).

DISCUSSION

The current study was conducted in a geographically
confined population of Pima Indians and, among these
community members, we estimated that family member-
ship accounts for approximately one-third of BMI variance
among siblings from different families. Siblings share, on
average, half of their genes; therefore, nearly approximately
60% of BMI variance in this Pima Indian population is
genetically determined, as confirmed by our empirical
heritability estimate (h2 = 0.55). This estimate is consistent
with that reported in other ethnic groups (27) as well as
prior studies in twins (1,2,28), which similarly estimated
that 60% of the variability in BMI among individuals of a
given population living in the same environment is genet-
ically determined and potentially ascribable to the additive
effects of genetic variants. We furthered showed in Pima
Indians that 24-h EE, a determinant of BMI in this popu-
lation, is also an inherited characteristic (h2 = 0.52). After
adjustment for differences in body composition, family
membership accounted for 34% of the variance in 24-h
EE among siblings from different families, which is consis-
tent with previous calculations done in much smaller co-
horts of Pima Indians (3,18).

Given that BMI, body fat (29), and EE (3,18) are genet-
ically determined and body weight and FM gain in Pima
Indians is at least partially attributable to a relatively lower
EE (3,4,23), we sought to identify genetic variants that
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influence body fatness and BMI in adulthood via a modest
but life-long effect on EE. We performed a genome-wide
association study (GWAS) for EE utilizing genotypic data
from our custom Pima Indian–specific array. Although our
sample of 419 Pima Indians with measures of 24-h EE and
genotypes represents one of the largest existing samples, it
was nonetheless underpowered to detect the modest effect
sizes typically observed in GWAS at genome-wide statistical

significance (P = 5 3 1028). Therefore, rather than rely
solely on statistical significance to discern true from false
positives, we prioritized variants that showed physiologi-
cally supportive associations with reduced EE (assessed by
separate measurements of 24-h EE and RMR) and increased
body adiposity (assessed by independent measurements of
BMI and body fatness). This strategy led us to identify
common variation in the GPR158 gene that satisfied these

Figure 3—EE measures by genotypes of SNP rs11014566 in GPR158. A: Average time courses of 24-h EE in the respiratory chamber for
subjects carrying AA (solid line) and GG (dotted line) genotypes of rs11014566. Values of EE measured every 15 min are adjusted for age, sex,
FM, FFM, and SPA and corrected after and accounting for repeated measures using an AR (1) covariance structure by mixed-model analysis.
Mean 24-h EE inside the metabolic chamber (B), RMR assessed by ventilated hood system (C), sleeping EE (D), and AFT (E) by genotypes of
rs11014566. All EE measures are adjusted for age, sex, FM, FFM, and the first five principal components in a mixed model that accounted for
genetic relationships among individuals; 24-h EE and AFT are further adjusted for SPA and fasting glucose levels, respectively. b-Coefficients
are expressed per copy of the G allele. Error bars represent mean with 95% CI.
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criteria. Specifically, despite higher FFM (+2.6 kg), which
would generally confer higher EE because of the well-
documented positive association with FFM (10), Pima indi-
viduals carrying two copies of the G allele at rs11014566 in
GPR158 had instead on average roughly a 70-kcal deficit in
daily EE (of which 48 kcals were ascribable solely to sleeping
EE) and approximately 5 kg more FM and a BMI increase of
1.2 kg/m2 as compared with subjects homozygous for the A
allele. The effect of rs11014566 on BMI in Pima Indians
(1.2 kg/m2 difference between individuals homozygous for
the risk vs. nonrisk allele, RAF = 0.60) is comparable to the
effects exerted by other variants near well-established obe-
sity genes including rs8050136 in FTO (1.6 kg/m2, RAF �
0.15) (30), rs74861148 near MC4R (1.36 kg/m2, RAF �
0.15) (31), and rs2025804 in LEPR (1.0–1.9 kg/m2, RAF
� 0.70) (32) in this same population. Similarly, the effect
of rs11014566 in GPR158 on 24-h EE (233 kcal/day
per allele copy) is comparable to that of rs11208654 in
LEPR (228 kcal/day) (Supplementary Table 1), which tags

rs2025804 previously shown to affect 24-h EE in Pima
Indians (32).

Given our low statistical power due to the modest sample
size, our GWAS results for EE must be interpreted with
caution. Nevertheless, the high heritability of 24-h EE in the
Pima Indian population increases the likelihood that
variants exerting true effects on EE could be uncovered
using a GWAS strategy. To identify true from false positives
among variants that did not achieve genome-wide signifi-
cance, we considered variants that showed directional con-
sistency for their associations with two independent
assessments of EE, including precise and reproducible
measures obtained at rest while fasting (18) and over
24 h during energy balance (10), assuming that true genetic
associations with EE will display weak but consistent results
in both settings.

Although the strength of our study is that it provides the
first genome-wide screen for genetic variants that affect EE,
it also has a major weakness in that there are no other

Figure 4—Anthropometric measures by genotypes of SNP rs11014566 in GPR158. Maximum BMI as derived from the longitudinal data from
outpatient visits (entire population [A], full-heritage Pima Indians [B], and mixed-heritage American Indians [C]) and PFAT (D), FM (E), and FFM (F)
in 917 subjects who had a body composition measure in inpatient visits by genotypes of rs11014566. BMI, PFAT, FM, and FFM values are
adjusted for age, sex, and the first five principal components in a mixed model that accounted for genetic relationships among individuals. BMI is
further adjusted for the subject’s birth year to account for secular changes in obesity prevalence during the course of the longitudinal study in the
Pima Indian community. FM and FFM are further adjusted for the subject’s height. b-Coefficients are expressed per copy of the G allele and
expressed as % (PFAT) or as kg (FM and FFM). For maximum BMI, b-coefficients are expressed per loge BMI units as percentage and, as an
approximation, are converted to kg/m2 units by multiplication with the average population BMI (i.e., a b-coefficient of 0.017 is equivalent to
1.7% 3 35.2 kg/m2 = 0.60 kg/m2). Error bars represent mean with 95% CI.
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genetic databases available for EE to directly assess
replication. Because EE has a modest but measurable effect
on weight gain in Pima Indians (4) and in Pima Indians
variants in GPR158 nominally associated with adiposity, we
sought replication for the association of GPR158 with BMI,
as a surrogate of EE, in other ethnic groups. The G allele at
rs11014566, which predicts lower EE and higher FM and

BMI, has a frequency of 0.60 in full-heritage Pima Indians,
which is higher than the frequency for this allele observed
among any of the 1000G populations. Notably, this allele is
uncommon in Europeans (MAF , 0.01), and thus its as-
sessment for association with BMI in the GIANT (Genetic
Investigation of ANthropometric Traits) consortium (33) is
not optimal. Therefore, we assessed association with BMI
in data sets collected from Asians (34), Africans (35) and
Hispanics (26). rs11014566 did not associate with BMI in
Asians or Africans (K.E. North, M.C.Y. Ng, M. Graff, and
X.O. Shu, personal communication); however, modest asso-
ciations with BMI were observed in the SIGMAmeta-analysis
of BMI whose Hispanic population more closely resembles
the Pima Indians from an environmental perspective, al-
though from a genetic perspective the frequency of the G
(rs11014566) and T (rs144895904) alleles are 0.27 and 0.28,
respectively, in Hispanics as compared with 0.60 in Pima
Indians. However, in the SIGMA sample, the direction of
the association with BMI was opposite to that observed in
the Pima Indians (b = 20.05 SD units per copy of the G
allele at rs11014566, P = 0.04) and (b =20.05 SD units per
copy of the T allele at rs144895904, P = 0.01). Given that a
relationship between EE and BMI has not been shown in
the SIGMA sample and that metabolic studies in other
ethnic groups have reported no relationship (6–8) and
even a positive relationship between EE and future weight
gain (9) (as opposed to the inverse association observed in
American Indians [3–5]), it is unclear whether an associa-
tion with BMI in the opposite direction indicates that this
SNP has no role in EE (i.e., our result is a false positive) or
whether it indicates the complexity of feedback loops be-
tween EE and food consumption (36–38), where an imbal-
ance predicts either weight gain or weight loss, among
individuals with different body habitus and living in differ-
ent environments. As additional data for genotype and EE
become available in other populations, meta-analyses may

Figure 5—Frequencies of the G allele at rs11014566 and of the T allele at rs144895904 in American Indians and in the 1000G populations.
Population allele frequencies are based on 1000G phase 3. Pima, full-heritage Pima Indians; EAS, East Asians; AMR, Americans; AFR, Africans;
SAS, South Asians; EUR, Europeans.

Figure 6—In vitro functional analyses of GPR158 variants in murine
hypothalamus cells. Relative luciferase activity (fold change) was
expressed as a ratio of firefly luciferase activity to Renilla luciferase
activity and further normalized to pGL3 promoter luciferase activity.
Raw data are presented along with mean and 95% CI. The statistical
difference in the averaged activity was analyzed by unpaired Student
t test.
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be helpful to assess the extent to which our findings trans-
fer to other populations and to boost power to detect ad-
ditional variants.

The GWAS lead SNP rs11014566 maps to an intron of
the GPR158 gene that encodes the G-protein–coupled re-
ceptor 158, a transmembrane protein highly expressed in
brain cells. Our tissue expression profiling confirmed that
GPR158 is highly expressed in the brain. In vitro functional
analysis of rs11014566 and three variants tagged by
rs11014566 (rs144895904, rs16925884, and rs34673593)
in murine hypothalamic cells showed that intronic SNP
rs144895904 had a statistically significant effect on pro-
moter activity. Human GPR158 is involved in neurotrans-
mitter signaling and regulation of neuronal excitability
(39,40). Although there is no direct evidence that human
GPR158 is involved in the pathophysiology of obesity, a
previous study of mouse Gpr158 has demonstrated its
role in the regulation of energy balance (41). GPR158 binds
to the regulator of G-protein signaling 7 (RGS7) in the
nervous system (42,43). RGS7-deficient mice are protected
from obesity (44), and previous studies have provided evi-
dence that RGS7may constitute an obesity locus in humans
(33,45). In addition to RGS7, GPR158 also binds to an
N-type voltage-gated calcium channel (CACNA1B) in the
rat brain (34). Homozygous CACNA1B-deficient mice gain
less weight during 8 weeks of high-fat diet despite similar
food intake of wild-type mice (35), implying a compensa-
tory increase in EE that may mitigate weight gain during
high-fat feeding. Because GPR158, RGS7, and CACNA1B are
all expressed in the central nervous system, as are the well-
established human obesity genes FTO,MC4R, and TMEM18
(46), one could speculate that they too exert an effect on
hypothalamic signaling to regulate energy balance. How-
ever, additional mechanistic studies are needed to clarify
the physiological pathway whereby GPR158 may affect EE
and obesity in humans.

In conclusion, analysis of genotypes from a custom Pima
Indian array identified a novel genetic locus in GPR158
affecting EE and predisposing Pima Indians to weight
gain. The frequency of the risk allele is higher in Pima
Indians as compared with other populations studied as
part of the 1000G, and the risk allele demonstrated in-
creased promoter activity in in vitro experiments. Results
of this study support the hypothesis that Pima Indians may
carry some genetic variants affecting EE that are enriched
in this particular ethnic group; however, the effect of these
variants on higher rates of weight gain remains controver-
sial because an association with BMI was only observed in
Pima Indians. We propose that studies of GPR158, as well
as other EE-associated genes that will be identified in the
future, may shed light into the pathophysiological mecha-
nisms that affect EE, which could eventually lead to pre-
vention and/or possible treatments of human obesity.
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