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The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics.
We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points
in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions) and in bioinformatics (comparison of
genomes).
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INTRODUCTION

The diagnosis of disease involves several levels of uncertainty
and imprecision, and it is inherent to medicine.

A single disease may manifest itself quite differently, de-
pending on the patient, and with different intensities. A sin-
gle symptom may correspond to different diseases. On the
other hand, several diseases present in a patient may interact
and interfere with the usual description of any of the diseases.

The best and most precise description of disease entities
uses linguistic terms that are also imprecise and vague. More-
over, the classical concepts of health and disease are mutually
exclusive and opposite. However, some recent approaches
consider both concepts as complementary processes in the
same continuum [1–6]. According to the definition issued
by the World Health Organization (WHO), health is a state
of complete physical, mental, and social well-being, and not
merely the absence of disease or infirmity. The loss of health
can be seen in its three forms: disease, illness, and sickness.

To deal with imprecision and uncertainty, we have at our
disposal fuzzy logic. Fuzzy logic introduces partial truth val-
ues, between true and false.

According to Aristotelian logic, for a given proposition or
state we only have two logical values: true-false, black-white,
1-0. In real life, things are not either black or white, but most
of the times are grey. Thus, in many practical situations, it
is convenient to consider intermediate logical values. Let us
show this with a very simple medical example. Consider the
statement “you are healthy.” Is it true if you have only a bro-
ken nail? Is it false if you have a terminal cancer? Everybody

is healthy to some degree h and ill to some degree i. If you are
totally healthy, then of course h = 1, i = 0. Usually, every-
body has some minor health problems and h < 1, but

h + i = 1. (1)

In the other extreme situation, h = 0, and i = 1 so that you
are not healthy at all (you are dead). In the case you have
only a broken nail, we may write h = 0.999, i = 0.001; if you
have a painful gastric ulcer, i = 0.6, h = 0.4, but in the case
you have a terminal cancer, probably i = 0.95, h = 0.05. As
we will see, this is a particular case of Kosko’s hypercube: the
one-dimensional case [4].

Uncertainty is now considered essential to science and
fuzzy logic is a way to model and deal with it using natural
language. We can say that fuzzy logic is a qualitative compu-
tational approach.

Since uncertainty is inherent in fields such as medicine
and massive data in bioinformatics, and fuzzy logic takes
into account such uncertainty, fuzzy set theory can be con-
sidered as a suitable formalism to deal with the imprecision
intrinsic to many biomedical and bioinformatics problems.
Fuzzy logic is a method to render precise what is imprecise in
the world of medicine. Several examples and illustrations are
mentioned below.

FUZZY LOGIC IN MEDICINE

The complexity of medical practice makes traditional quanti-
tative approaches of analysis inappropriate. In medicine, the
lack of information, and its imprecision, and, many times,
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contradictory nature are common facts. The sources of un-
certainty can be classified as follows [7].

(1) Information about the patient.
(2) Medical history of the patient, which is usually sup-

plied by the patient and/or his/her family. This is usu-
ally highly subjective and imprecise.

(3) Physical examination. The physician usually obtains
objective data, but in some cases the boundary be-
tween normal and pathological status is not sharp.

(4) Results of laboratory and other diagnostic tests, but
they are also subject to some mistakes, and even to im-
proper behavior of the patient prior to the examina-
tion.

(5) The patient may include simulated, exaggerated, un-
derstated symptoms, or may even fail to mention some
of them.

(6) We stress the paradox of the growing number of men-
tal disorders versus the absence of a natural classifica-
tion [8]. The classification in critical (ie, borderline)
cases is difficult, particularly when a categorical system
of diagnosis is considered.

Fuzzy logic plays an important role in medicine [7, 9–
14]. Some examples showing that fuzzy logic crosses many
disease groups are the following.

(1) To predict the response to treatment with citalopram
in alcohol dependence [15].

(2) To analyze diabetic neuropathy [16] and to detect early
diabetic retinopathy [17].

(3) To determine appropriate lithium dosage [18, 19].
(4) To calculate volumes of brain tissue from magnetic res-

onance imaging (MRI) [20], and to analyze functional
MRI data [21].

(5) To characterize stroke subtypes and coexisting causes
of ischemic stroke [1, 3, 22, 23].

(6) To improve decision-making in radiation therapy [24].
(7) To control hypertension during anesthesia [25].
(8) To determine flexor-tendon repair techniques [26].
(9) To detect breast cancer [27, 28], lung cancer [28], or

prostate cancer [29].
(10) To assist the diagnosis of central nervous systems tu-

mors (astrocytic tumors) [30].
(11) To discriminate benign skin lesions from malignant

melanomas [31].
(12) To visualize nerve fibers in the human brain [32].
(13) To represent quantitative estimates of drug use [33].
(14) To study the auditory P50 component in schizophrenia

[34].
(15) Many other areas of application, to mention a few, are

(a) to study fuzzy epidemics [35],
(b) to make decisions in nursing [36],
(c) to overcome electroacupuncture accommoda-

tion [37].

We used the database MEDLINE to identify the medical
publications using fuzzy logic. We used as keywords fuzzy
logic and grade of membership. The total number of articles
per year appears in Table 1. The data is from 1991 to 2002 and

Table 1: Number of papers per year in medicine using fuzzy logic.

Year Number

≤ 1990 13

1991 2

1992 14

1993 24

1994 38

1995 66

1996 58

1997 76

1998 66

1999 68

2000 76

2001 128

2002 175

includes also the number of those publications in 1990 and
before. It results in a total of 804 articles and agrees essen-
tially with the numbers indicated in [7, 13]. We plan to screen
databases in the engineering literature that covers medicine-
related articles since it is difficult to publish medical results
using a fuzzy logic approach. In the future we will compare
the figures obtained.

Figure 1 indicates an exponential growth in the number
of articles in medicine making use of fuzzy technology. The
preliminary data we have for 2003 and 2004 [38] supports
this tendency.

FUZZY LOGIC IN BIOINFORMATICS

Bioinformatics derives knowledge from computer analysis
of biological data. This data can consist of the information
stored in the genetic code, and also experimental results (and
hence imprecision) from various sources, patient statistics,
and scientific literature. Bioinformatics combines computer
science, biology, physical and chemical principles, and tools
for analysis and modeling of large sets of biological data, the
managing of chronic diseases, the study of molecular com-
puting, cloning, and the development of training tools of
bio-computing systems [39]. Bioinformatics is a very active
and attractive research field with a high impact in new tech-
nological development [40].

Molecular biologists are currently engaged in some of
the most impressive data collection projects. Recent genome-
sequencing projects are generating an enormous amount
of data related to the function and the structure of bi-
ological molecules and sequences. Other complementary
high-throughput technologies, such as DNA microarrays,
are rapidly generating large amounts of data that are too
overwhelming for conventional approaches to biological
data analysis. We have at our disposal a large number of
genomes, protein structures, genes with their corresponding
expressions monitored in experiments, and single-nucleotide
polymorphisms (SNPs) [41]. For example, the EMBL Nu-
cleotide Sequence Database (http://www.ebi.ac.uk/embl) has

http://www.ebi.ac.uk/embl
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Figure 1: Number of publications per year indexed in MEDLINE using fuzzy logic.

increased in 12 months from 18.3 million entries comprising
23 Gb (Release 71, September 2002) to 27.2 million entries
comprising over 33 Gb (Release 76, September 2003) as indi-
cated in [42].

Handling this massive amount of data, in many cases im-
precise and fuzzy, requires powerful integrated bioinformat-
ics systems and new technologies.

Fuzzy logic and fuzzy technology are now frequently used
in bioinformatics. The following are some examples.

(1) To increase the flexibility of protein motifs [43].
(2) To study differences between polynucleotides [44].
(3) To analyze experimental expression data [45] using

fuzzy adaptive resonance theory.
(4) To align sequences based on a fuzzy recast of a dynamic

programming algorithm [46].
(5) DNA sequencing using genetic fuzzy systems [47].
(6) To cluster genes from microarray data [48].
(7) To predict proteins subcellular locations from their

dipeptide composition [49] using fuzzy k-nearest
neighbors algorithm.

(8) To simulate complex traits influenced by genes with
fuzzy-valued effects in pedigreed populations [50].

(9) To attribute cluster membership values to genes [51]
applying a fuzzy partitioning method, fuzzy C-means.

(10) To map specific sequence patterns to putative func-
tional classes since evolutionary comparison leads to
efficient functional characterization of hypothetical
proteins [52]. The authors used a fuzzy alignment
model.

(11) To analyze gene expression data [53].
(12) To unravel functional and ancestral relationships be-

tween proteins via fuzzy alignment methods [54], or
using a generalized radial basis function neural net-
work architecture that generates fuzzy classification
rules [55].

(13) To analyze the relationships between genes and deci-
pher a genetic network [56].

(14) To process complementary deoxyribonucleic acid
(cDNA) microarray images [57]. The procedure
should be automated due to the large number of spots
and it is achieved using a fuzzy vector filtering frame-
work.

(15) To classify amino acid sequences into different super-
families [58].

THE FUZZY HYPERCUBE

In 1992, Kosko [4] introduced a geometrical interpretation
of fuzzy sets as points in a hypercube. In 1998, Helgason and
Jobe [1] used the unit hypercube to represent concomitant
mechanisms in stroke. Indeed, for a given set

X = {x1, . . . , xn
}

, (2)

a fuzzy subset is just a mapping

μ : X −→ I = [0, 1], (3)

and the value μ(x) expresses the grade of membership of the
element x ∈ X to the fuzzy subset μ.

For example, let X be the set of persons of some popu-
lation and let the fuzzy set μ be defined as healthy subjects.
If John is a member of the population (the set X), then, μ
(John) gives the grade of healthiness of John, or the grade
of membership of John to the set of healthy subjects. If λ is
the fuzzy set that describes the grade of depression, then λ
(Mary) is the degree of depression of Mary.

Thus, the set of all fuzzy subsets (of X) is precisely the
unit hypercube In = [0, 1]n, as any fuzzy subset μ determines
a point P ∈ In given by P = (μ(x1), . . . ,μ(xn)). Reciprocally,
any point A = (a1, . . . , an) ∈ In generates a fuzzy subset μ
defined by μ(xi) = ai, i = 1, . . . ,n. Nonfuzzy or crisp subsets
of X are given by mappings μ : X → {0, 1}, and are located at
the 2n corners of the n-dimensional unit hypercube In. For
graphic representations of the two-dimensional and three-
dimensional hypercube, we refer to [59].

Given,

p = (p1, p2, . . . , pn
)
, q = (q1, q2, . . . , qn

) ∈ In, (4)

not both equal to the empty set ∅ = (0, 0, . . . , 0), we define
the difference between p and q as

d(p, q) =
∑n

i=1

∣
∣pi − qi

∣
∣

∑n
i=1 max

{
pi, qi

} . (5)
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Figure 2: Number of subjects in the two-dimensional fuzzy hyper-
cube I2.

Of course d(∅,∅) = 0. We know that d is indeed a met-
ric [60]. Hypercubical calculus has been described in [61],
while some biomedical applications of the fuzzy unit hyper-
cube are given in [1, 6, 59]. Recently, the fuzzy hypercube has
been utilized to study differences between polynucleotides
[59] and to compare genomes [44, 62].

AN APPLICATION TO DRUG ADDICTIONS

We now present an example of the use of the fuzzy hypercube
in a medical case of consumption of drugs.

Consider the following fuzzy variables: smoking and al-
cohol drinking. If you do not smoke, then your degree of be-
ing a smoker is evidently 0. If you smoke, for example, six
cigarettes per day, we say that your degree of being a smoker
is 0.8. If the consumption is ten or more, the degree is 1. See
[63, Figure 3.8] for a geometrical representation of the fuzzy
concept of being a smoker.

With respect to the other fuzzy variable, if you drink no
alcohol, the degree of this variable is 0. If you drink more
than 75 cc of alcohol per day, the degree of alcoholism is 1.
For 25 cc/d, the degree could be 0.4 and for 50 cc/d, 0.8.

Thus, the fuzzy set μ = (0, 0) corresponds to a nonsmok-
er and teetotaler. Some further examples are the following:
the set μ = (1, 0) represents a heavy smoker, but a teetotaler,
and the set μ = (0.8, 1) is a person who smokes about six
cigarettes a day and is a risk consumer of alcohol.

Suppose you correspond to the fuzzy set λ = (1, 1), have
recently had some health problems, and your physician has
advised you to reduce your consumption of cigarettes and al-
cohol by half. The ideal situation for your health is, of course,
the point μ = (0, 0), but it is possibly difficult to achieve.

Cigarette smoking and alcohol drinking during ado-
lescence have been shown to be associated with a greater
possibility of concurrent and future substance-related disor-

Table 2: Number of nucleotides at the three base sites of a codon in
the coding sequence of Mycobacterium tuberculosis.

T C A G

First base 216 051 409 011 228 244 470 868

Second base 269 638 416 457 233 472 404 607

Third base 217 803 458 256 210 892 437 223

Table 3: Fractions of nucleotides at the three base sites of a codon
in the coding sequence of Mycobacterium tuberculosis.

T C A G

First base 0.1632 0.3089 0.1724 0.3556

Second base 0.2036 0.3145 0.1763 0.3056

Third base 0.1645 0.3461 0.1593 0.3302

ders (Lewinsohn et al [64]; Nelson and Wittchen [65]). In or-
der to report patterns of drug use and to describe factors as-
sociated with substance use in adolescents, a cross-sectional
survey was carried out in a representative population sam-
ple of 2550 adolescents, aged 12 to 17 years, from Galicia
(an autonomous region located in the Northwest of Spain).
The original survey covered the use of alcohol, tobacco, il-
licit drugs, and other psychoactive substances. For tobacco
smoking and alcohol drinking, each subject of the popula-
tion sample was assigned a fuzzy degree of addiction (or risk
use) and mapped into the two-dimensional hypercube I2 by
an expert.

Several subjects occupy the same point in the two-
dimensional hypercube. For example Figure 2 represents the
number of subjects in the cross-sectional survey according
to the two fuzzy degrees of addiction. The reader can see that
there are 1278 subjects corresponding to the point (0, 0), that
is, nonsmoker and teetotaler. Also 7 adolescents are at the
point (0.8, 0.2). There are 121 subjects on the line of proba-
bility x1 + x2 = 1. Indeed (see Figure 2), 23 + 1 + 1 + 2 + 2 +
7 + 1 + 84 = 121.

Most subjects were inside the hypercube but outside the
line of probability. This means that the vast majority of sub-
jects (2429/2550 ≈ 95.25%) are outside the line of probabil-
ity. This is in agreement with the fundamental limitation of
probability theory with respect to clinical science in general
[1] and agrees with its results (29/30 ≈ 96.66%).

We refer to [59] for details on the general theory of fuzzy
midpoints and their applications. It has been used recently to
average biopolymers [66].

AN APPLICATION TO THE COMPARISON OF GENOMES

Whole genome sequence comparison is important in bioin-
formatics [44, 67].

The complete genome sequence of Mycobacterium tu-
berculosis H37Rv is available at http://www.ncbi.nlm.nih.gov
with accession number NC 000962.

The genome comprises 4 411 529 base pairs, contains
around 4000 genes, and has a very high guanine+cytosine

http://www.ncbi.nlm.nih.gov
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Table 4: Number of nucleotides at the three base sites of a codon in
the coding sequence of Aquifex aeolicus.

T C A G

First base 82 722 77 800 157 096 167 050

Second base 159 068 84 092 168 591 72 917

Third base 103 692 119 016 147 956 114 004

Table 5: Fractions of nucleotides at the three base sites of a codon
in the coding sequence of Aquifex aeolicus.

T C A G

First base 0.1706 0.1605 0.3241 0.3446

Second base 0.3282 0.1735 0.3478 0.1504

Third base 0.2139 0.2455 0.3052 0.2352

content [68]. Computing [44] the number of the nucleotides
at the three base sites of a codon in the coding sequences
of M tuberculosis (Table 2), and then calculating the corre-
sponding fractions, we have the fuzzy set of frequencies of the
genome sequence of M tuberculosis (Table 3). This set can be
considered as a point in the hypercube I12. Indeed, the point

(0.1632, 0.3089, 0.1724, 0.3556, 0.2036, 0.3145,

0.1763, 0.3056, 0.1645, 0.3461, 0.1593, 0.3302) ∈ I12.
(6)

Aquifex aeolicus was one of the earliest diverging, and
is one of the most thermophilic, bacteria known [69]. It
can grow on hydrogen, oxygen, carbon dioxide, and min-
eral salts. The complex metabolic machinery needed for A
aeolicus to function as a chemolithoautotroph (an organism
which uses an inorganic carbon source for biosynthesis and
an inorganic chemical energy source) is encoded within a
genome that is only one-third the size of the E coli genome.

The corresponding data for A aeolicus was obtained
from http://www.ncbi.nlm.nih.gov with accession number
NC 000918, and is presented in Tables 4 and 5, respectively.
The complete genome sequence has 1 551 335 base pairs. The
fuzzy set of frequencies of the genome of A aeolicus is

(0.1706, 0.1605, 0.3241, 0.3446, 0.3282, 0.1735,

0.3478, 0.1504, 0.2139, 0.2455, 0.3052, 0.2352) ∈ I12.
(7)

Using the distance given in (5), it is possible to compute
the distance between these two fuzzy sets representing the
frequencies of the nucleotides of A aeolicus and M tubercu-
losis:

d(A aeolicus, M tuberculosis) = 2.2125
6.106

≈ 0.3623. (8)

In [44] we calculate the difference between M tuberculosis
and E coli K-12 obtaining

d(M tuberculosis, E coli) = 0.8506
3.4253

≈ 0.2483. (9)

Using the corresponding data for E coli (see [44, Tables 3 and
4]), we get

d(A aeolicus, E coli) = 0.8514
5.0161

≈ 0.1697. (10)

ACKNOWLEDGMENTS

This research is partially supported by Ministerio de Edu-
cación y Ciencia and FEDER, Projects MTM2004–06652–
C03–01 and MTM2004–06652–C03–01, and by Xunta de
Galicia and FEDER, Project PGIDIT05PXIC20702PN.

REFERENCES

[1] Jobe TH, Helgason CM. The fuzzy cube and causal efficacy:
representation of concomitant mechanisms in stroke. Neural
Networks. 1998;11(3):549–555.

[2] Helgason CM, Jobe TH. Perception-based reasoning and fuzzy
cardinality provide direct measures of causality sensitive to
initial conditions in the individual patient (Invited paper). In-
ternational Journal of Computational Cognition. 2003;1(2):70–
104.

[3] Helgason CM, Malik DS, Cheng S-C, Jobe TH, Mordeson JN.
Statistical versus fuzzy measures of variable interaction in pa-
tients with stroke. Neuroepidemiology. 2001;20(2):77–84.

[4] Kosko B. Neural Networks and Fuzzy Systems. Englewood
Cliffs, NJ: Prentice-Hall; 1992.

[5] Kosko B. Fuzzy Thinking: The New Science of Fuzzy Logic. New
York, NY: Hyperion Press; 1993.

[6] Sadegh-Zadeh K. Fundamentals of clinical methodology: 3.
Nosology. Artificial Intelligence in Medicine. 1999;17(1):87–
108.

[7] Abbod MF, von Keyserlingk DG, Linkens DA, Mahfouf M.
Survey of utilisation of fuzzy technology in Medicine and
Healthcare. Fuzzy Sets and Systems. 2001;120(2):331–349.

[8] Marchais P. De l’esprit et des modes de classification en
psychiatrie [Classification in psychiatry: principles, modes
and ways of thinking]. Annales Medico-Psychologiques.
2002;160(3):247–252.

[9] Barro S, Marı́n R. Fuzzy Logic in Medicine. Heidelberg, Ger-
many: Physica; 2002.

[10] Boegl K, Adlassnig KP, Hayashi Y, Rothenfluh TE, Leitich H.
Knowledge acquisition in the fuzzy knowledge representation
framework of a medical consultation system. Artificial Intelli-
gence in Medicine. 2004;30(1):1–26.

[11] Mahfouf M, Abbod MF, Linkens DA. A survey of fuzzy logic
monitoring and control utilisation in medicine. Artificial In-
telligence in Medicine. 2001;21(1–3):27–42.

[12] Mordeson JN, Malik DS, Cheng S-C. Fuzzy Mathematics in
Medicine. Heidelberg, Germany: Physica; 2000.

[13] Steimann F. On the use and usefulness of fuzzy sets in medical
AI. Artificial Intelligence in Medicine. 2001;21(1–3):131–137.

[14] Szczepaniak PS, Lisoba PJG, Kacprzyk J. Fuzzy Systems in
Medicine. Heidelberg, Germany: Physica; 2000.

[15] Naranjo CA, Bremner KE, Bazoon M, Turksen IB. Using fuzzy
logic to predict response to citalopram in alcohol dependence.
Clinical Pharmacology and Therapeutics. 1997;62(2):209–224.

[16] Lascio LD, Gisolfi A, Albunia A, Galardi G, Meschi F. A fuzzy-
based methodology for the analysis of diabetic neuropathy.
Fuzzy Sets and Systems. 2002;129(2):203–228.

[17] Zahlmann G, Kochner B, Ugi I, et al. Hybrid fuzzy image pro-
cessing for situation assessment. IEEE Engineering in Medicine
and Biology Magazine. 2000;19(1):76–83.

[18] Sproule BA, Bazoon M, Shulman KI, Turksen IB, Naranjo CA.
Fuzzy logic pharmacokinetic modeling: application to lithium
concentration prediction. Clinical Pharmacology and Thera-
peutics. 1997;62(1):29–40.

http://www.ncbi.nlm.nih.gov


6 Journal of Biomedicine and Biotechnology

[19] Stip E, Dufresne J, Boulerice B, Elie R. Accuracy of the
Pepin method to determine appropriate lithium dosages
in healthy volunteers. Journal of Psychiatry & Neuroscience.
2001;26(4):330–335.

[20] Brandt ME, Bohan TP, Kramer LA, Fletcher JM. Estimation of
CSF, white and gray matter volumes in hydrocephalic children
using fuzzy clustering of MR images. Computerized Medical
Imaging and Graphics. 1994;18(1):25–34.

[21] Lu Y, Jiang T, Zang Y. Region growing method for the analysis
of functional MRI data. NeuroImage. 2003;20(1):455–465.

[22] Dickerson JA, Helgason CM. The characterization of stroke
subtype and science of evidence-based medicine using fuzzy
logic. Journal of Neurovascular Disease. 1997;2(4):138–144.

[23] Helgason CM, Jobe TH. Causal interactions, fuzzy sets
and cerebrovascular “accident”: the limits of evidence-based
medicine and the advent of complexity-based medicine. Neu-
roepidemiology. 1999;18(2):64–74.

[24] Papageorgiou EI, Stylios CD, Groumpos PP. An integrated
two-level hierarchical system for decision making in radiation
therapy based on fuzzy cognitive maps. IEEE Transactions on
Biomedical Engineering. 2003;50(12):1326–1339.

[25] Oshita S, Nakakimura K, Sakabe T. Hypertension control
during anesthesia. Fuzzy logic regulation of nicardipine in-
fusion. IEEE Engineering in Medicine and Biology Magazine.
1994;13(5):667–670.

[26] Johnson M, Firoozbakhsh K, Moniem M, Jamshidi M. De-
termining flexor-tendon repair techniques via soft comput-
ing. IEEE Engineering in Medicine and Biology Magazine.
2001;20(6):176–183.

[27] Hassanien AE. Intelligent data analysis of breast cancer based
on rough set theory. International Journal on Artificial Intelli-
gence Tools. 2003;12(4):465–479.

[28] Seker H, Odetayo MO, Petrovic D, Naguib RN. A fuzzy logic
based-method for prognostic decision making in breast and
prostate cancers. IEEE Transactions on Information Technology
in Biomedicine. 2003;7(2):114–122.

[29] Schneider J, Peltri G, Bitterlich N, et al. Fuzzy logic-based tu-
mor marker profiles including a new marker tumor M2-PK
improved sensitivity to the detection of progression in lung
cancer patients. Anticancer Research. 2003;23(2A):899–906.

[30] Belacel N, Boulassel MR. Multicriteria fuzzy classification pro-
cedure PROCFTN: methodology and medical application.
Fuzzy Sets and Systems. 2004;141(2):203–217.

[31] Stanley RJ, Moss RH, Van Stoecker W, Aggarwal C. A fuzzy-
based histogram analysis technique for skin lesion discrimi-
nation in dermatology clinical images. Computerized Medical
Imaging and Graphics. 2003;27(5):387–396.

[32] Axer H, Jantzen J, Keyserlingk DG, Berks G. The application of
fuzzy-based methods to central nerve fiber imaging. Artificial
Intelligence in Medicine. 2003;29(3):225–239.

[33] Matt GE, Turingan MR, Dinh QT, Felsch JA, Hovell MF,
Gehrman C. Improving self-reports of drug-use: numeric es-
timates as fuzzy sets. Addiction. 2003;98(9):1239–1247.

[34] Zouridakis G, Boutros NN, Jansen BH. A fuzzy clustering ap-
proach to study the auditory P50 component in schizophrenia.
Psychiatry Research. 1997;69(2-3):169–181.

[35] Massad E, Ortega NR, Struchiner CJ, Burattini MN. Fuzzy epi-
demics. Artificial Intelligence in Medicine. 2003;29(3):241–259.

[36] Im EO, Chee W. Fuzzy logic and nursing. Nursing Philosophy.
2003;4(1):53–60.

[37] Zhu QM, Sun XW, Pipe AG. A fuzzy controller to overcome
EA accommodation, In: Proceedings of IFAC conference on

new technologies for computer control. 2001; Hong Kong,
China. 493–498.

[38] Torres A, Nieto JJ. Fuzzy logic and technology in medicine and
psychiatry. preprint, 2004.

[39] Bourbakis NG. Bio-imaging and bio-informatics. IEEE Trans-
actions on Systems, Man and Cybernetics, Part B: Cybernetics.
2003;33(5):726–727.

[40] Fuchs R. From sequence to biology: the impact on bioinfor-
matics. Bioinformatics. 2002;18(4):505–506.

[41] Valencia A. Bioinformatics: biology by other means. Bioinfor-
matics. 2002;18(12):1551–1552.

[42] Kulikova T, Aldebert P, Althorpe N, et al. The EMBL
nucleotide sequence database. Nucleic Acids Research.
2004;32(database issue):D27–D30.

[43] Chang BC, Halgamuge SK. Protein motif extraction with
neuro-fuzzy optimization. Bioinformatics. 2002;18(8):1084–
1090.

[44] Torres A, Nieto JJ. The fuzzy polynucleotide space: basic prop-
erties. Bioinformatics. 2003;19(5):587–592.

[45] Tomida S, Hanai T, Honda H, Kobayashi T. Analysis of expres-
sion profile using fuzzy adaptive resonance theory. Bioinfor-
matics. 2002;18(8):1073–1083.

[46] Schlosshauer M, Ohlsson M. A novel approach to local relia-
bility of sequence alignments. Bioinformatics. 2002;18(6):847–
854.

[47] Cordón O, Gomide F, Herrera F, Hoffmann F, Magdalena L.
Ten years of genetic fuzzy systems: current framework and new
trends. Fuzzy Sets and Systems. 2004;141(1):5–31.
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