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Background. Identification of potential molecular targets of acute myocardial infarction is crucial to our comprehensive
understanding of the disease mechanism. However, studies of gene coexpression analysis via jointing multiple microarray data of
acutemyocardial infarction still remain restricted.Methods. Microarray data of acutemyocardial infarction (GSE48060, GSE66360,
GSE97320, and GSE19339) were downloaded from Gene Expression Omnibus database. Three data sets without heterogeneity
(GSE48060, GSE66360, and GSE97320) were subjected to differential expression analysis using MetaDE package. Differentially
expressed genes having upper 25% variation across samples were imported in weighted gene coexpression network analysis.
Functional and pathway enrichment analyses were conducted for genes in themost significantmodule usingDAVID.The predicted
microRNAs to regulate target genes in the most significant module were identified using TargetScan. Moreover, subpathway
analyses using iSubpathwayMiner package andGenCLiP 2.0 were performed on hub genes with high connective weight in themost
significant module. Results. A total of 1027 differentially expressed genes and 33 specific modules were screened out between acute
myocardial infarction patients and control samples. Ficolin (collagen/fibrinogen domain containing) 1 (FCN1), CD14 molecule
(CD14), S100 calcium binding protein A9 (S100A9), and mitochondrial aldehyde dehydrogenase 2 (ALDH2) were identified as
critical target molecules; hsa-let-7d, hsa-let-7b, hsa-miR-124-3, and hsa-miR-9-1 were identified as potential regulators of the
expression of the key genes in the two biggest modules. Conclusions. FCN1, CD14, S100A9, ALDH2, hsa-let-7d, hsa-let-7b, hsa-
miR-124-3, and hsa-miR-9-1 were identified as potential candidate regulators in acute myocardial infarction. These findings might
provide new comprehension into the underlying molecular mechanism of disease.

1. Introduction

Acute myocardial infarction (AMI) is characterized by defi-
nite evidence of myocardial necrosis in a clinical background
of acute myocardial ischemia [1]. According to the report
of global burden of cardiovascular disease in 2015, there
were an estimated 7.29 million AMI in the world [2], which
contributed to a high morbidity and mortality of global
health. AMI has a high risk of death due to congestive heart

failure and malignant arrhythmia, although many endeavors
and monies have been spent on developing new therapies,
it remains a major challenge for clinicians to prevent the
adverse cardiac events and cure this disease. Established risk
factors, such as hypertension, diabetes, hypercholesterolemia,
smoking, and obesity, cannot explain all the risk onmorbidity
and mortality of AMI, and, moreover, substantial numbers of
patients have an inexplicit etiology inmyocardial damage [3].
Therefore, urgent research to discover potential pathogenesis
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of AMI and exploit novel medication targets and therapeutic
strategies is needed, thereby reducing the threat of this disease
to human life.

The clinical manifestations and characteristics of AMI
are heritable features, and transcriptomics-based screening
of genetic biomarker is helpful in early recognition of risk
carriers and improving diagnosis and treatment of AMI. It
is a general recognition that expression microarrays have
advantages of rapid unbiased screening and extensive cover-
age of nearly all transcriptomes to reveal the most promising
targets. IL-1RL-1, Interleukin 1 receptor-like 1 (ST2) should be
a representation of cardiac biomarker which was identified
as a target at initial microarray analyses and then resulted in
the development of suitable assay [4]. Recently, microRNAs
(miRNAs) as noncoding small RNAs are involved in a broad
range of regulation for biological processes and disease
development, and also several evidences have shown that
circulating miRNAs are stable and can be used as novel
diagnostic markers for AMI [5–10].

Coexpression networks as transcriptomic technologies
have grown in popularity since they allow for the integration
of large transcriptional data sets, as well as coinstantaneous
identification, clustering and analysis of thousands of genes
with similar expression patterns across a wide range of con-
ditions [11]. Weighted Gene Coexpression Network Analysis
(WGCNA) has been established by means of introducing
several adjacency functions that convert the coexpression
measure to a connection weight, and furthermore the param-
eters of the adjacency function have been determined by
the scale-free topology criterion [12]. WGCNA provides a
powerful network-based strategy to expedite the clarification
of molecular mechanisms underlying important biological
processes and applies to a diverse range of human disease
researches. Accordingly, WGCNA could be used to analyze
AMI microarray data sets in this study.

So far gene expression studies of AMI have been limited
in sample size and lack of myocardial tissue samples from
patients. On the other hand, development and utility of
circulating biomarkers would be optimum to noninvasive
diagnosis and early identification of AMI. We combined
several blood-based microarray expression data to screen
out mutual differentially expressed genes (DEGs) among
data sets. WGCNA was used to construct gene coexpression
network based on DEGs profiling, and significant modules
and hub genes were detected by the WGCNA as well. Fur-
thermore, miRNAs that could be predicted to regulate DEGs
in the most significant module were identified and miRNAs-
DEGs regulatory relationships were analyzed. This study
aimed to detect out more candidate genes and miRNAs that
were involved in the pathogenesis and progression of AMI,
among which some genetic biomarkers might be converted
into the promising targets for the diagnosis and treatment of
AMI.

2. Materials and Methods

2.1. Source of MicroarrayData. Fourmicroarray data, includ-
ing GSE48060 (USA; 31 patients with AMI and 21 controls),
GSE66360 (USA; 49 patients with AMI and 50 controls),

GSE97320 (China; 3 patients with AMI and 3 controls),
and GSE19339 (Switzerland; 4 patients with AMI and 4
controls), were downloaded fromGene Expression Omnibus
(GEO http://www.ncbi.nlm.nih.gov/geo/) database, which
were based on the platform of GPL570 Affymetrix Human
Genome U133 Plus 2.0 Array (Affymetrix Inc., Santa Clara,
California, USA).This microarray meta-analysis made use of
four data sets based on 156 blood samples derived from 87
AMI patients and 78 control subjects.

2.2. Data Preprocessing. The raw array data (CEL files) were
imported into Expression Console software and subjected
to background adjustment, quantile normalization, and log2
transformation by Robust Multiarray Average (RMA) [13].
After that, probe identifiers (IDs) were transformed into gene
symbols according to the annotation files, and the average
expression value of multiple probes corresponding to one
same gene was calculated as the single expression value of this
gene.

2.3. Quality Control of Microarray Data and Differential
Expression (DE) Analysis. Six quality control (QC) indices
provided in MetaQC package of R software were used to
assess quality of selected studies, which included internal
homogeneity of coexpression structure among studies (IQC),
external consistency of coexpression pattern with pathway
database (EQC), accuracy and consistency of differentially
expressed gene detection (AQCg and CQCg), and enriched
pathway identification (AQCp and CQCp) [14]. By applying
this procedure, we could filter out the low-quality studies
and eliminate the biases among datasets. Moreover, principal
component analysis (PCA) biplots and standardized mean
ranks were provided assisting in the detection of deflected
studies. MetaDE package in R software provided 12major sta-
tistical methods for differential expression (DE) analysis [14].
We chose DEGs between disease group and control group
using the MetaDE.pvalue algorithm of MetaDE package. A
false discovery rate (FDR) of< 0.05 was considered as the cut-
off for the detection of DEGs.

2.4. Gene Ontology (GO) and Pathway Enrichment Analysis.
Gene ontology (GO) is a tool for gene annotation using
a dynamic, controlled vocabulary that classifies genes into
three categories, including biological process, molecular
function, and cellular component [15]. Kyoto Encyclopedia
of Genes and Genomes (KEGG) database is used to assign
gene sets to specific pathway maps of molecular interactions,
reactions, and relation networks [16]. We performed GO
functional annotation and KEGG pathway enrichment anal-
yses of DEGs by the Database for Annotation, Visualization
and Integrated Discovery (DAVID) [17].

2.5. Weighted Gene Coexpression Network Construction. We
conducted gene coexpression analysis of DEGs in order to
check out more potential genes associated with AMI. For
reducing the deviation, we chose DEGs having upper 25%
variation across samples to implement subsequent weighted
gene coexpression network analysis (WGCNA).
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Figure 1: Principal component analysis biplots of quality control
measures in four microarray data sets.

WGCNA was used to construct weighted adjacency
matrix that reported the connection strength between gene
pairs. For weighted networks, the concordance of gene
expression was measured with the Pearson correlation
matrix, and the absolute value of the correlation coefficient
𝑠𝑖𝑗 was calculated as 𝑠𝑖𝑗 = |𝑐𝑜𝑟(𝑥𝑖, 𝑥𝑗)|, where 𝑥𝑖 and 𝑥𝑗
were the vectors of the expression value of gene i and gene
j.Then, the Pearson correlation matrix was transformed con-
tinuously with the power adjacency function into weighted
gene network, and the adjacency matrix 𝑎𝑖𝑗 was calculated
as 𝑎𝑖𝑗 = 𝑠

𝛽
𝑖𝑗. Here, the exponential 𝛽 = 20 were chosen by

scale-free topology criterion (Supplementary Figure 1). For
detecting gene coexpression modules, the adjacency matrix
was converted into the topological overlap matrix (TOM).
The following formula was used to compute the weighting
coefficient𝑊𝑖𝑗 (referred to TOM):

𝑊𝑖𝑗 =
𝑙𝑖𝑗 + 𝑎𝑖𝑗

min {𝑘𝑖, 𝑘𝑗} + 1 − 𝑎𝑖𝑗

𝑙𝑖𝑗 = ∑
𝑢

𝑎𝑖𝑢𝑎𝑢𝑗

𝑘𝑖 = ∑
𝑢

𝑎𝑖𝑢

(1)

where 𝑘𝑖 indicated the total connectivity of gene i with all
other genes in the weighted network, 𝑊𝑖𝑗 was considered
the topology overlap between neighbor genes of i and j.
The topological overlap dissimilarity (1 – TOM) was used
as input of hierarchical clustering. Modules were defined
as branches of a hierarchical clustering dendrogram using
the average linkage hierarchical clustering coupled with the
topological overlap dissimilarity measure. For each module,
the module eigengene (ME) was summarized by the first
principal component of themodule expression levels, and the
correlation between each gene expression values and module
eigengene was defined as the module membership (MM).

A gene significance (GS) was measured as minus log of a
p-value with the T-test. The module significance (MS) was
determined as the mean absolute GS for all genes in a given
module.

2.6. Module Preservation Statistics. Module preservation
statistics are used to verify whether an identified module
in the reference network can be found in the test network.
We investigated the preservation of coexpression network
between the reference data set (meta-analysis) and the
test data set (GSE123487) using the network-based Zsum-
mary calculated by the module preservation function from
WGCNA [18]. The statistics are calculated twice: once to
evaluate whether modules are reproducible in the reference
data set consisting only of genes in common with the test
data set (called Zsummary.qual as “quality” statistics) and
the second time to assess the conservation of the modules
in the test data set (called Zsummary.pres as “preservation”
statistics). Zsummary.pres < 2 implies no evidence formodule
preservation, 2 < Zsummary.pres < 10 implies weak tomoder-
ate evidence of preservation, and Zsummary.pres > 10 implies
strong evidence that themodule is preserved. Zsummary.qual
was a complementary statistic to evaluate the robustness of
the identified modules.

2.7. Screening of Hub Genes and Subpathway Analysis. In
general, the genes with the largest number of connections
are the most important genes in a module. The hub gene is
termed as an abbreviation of “highly connected gene” that
tends to have high connectivity in a coexpression module.
Additionally, the hub genes were described as the genes most
closely associated with disease. Intramodular connectivity
(IC) corresponds to the connection degree of a gene with
other genes in a given module. Here, the hub genes were
considered as the highly connected genes according to their
characterization with high IC, high MM, and high GS. After
screening of the hub genes, a web-based text-mining server of
GenCLiP 2.0 (http://ci.smu.edu.cn/GenCLiP2/analysis.php)
was used to identify biological functions and molecular
interactions in the hub genes list. The iSubpathwayMiner
provides the k-clique method for identification of metabolic
subpathways associated with studying disease based on the
interested gene sets [19]. We used iSubpathwayMiner in
mining the most relevant metabolic subpathways of the hub
genes by merging information from genes and metabolites.
The significantly enriched subpathways were detected by
hypergeometric test (p-value < 0.05).

2.8. MicroRNAs (miRNAs) Target Prediction. To identify
putative miRNA binding sites at the 3’-untranslated regions
(3’-UTR) of mRNAs, we conducted miRNAs target predic-
tion using the TargetScanHuman 7.2 algorithm. The outputs
of prediction are ranked based on either the predicted efficacy
of targeting (context++ scores) [20] or the probability of
conserved targeting (PCT) [21]. Here, the combination of two
measures on context score percentile ≥ 90 and aggregate PCT
score ≥ 0.8 was used to determine effective miRNAs. The

http://ci.smu.edu.cn/GenCLiP2/analysis.php
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Table 1: Microarray data information and quality control measure summary.

GEO accession Platform Probe
number Country AMI

sample
Control
sample IQC EQC CQCg CQCp AQCg AQCp SMR

GSE97320
GPL570 /
Affymetrix

HU133 Plus 2.0
54,676 China 3 3 5.62 2.92 41.88 65.55 27.32 22.53 1.67

GSE66360
GPL570 /
Affymetrix

HU133 Plus 2.0
54,676 USA 49 50 3.30 4.00 17.76 59.30 16.73 34.49 2.08

GSE48060
GPL570 /
Affymetrix

HU133 Plus 2.0
54,676 USA 31 21 5.62 2.92 22.33 12.49 16.70 3.55 3.00

GSE19339
GPL570 /
Affymetrix

HU133 Plus 2.0
54,676 Switzerland 4 4 1.30∗ 4.00 4.92 39.73 4.49 13.15 3.25

GEO: Gene Expression Omnibus; ∗ represents nonstatistical significance of quality control measures; AMI: acute myocardial infarction; IQC: internal
quality index; EQC: external quality index; CQCg and CQCp: consistency quality control indexes; AQCg and AQCp: accuracy quality control indexes; SMR:
standardized mean rank.
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Figure 2: The clustering dendrogram for identification of gene coexpression modules in AMI by using the average linkage hierarchical
clustering.

predicted results of miRNAs were validated with data set of
GSE123487.

3. Results

3.1. Screening of DEGs. In order to eliminate problematic
study and obtain reliable data, we performed MetaQC anal-
ysis of four data sets (GSE48060, GSE66360, GSE97320, and
GSE19339) downloaded from GEO database. Six QC indexes
and the standardizedmean rank summary (SMR) scores were
created by R software. The QC measures indicated that a
study (GSE19339) had relatively low correlation with other
three studies (Table 1). Coupled with the visualization of PCA
biplots describing that a study on the opposite side of arrows
had large SMR scores (Figure 1), the data set of GSE19339
was finally excluded frommeta-analysis. DEGs were selected
by MetaDE analysis. A total of 1027 DEGs were identified

between AMI group and control group under the threshold
of FDR < 0.05 (Supplementary Figure 2).

3.2. WGCNA Network Construction and Key Modules Detec-
tion. One hundred and fifty-seven samples with disease
phenotypes were involved in gene coexpression analysis.
For reducing the deviation, we selected DEGs having upper
25% variation across samples to implement WGCNA. To
construct a weighted network, the lowest power of 𝛽 = 20
(R2 ≥ 0.8) was chosen for a criterion of scale-free topology.
By the means of the average linkage hierarchical clustering,
two hundred and fifty-seven DEGs were grouped into a total
of 33 modules (Figure 2). We selected the first largest module
(56 DEGs clustered in turquoise module) and the second
largest module (45 DEGs clustered in blue module) as the
key (interesting) modules for further analysis. For each key
module, the MS value was used to test their association with
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Figure 3: ALDH2 enriched in subpathway from regulation of glycolysis/gluconeogenesis.

the disease.That the turquoise module had a higherMS value
(MSturquoise = 5.71) than the blue module (MSblue = 2.64) sug-
gested that the turquoise module had stronger correlation to
AMI. In addition, the relevance between ME per key module
and the disease status was also measured via calculation of
Pearson’s correlation coefficient and the significant p-value.
The turquoise module (r = 0.40, p-value = 1.73E-07) was
still considered to be highly relevant to AMI than the blue
module (r = -0.27, p-value = 7.35E-04) (Supplementary Figure
3). We conducted statistical comparisons of correlations
between the turquoise module and the blue module with
AMI. The calculations relied on the tests implemented in
the package cocor for the R programming language. The

results of a comparison between two correlations showed
that there was statistically significant difference (z=4.71, p-
value<0.001). Subsequently, we conducted functional and
pathway enrichment analysis for all DEGs clustered in the
turquoise module. The mainly enriched results of significant
functions and pathways were described in Table 2.

3.3. Identification of Hub Genes Associated with AMI. To
identify intramodular hub genes, we computed the IC, MM,
and GS for each gene in the interesting module. Through
comparing with these measures, we found a positive cor-
relation between MM and IC, but not GS. So, we adopted
the IC and MM values as selective measures of the hub
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Table 2: Top significantly GO function and KEGG pathway enrichment analysis in the turquoise module.

Category ID Term Count p-value
GO BP GO:0006954 inflammatory response 11 7.50E-08
GO BP GO:0038124 toll-like receptor TLR6:TLR2 signaling pathway 3 4.58E-05
GO BP GO:0071726 cellular response to diacyl bacterial lipopeptide 3 4.58E-05
GO BP GO:0031663 lipopolysaccharide-mediated signaling pathway 4 9.63E-05
GO BP GO:0002755 MyD88-dependent toll-like receptor signaling pathway 4 1.06E-04
GO BP GO:0006955 immune response 8 1.57E-04
GO BP GO:0045087 innate immune response 8 1.78E-04
GO BP GO:0071223 cellular response to lipoteichoic acid 3 2.73E-04
GO BP GO:0032760 positive regulation of tumor necrosis factor production 4 3.06E-04
KEGG Pathway hsa05134 Legionellosis 3 1.60E-02
KEGG Pathway hsa04145 Phagosome 4 1.71E-02
KEGG Pathway hsa04640 Hematopoietic cell lineage 3 3.74E-02
KEGG Pathway hsa04915 Estrogen signaling pathway 3 4.92E-02

Table 3: The hub genes in the turquoise and blue module.

Module Gene Symbol Gene Title p-value IC MM
Turquoise FCN1 ficolin (collagen/fibrinogen domain containing) 1 6.49E-07 25 0.96
Turquoise S100A9 S100 calcium binding protein A9 4.26E-07 25 0.96
Turquoise IGSF6 immunoglobulin superfamily, member 6 3.20E-04 21 0.95
Turquoise HCK HCK proto-oncogene, Src family tyrosine kinase 6.80E-05 18 0.96
Turquoise CD14 CD14 molecule 2.10E-05 17 0.95
Turquoise TLR2 toll-like receptor 2 4.54E-08 17 0.95
Turquoise VCAN versican 6.21E-08 17 0.96
Turquoise PTAFR platelet-activating factor receptor 1.40E-05 16 0.95
Turquoise GLT1D1 glycosyltransferase 1 domain containing 1 6.57E-07 15 0.95
Turquoise MS4A6A membrane-spanning 4-domains, subfamily A, member 6A 4.00E-06 15 0.95
Blue ABCA5 ATP-binding cassette, sub-family A (ABC1), member 5 2.24E-02 24 0.96
Blue LUC7L LUC7-like (S. cerevisiae) 1.78E-02 23 0.97
Blue RBM6 RNA binding motif protein 6 4.01E-03 12 0.95
Blue FAM134B family with sequence similarity 134, member B 6.32E-03 11 0.96
Blue CLUAP1 clusterin associated protein 1 8.74E-04 9 0.96
Blue GABPB2 GA binding protein transcription factor, beta subunit 2 8.30E-03 8 0.94

genes for each of the key modules (Table 3). The top hub
genes in the turquoise module included FCN1, S100A9,
IGSF6, HCK, CD14, TLR2, VCAN, PTAFR, GLT1D1, and
MS4A6A, and the top hub genes in the blue module included
ABCA5, LUC7L, RBM6, FAM134B, CLUAP1, and GABPB2.
The iSubpathwayMiner can detect the local structure of an
entire pathway (subpathway) that will help us to understand
the pathogenic mechanism caused by dysfunction of the sub-
pathways. For the turquoise module, the subpathway analysis
displayed that ALDH2 gene was enriched in the subpathway
of glycolysis/gluconeogenesis (Figure 3). Furthermore, all
highly connective genes (adjacencyweight greater than 0.1) of
the turquoisemodule were submitted toGenCLiP 2.0 for data
mining.The results showed that the hub genes in the network
enriched in several functional terms of biological processes,
including regulation of response to wounding and regulation
of phosphate metabolic process.

3.4. Replication of Module Structure and Hub Genes. We
tested the module preservation of the reference data set
(meta-analysis) in the validation data set (GSE123487).
Among 33 identified modules, we found there was low-to-
moderate evidence of preservation (Zsummary.pres = 3.5)
for the turquoise module; however, other modules were not
preserved (Zsummary.pres < 2). To further confirm the find-
ings of intramodular hub genes, we performed differentially
expressed mRNAs analysis in the test data set. The hub genes
FCN1 (p-value = 0.002), HCK (p-value = 0.012), CD14 (p-
value = 0.024), TLR2 (p-value = 0.009), VCAN (p-value
= 0.009), and GLT1D1 (p-value = 0.022) in the turquoise
module identified by the reference data set, as well as the
hub genes ABCA5 (p-value = 0.0004), LUC7L (p-value =
0.013), and GABPB2 (p-value = 0.039) in the blue module,
were also found to be differentially expressed in the test data
set.
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Figure 4: The putative miRNAs regulatory network for DEGs of turquoise module.

3.5. MiRNAs Target Prediction and Validation. TargetScan
was applied to predicate the miRNAs regulated to the target
DEGs in the network of key module. Only a context score
percentile ≥ 90 and an aggregate PCT score ≥ 0.8 were
identified as the putative miRNA of the target gene (Figures
4 and 5). The main results represented that the target genes
PTAFR, BCL6,DUSP6, and KCTD12 in the turquoise module
were regulated by hsa-let-7-5p, hsa-miR-124-3p.1, hsa-miR-
145-5p, and hsa-miR-9-5p, respectively. Moreover, hsa-miR-
124-3p.1 and hsa-miR-9-5p also regulated the target genes
FAM134B and SFXN2 in the blue module. The predicted
results of miRNAs were tested with data set of GSE123487
using microarray assays. There were hsa-miR-9-1 (p-value =
0.026), hsa-miR-124-3 (p-value = 0.046), hsa-miR-5195 (p-
value = 0.014), hsa-let-7d (p-value = 0.028), hsa-let-7b (p-
value = 0.026), hsa-miR-4500 (p-value = 0.024),hsa-miR-4319
(p-value = 0.037), hsa-miR-133b (p-value = 0.040), hsa-miR-
526b (p-value = 0.036), and hsa-miR-5195 (p-value = 0.014)
that were confirmed to be differentially expressed between
AMI patients and normal controls.

4. Discussion

This study aimed to identify candidate genes and miRNAs
involved in the occurrence and development of AMI. In
this study, we screened out total of 1027 DEGs in blood
samples from AMI patients compared with normal controls.

The average linkage hierarchical clustering analysis was
carried out to group coexpressed DEGs into modules, and
33 modules were identified. Among them, the turquoise and
blue modules were detected as the two biggest modules to be
associated with AMI. From the functional enrichment and
GO analysis, we found that DEGs were mainly correlated
to functional annotations of inflammatory and immune
responses.The subpathway enrichment analysis revealed that
ALDH2 gene in the turquoise module was enriched in glycol-
ysis/gluconeogenesis subpathway. Furthermore, hsa-let-7d,
hsa-let-7b, hsa-miR-124-3, and hsa-miR-9-1were identified to
regulate the key genes in the turquoise and blue modules.

Myocardial ischemia causes a reduction of oxygen supply
to the heart, leading to cardiac myocytes in the hypoxia status
dependent of the glycolysis metabolism, the major source
of energy supply in the hypoxic circumferences. In spite of
the fact that cardiovascular drugs and surgical interventions
can improve the oxygen supply in myocardium for increased
cardiac work, these interventions were shown to be unsatis-
factory to decrease cardiac events or increase patient survival
[22]. Aldehydes have been reported to be highly associated
with myocardial ischemia and cardiac reperfusion damage
[23, 24]. Here, subpathway analysis found that ALDH2
might exert its role by influencing glycolysis/gluconeogenesis
metabolic pathway. Mitochondrial aldehyde dehydrogenase 2
(ALDH2) is an important enzyme that catalyses the removal
of reactive aldehydes, whose activation was indicated to
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Figure 5: The putative miRNAs regulatory network for DEGs of blue module.

be correlated with reduced ischemic myocardium damage
in rodent models [25]. Acetaldehyde metabolites, such as
4-hydroxynonenal (4-HNE), can affect glycolysis by mod-
ifying key glycolytic enzymes, including glyceraldehyde-3-
phosphate dehydrogenase and glucose-6-phosphate dehy-
drogenase [26], and also they can inhibit mitochondrial res-
piratory chain function, promote mitochondrial membrane
permeability transformation channel open, and directly lead
to mitochondrial dysfunction. Therefore, ALDH2 confers
profound treatment-aided value in individualized cardiopro-
tective strategies.

The genes in turquoise module, includingHMOX1, TLR2,
VCAN, S100A9, CD14, and CD36, were significantly corre-
lated to wound healing function; in addition, HCK,HMOX1,
BCL6, S100A9, S100A12, TLR2, and CD36 were significantly
enriched in response to wounding associated biological
process. It is well established that myocardial infarction
is accompanied by local and systemic inflammation and
leads to rapid necrosis of myocardia in the ischemic heart
[27]. For postmyocardial infarction, healing the myocardium
wound is essential for tissue integrity and function of the

heart. There is widespread concern and increased inter-
est in the damage associated molecular pattern molecules
S100A8 and S100A9 in human cardiovascular disease. S100A8
and its binding partner S100A9 are members of the S100
calcium-binding family of proteins, the circulating levels
of which are elevated by activated inflammatory cytokines
and autoimmune state [28]. The growing evidence indicated
that S100A9 played an important role in leukocyte traffick-
ing and arachidonic acid metabolism [29, 30]. In human,
several S100 proteins, including S100A7, S100A8, S100A9,
and S100A12, are linked with the severity of coronary and
carotid atherosclerosis [31–34]. Thus, S100A8 and S100A9
might serve as a useful biomarker and therapeutic target in
human cardiovascular disease; besides, S100A8 and S100A9
blockers have been developed and are approved for clinical
testing.

Some DEGs clustered in the turquoise module have been
reported to be associated with AMI, including S100A9 [35],
CD14 [36], TLR2 [37], and HMOX1 [38]. However, human
studies on the association between FCN1 and AMI have
not been reported, although there was a study in mice
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that MBL/ficolin-associated protein-1 (MAP-1) can attenuate
myocardial injury and arterial thrombogenesis [39]. We
analyzed the interactional associations of proteins encoded
by DEGs in the turquoise module using the Search Tool
for the Retrieval of Interacting Genes/Proteins (STRING;
https://string-db.org/). The results showed that there were
complicated interactions among TLR2, HMOX1, MMP9,
S100A9, CD14, and FCN1. Therefore, the modules identi-
fied in the present study associated with AMI could not
be considered to be independent of already established
genes.

In this study, several miRNAs were predicted to reg-
ulate the key genes that contributed to the pathophys-
iological consequences of AMI. The let-7 is the second
miRNA found in C.elegans, and it is highly expressed in the
cardiovascular system [40], exerting important regulatory
roles after myocardial infarction [41]. There were hsa-let-
7d and hsa-let-7b confirmed to be differentially expressed
between AMI patients and normal controls in the validation
data set, suggesting that they might play a similar role
in regulated process of AMI. Clinical data revealed that
circulating miR-124 and miR-145 was significantly associated
with AMI [42, 43], and also miR-145 was correlated with
the severity of coronary artery [44] and played roles in
regulating the evolution of atherosclerotic plaque toward
instability and rupture [45]. Besides that, miR-9 was also
found to be probably involved in myocardial regeneration
[46].

However, some limitations should be reinforced in this
study. Firstly, majority of data derives from two large studies
in the USA. Therefore the results are not surely applicable to
other ethnicities. Secondly, some findings need to be further
studied. Despite these limitations, this study still provides
some novel viewpoints in current understanding of AMI
mechanism.

5. Conclusions

In summary, we screen out candidate genes for AMI, such as
FCN1, CD14, S100A9, and ALDH2; in addition, we identified
hsa-let-7d, hsa-let-7b, hsa-miR-124-3, and hsa-miR-9-1, as
potential regulators on pathogenesis of AMI. Thus this study
may offer potential therapeutic targets and new therapeutic
strategies for AMI.

Abbreviations

AMI: Acute myocardial infarction
ST2: IL-1RL-1, Interleukin 1 receptor-like 1
MiRNAs: MicroRNAs
WGCNA: Weighted Gene Coexpression Network

Analysis
DEGs: Differentially expressed genes
GEO: Gene Expression Omnibus
RMA: Robust Multichip Analysis
DE: Differential expression
QC: Quality control
IQC: Internal homogeneity of coexpression

structure among studies

EQC: External consistency of coexpression
pattern with pathway database

AQCg: Accuracy of differentially expressed gene
detection

CQCg: Consistency of differentially expressed
gene detection

AQCp: Accuracy of enriched pathway
identification

CQCp: Consistency of enriched pathway
identification

PCA: Principal component analysis
FDR: False discovery rate
GO: Gene Ontology
KEGG: Kyoto Encyclopedia of Genes and

Genomes
DAVID: Database for Annotation, Visualization

and Integrated Discovery
TOM: Topological overlap matrix
ME: Module eigengene
MM: Module membership
GS: Gene significance
MS: Module significance
IC: Intramodular connectivity
3’-UTR: 3’-untranslated region
PCT: Probability of conserved targeting
SMR: Standardized mean rank
FCN1: Ficolin (collagen/fibrinogen domain

containing) 1
S100A9: S100 calcium binding protein A9
IGSF6: Immunoglobulin superfamily, member 6
HCK: HCK protooncogene, Src family tyrosine

kinase
CD14: CD14 molecule
TLR2: Toll like receptor 2
VCAN: Versican
PTAFR: Platelet-activating factor receptor
GLT1D1: Glycosyltransferase 1 domain containing 1
MS4A6A: Membrane-spanning 4-domains,

subfamily A, member 6A
ABCA5: ATP-binding cassette, subfamily A

(ABC1), member 5
LUC7L: LUC7-like (S. cerevisiae)
RBM6: RNA binding motif protein 6
FAM134B: Family with sequence similarity 134,

member B
CLUAP1: Clusterin associated protein 1
GABPB2: GA binding protein transcription factor,

beta subunit 2
ALDH2: Mitochondrial aldehyde dehydrogenase 2
BCL6: B-cell CLL/lymphoma 6
DUSP6: Dual specificity phosphatase 6
KCTD12: Potassium channel tetramerization

domain containing 12
SFXN2: Sideroflexin 2
4-HNE: 4-hydroxynonenal
MDA: Malonaldehyde
HMOX1: Heme oxygenase (decycling) 1
S100A12: S100 calcium binding protein A12.



10 BioMed Research International

Data Availability

The microarray data were deposited into NCBI-GEO
database under the accession numbers GSE19339, GSE48060,
GSE66360, GSE97320, and GSE123487, the hyperlink to the
dataset: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE19339, https://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc=GSE48060, https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE66360, https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE97320, https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE123487.

Conflicts of Interest

The authors declare that they have no conflicts of interest
relevant to this work.

Authors’ Contributions

Yan Li conceived the study. Min Liu gave the guidance on
this research. Yan Li conducted the analysis, provided the
results, and wrote the manuscript. Xiao nanHe, Chao Li, and
Ling Gong participated in the biological interpretation of the
results. All authors read and approved the final manuscript.

Acknowledgments

The authors thank Xiaodong Hao, Wanpeng Zhu, and Yuzhu
Wang (Compass Biotechnology Co., Ltd., Beijing, China) for
bioinformatics assistance. This work was supported by Bei-
jing Natural Science Foundation (5172011) and the National
Natural Science Foundation of China (81700383).

Supplementary Materials

Supplementary Figure 1. Picking up a soft-threshold
approximating to a scale-free topology criterion based on
R square and mean connectivity. Supplementary Figure
2. Number of detected DEGs under different q-value
threshold. Supplementary Figure 3. Correlation coefficient
and significant p-value between each module and AMI.
(Supplementary Materials)

References

[1] K. Thygesen, J. S. Alpert, A. S. Jaffe et al., “Third universal
definition of myocardial infarction,”Circulation, vol. 126, no. 16,
pp. 2020–2035, 2012.

[2] G. A. Roth, C. Johnson, A. Abajobir et al., “Global, regional, and
national burden of cardiovascular diseases for 10 causes, 1990 to
2015,” Journal of the American College of Cardiology, vol. 70, no.
1, pp. 1–25, 2017.

[3] S. Agewall, J. F. Beltrame, H. R. Reynolds et al., “ESC working
group position paper on myocardial infarction with non-
obstructive coronary arteries,” European Heart Journal, vol. 38,
no. 3, pp. 143–153, 2017.

[4] M. M. Ciccone, F. Cortese, M. Gesualdo et al., “A novel cardiac
bio-marker: ST2: a review,”Molecules, vol. 18, no. 12, pp. 15314–
15328, 2013.

[5] Y. D’Alessandra, P. Devanna, F. Limana et al., “Circulating
microRNAs are new and sensitive biomarkers of myocardial
infarction,” European Heart Journal, vol. 31, no. 22, pp. 2765–
2773, 2010.

[6] Y. Devaux, M. Vausort, E. Goretti et al., “Use of circulating
microRNAs to diagnose acute myocardial infarction,” Clinical
Chemistry, vol. 58, no. 3, pp. 559–567, 2012.

[7] S. Dimmeler and A. M. Zeiher, “Circulating microRNAs:
Novel biomarkers for cardiovascular diseases?” EuropeanHeart
Journal, vol. 31, no. 22, pp. 2705–2707, 2010.

[8] S. Paiva and O. Agbulut, “MiRroring the Multiple potentials
of micrornas in acute myocardial infarction,” Frontiers in
Cardiovascular Medicine, vol. 4, Article ID 73, 2017.

[9] D. Santovito and C. Weber, “Zooming in on microRNAs for
refining cardiovascular risk prediction in secondary preven-
tion,” European Heart Journal, vol. 38, no. 7, pp. 524–528, 2017.

[10] T. Sun, Y. H. Dong, W. Du et al., “The role of MicroRNAs in
myocardial infarction: From molecular mechanism to clinical
application,” International Journal of Molecular Sciences, vol. 18,
no. 4, 2017.

[11] E. A. Serin, H. Nijveen, H. W. Hilhorst, and W. Ligterink,
“Learning from co-expression networks: Possibilities and chal-
lenges,” Frontiers in Plant Science, vol. 7, no. 444, 2016.

[12] W. Zhao, P. Langfelder, T. Fuller, J. Dong, A. Li, and S. Hovarth,
“Weighted gene coexpression network analysis: state of the art,”
Journal of Biopharmaceutical Statistics, vol. 20, no. 2, pp. 281–
300, 2010.

[13] R. A. Irizarry, B.Hobbs, F. Collin et al., “Exploration, normaliza-
tion, and summaries of highdensity oligonucleotide arrayprobe
level data,” Biostatistics, vol. 4, no. 2, pp. 249–264, 2003.

[14] X. Wang, D. D. Kang, K. Shen et al., “An R package suite
for microarray meta-analysis in quality control, differentially
expressed gene analysis and pathway enrichment detection,”
Bioinformatics, vol. 28, no. 19, pp. 2534–2536, 2012.

[15] GeneOntologyC, “Gene ontology consortium:Going forward,”
Nucleic Acids Research, vol. 43, no. 1, pp. D1049–D1056, 2015.

[16] M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K.
Morishima, “KEGG: New perspectives on genomes, pathways,
diseases and drugs,” Nucleic Acids Research, vol. 45, no. D1, pp.
D353–D361, 2017.

[17] G. Dennis Jr., B. T. Sherman, D. A. Hosack et al., “DAVID:
Database for annotation, visualization, and integrated discov-
ery,” Genome Biology, vol. 4, no. 5, p. P3, 2003.

[18] P. Langfelder, R. Luo, M. C. Oldham, and S. Horvath, “Is my
network module preserved and reproducible?” PLoS Computa-
tional Biology, vol. 7, no. 1, Article ID e1001057, 2011.

[19] C. Li, J. Han, Q. Yao et al., “Subpathway-GM: Identification of
metabolic subpathways via joint power of interesting genes and
metabolites and their topologieswithin pathways,”Nucleic Acids
Research, vol. 41, no. 9, p. e101, 2013.

[20] V. Agarwal, G. W. Bell, J.-W. Nam, and D. P. Bartel, “Predicting
effective microRNA target sites in mammalian mRNAs,” eLife,
vol. 4, Article ID e05005, 2015.

[21] R. C. Friedman, K. K. Farh, C. B. Burge, and D. P. Bartel, “Most
mammalian mRNAs are conserved targets of microRNAs,”
Genome Research, vol. 19, no. 1, pp. 92–105, 2009.

[22] J. Li, X. Li, Q. Wang et al., “ST-segment elevation myocardial
infarction in China from 2001 to 2011 (the China PEACE-
Retrospective Acute Myocardial Infarction Study): a retrospec-
tive analysis of hospital data,”�e Lancet, vol. 385, no. 9966, pp.
441–451, 2015.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19339
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19339
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48060
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48060
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66360
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66360
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97320
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97320
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123487
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123487
http://downloads.hindawi.com/journals/bmri/2019/5742608.f1.pdf


BioMed Research International 11

[23] D. Gong, H. Zhang, and S. Hu, “Mitochondrial aldehyde
dehydrogenase 2 activation and cardioprotection,” Journal of
Molecular andCellularCardiology, vol. 55, no. 1, pp. 58–63, 2013.

[24] H. Ma, R. Guo, L. Yu, Y. Zhang, and J. Ren, “Aldehyde dehydro-
genase 2 (ALDH2) rescues myocardial ischaemia/reperfusion
injury: role of autophagy paradox and toxic aldehyde,”European
Heart Journal, vol. 32, no. 8, pp. 1025–1038, 2011.

[25] C.-H. Chen, G. R. Budas, E. N. Churchill, M.-H. Disatnik,
T. D. Hurley, and D. Mochly-Rosen, “Activation of aldehyde
dehydrogenase-2 reduces ischemic damage to the heart,” Sci-
ence, vol. 321, no. 5895, pp. 1493–1495, 2008.

[26] S. Ravi, M. S. Johnson, B. K. Chacko et al., “Modification of
platelet proteins by 4-hydroxynonenal: Potential Mechanisms
for inhibition of aggregation and metabolism,” Free Radical
Biology & Medicine, vol. 91, pp. 143–153, 2016.

[27] L. Fang, X.-L. Moore, A. M. Dart, and L.-M. Wang, “Systemic
inflammatory response following acute myocardial infarction,”
Journal of Geriatric Cardiology, vol. 12, no. 3, pp. 305–312, 2015.

[28] M. M. Averill, C. Kerkhoff, and K. E. Bornfeldt, “S100A8 and
S100A9 in cardiovascular biology and disease,” Arteriosclerosis,
�rombosis, and Vascular Biology, vol. 32, no. 2, pp. 223–229,
2012.

[29] R. D. Shah, C. Xue, H. Zhang et al., “Expression of calgranulin
genes S100A8, S100A9 and S100A12 is modulated by n-3 PUFA
during inflammation in adipose tissue and mononuclear cells,”
PLoS ONE, vol. 12, no. 1, Article ID e0169614, 2017.

[30] C. Kerkhoff, C. Sorg, N. N. Tandon, and W. Nacken, “Interac-
tion of S100A8/S100A9-Arachidonic acid complexes with the
scavenger receptor CD36 may facilitate fatty acid uptake by
endothelial cells,” Biochemistry, vol. 40, no. 1, pp. 241–248, 2001.

[31] P. Zhao, M. Wu, H. Yu et al., “Serum S100A12 levels are
correlated with the presence and severity of coronary artery
disease in patients with type 2 diabetes mellitus,” Journal of
Investigative Medicine: �e official publication of the American
Federation for Clinical Research, vol. 61, no. 5, pp. 861–866, 2013.

[32] O. S. Cotoi, P. Dunér, N. Ko et al., “Plasma S100A8/A9 correlates
with blood neutrophil counts, traditional risk factors, and
cardiovascular disease in middle-aged healthy individuals,”
Arteriosclerosis, �rombosis, and Vascular Biology, vol. 34, no.
1, pp. 202–210, 2014.

[33] A. Hirata, K. Kishida, H. Nakatsuji, A. Hiuge-Shimizu, T.
Funahashi, and I. Shimomura, “High serum S100A8/A9 levels
and high cardiovascular complication rate in type 2 diabetics
with ultrasonographic low carotid plaque density,” Diabetes
Research and Clinical Practice, vol. 97, no. 1, pp. 82–90, 2012.

[34] S. M. Awad, D. A. Attallah, R. H. Salama, A. M. Mahran, and
E. Abu El-Hamed, “Serum levels of psoriasin (S100A7) and
koebnerisin (S100A15) as potentialmarkers of atherosclerosis in
patientswith psoriasis,”Clinical and Experimental Dermatology,
vol. 43, no. 3, pp. 262–267, 2018.

[35] S. Shi and J.-L. Yi, “S100A8/A9 promotes MMP-9 expression In
the fibroblasts from cardiac rupture after myocardial infarction
by inducing macrophages secreting TNF𝛼,” European Review
for Medical and Pharmacological Sciences, vol. 22, no. 12, pp.
3925–3935, 2018.

[36] A. M. Van Der Laan, E. N. Ter Horst, R. Delewi et al.,
“Monocyte subset accumulation in the human heart following
acute myocardial infarction and the role of the spleen as
monocyte reservoir,” European Heart Journal, vol. 35, no. 6, pp.
376–385, 2014.

[37] K. E. Hally, A. C. La Flamme, P. D. Larsen, and S. A. Harding,
“PlateletToll-like receptor (TLR) expression andTLR-mediated

platelet activation in acute myocardial infarction,” �rombosis
Research, vol. 158, pp. 8–15, 2017.

[38] G. Novo, F. Cappello, M. Rizzo et al., “Hsp60 and heme
oxygenase-1 (Hsp32) in acute myocardial infarction,” Trans-
lational Research: �e Journal of Laboratory And Clinical
Medicine, vol. 157, no. 5, pp. 285–292, 2011.

[39] V. I. Pavlov, M.-O. Skjoedt, Y. S. Tan, A. Rosbjerg, P. Garred,
andG. L. Stahl, “Endogenous andnatural complement inhibitor
attenuates myocardial injury and arterial thrombogenesis,”
Circulation, vol. 126, no. 18, pp. 2227–2235, 2012.

[40] M.-H. Bao, X. Feng, Y.-W. Zhang, X.-Y. Lou, Y. U. Cheng,
and H.-H. Zhou, “Let-7 in cardiovascular diseases, heart devel-
opment and cardiovascular differentiation from stem cells,”
International Journal of Molecular Sciences, vol. 14, no. 11, pp.
23086–23102, 2013.

[41] T. Seeger, Q.-F. Xu,M.Muhly-Reinholz et al., “Inhibition of let-7
augments the recruitment of epicardial cells and improves car-
diac function after myocardial infarction,” Journal of Molecular
and Cellular Cardiology, vol. 94, pp. 145–152, 2016.

[42] M.-L. Guo, L.-L. Guo, and Y.-Q. Weng, “Implication of
peripheral blood miRNA-124 in predicting acute myocardial
infarction,” European Review for Medical and Pharmacological
Sciences, vol. 21, no. 5, pp. 1054–1059, 2017.

[43] M. Zhang, Y.-J. Cheng, J. D. S. Sara et al., “Circulating
microRNA-145 is associated with acute myocardial infarction
and heart failure,” Chinese Medical Journal, vol. 130, no. 1, pp.
51–56, 2017.

[44] H. Gao, R. R. Guddeti, Y. Matsuzawa et al., “Plasma levels of
microRNA-145 are associated with severity of coronary artery
disease,” PLoS ONE, vol. 10, no. 5, Article ID e0123477, 2015.

[45] F. Cipollone, L. Felicioni, R. Sarzani et al., “A uniqueMicroRNA
signature associated with plaque instability in humans,” Stroke,
vol. 42, no. 9, pp. 2556–2563, 2011.

[46] X. Lin, P. Peng, L. Cheng et al., “A natural compound induced
cardiogenic differentiation of endogenous MSCs for repair of
infarcted heart,”Differentiation, vol. 83, no. 1, pp. 1–9, 2012.


