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A B S T R A C T   

Objectives: Combination therapy of lenvatinib and immune checkpoint inhibitors (CLICI) has emerged as a 
promising approach for managing unresectable hepatocellular carcinoma (HCC). However, the response to such 
treatment is observed in only a subset of patients, underscoring the pressing need for reliable methods to identify 
potential responders. 
Materials & methods: This was a retrospective analysis involving 120 patients with unresectable HCC. They were 
divided into training (n = 72) and validation (n = 48) cohorts. We developed an interpretable deep learning 
model using multiphase computed tomography (CT) images to predict whether patients will respond or not to 
CLICI treatment, based on the Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST v1.1). We 
evaluated the models’ performance and analyzed the impact of each CT phase. Critical regions influencing 
predictions were identified and visualized through heatmaps. 
Results: The multiphase model outperformed the best biphase and uniphase models, achieving an area under the 
curve (AUC) of 0.802 (95% CI = 0.780–0.824). The portal phase images were found to significantly enhance the 
model’s predictive accuracy. Heatmaps identified six critical features influencing treatment response, offering 
valuable insights to clinicians. Additionally, we have made this model accessible via a web server at http://uhcc 
net.com/ for ease of use. 
Conclusions: The integration of multiphase CT images with deep learning-generated heatmaps for predicting 
treatment response provides a robust and practical tool for guiding CLICI therapy in patients with unresectable 
HCC.   

1. Introduction 

Combined treatment with lenvatinib and immune checkpoint in
hibitors (CLICI) improve the survival in unresectable hepatocellular 
carcinoma (HCC). [1,2] Despite these encouraging outcomes, the benefit 
of CLICI therapy extends to only a subset of patients, underscoring the 
need for early identification of likely responders. While imaging mo
dalities such as CT, MRI, and PET are crucial in assessing responses to 
CLICI by measuring tumor size, morphology, and metabolic activity, the 

intricacies of tumor biology and treatment effects, like 
pseudo-progression in immunotherapy, complicate response assess
ment. Current tumor response criteria, mainly RECIST and WHO (World 
Health Organization Criteria for Tumor Response), focus on tumor size 
and may not adequately capture the effects of treatments, nor account 
for HCC heterogeneity and imaging complexity, leading to challenges in 
accurate prediction of therapeutic outcomes. [3] Thus, developing and 
validating a novel method for early prediction of CLICI treatment re
sponses is imperative for identifying patients who stand to gain the most, 
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offering significant clinical value. 
The application of analytical methods for predicting cancer out

comes using clinical imaging has significantly increased in interest, 
especially with the incorporation of artificial intelligence technologies. 
Convolutional Neural Networks (CNNs), a branch of artificial intelli
gence technology that excels at identifying visual patterns in images, 
have demonstrated their effectiveness through successful deployments 
in multiple oncology fields. [4–6] Studies utilizing CNNs to analyze CT 
data have underscored the efficacy of deep learning in facilitating cancer 
diagnosis, [7] subtype classification, [8] and metastasis. [9] More recent 
investigations have expanded the scope of deep learning’s applicability, 
demonstrating its capacity to predict therapeutic outcomes across a 
range of treatments, including chemotherapy and chemoradiotherapy, 
[10,11] targeted therapy, [12] and immunotherapy. [13,14] Despite 
these advancements, the specific application of deep learning for pre
dicting responses to CLICI in patients with HCC has yet to be explored, 
representing a significant gap in the current research landscape. 

Several studies have reported the use of CT imaging and deep 
learning technologies for clinical applications in HCC, such as diagnosis 
and grading. [15,16] owever, these studies have not utilized multiphase 
CT images. Multiphase CT imaging provides a more comprehensive 
analysis by capturing liver cancer from various perspectives, thereby 
enabling the extraction of intricate features that can highlight subtle 
variations. Such detailed analysis holds the potential to predict re
sponses to CLICI therapy in patients with unresectable HCC. Further
more, while several strategies [17–20] have been explored to enhance 
the predictive capabilities of deep learning models, the challenge of 
interpretability remains a significant barrier to their broader clinical 
adoption. An interpretable model is more meaningful to the user than 
just solely providing model prediction as this allows clinicians to better 
comprehend and evaluate the predictive process of the model. 

In this study, we designed a deep-learning model through multi- 
input convolutional network architecture aimed at predicting the 
response to CLICI therapy using pre-treatment multiphase CT images. 
Furthermore, we explored the contribution of each CT phase to the 
prediction accuracy through the attentional mechanism. Additionally, 
we generated characteristic heat maps correlated with the model’s 
predictions. These heat maps enable clinicians to visually identify and 
concentrate on relevant areas of interest, thereby enhancing their un
derstanding of the model’s predictive process and its potential clinical 
utility. 

2. Materials and methods 

2.1. Patients 

This retrospective study was approved by the ethical committee of 
Guangxi Medical University Cancer Hospital (LW2023054). Patient 
consent was waived due to the retrospective nature of the study. 

This study retrospectively enrolled consecutive patients who 
received lenvatinib plus immune checkpoint inhibitors (ICIs) treatment 
for patients with unresectable HCC between January 2019 and July 
2022 at Guangxi Medical University Cancer Hospital, Nanning, China. 
The inclusion criteria were as follows: (1) patients with unresectable 
HCC who were not suitable or refused to receive hepatic resection, 
ablation, radiotherapy, or transarterial therapy (patients who have 
previously received the above treatments meet the inclusion criteria), 
(2) received lenvatinib plus ICIs therapy, (3) patients who had at least 
one measurable lesion as defined by revised RECIST v1.1, [21] (4) pa
tients with Child–Pugh class A or B liver function, an Eastern Coopera
tive Oncology Group (ECOG) performance status of 0 or 1, and adequate 
organ function at the time of receiving lenvatinib plus ICIs therapy, (5) 
patients who had a dynamic enhanced CT imaging study performed 
within one month prior to initiation of lenvatinib plus ICIs therapy and 
at least one month after initiation of lenvatinib plus ICIs to evaluate the 
treatment response, and (6) patients with an observation period of at 

least two months. Patients with incomplete medical information, lost to 
follow-up, a treatment duration of lenvatinib less than one month, or 
without an enhanced CT scan at baseline were excluded (Fig. 1). 

Treatment responses were categorized into four groups as per 
RECIST v1.1: complete response (CR), partial response (PR), stable 
disease (SD), and progressive disease (PD). Leveraging HCC specialists’ 
insights, specific criteria were established to categorize patients using 
the ORR. Accordingly, patients exhibiting CR or PR were deemed re
sponders, whereas those with SD or PD are considered non-responders. 
In cases involving multiple lesions, the largest intrahepatic tumor is 
designated as the "target lesion," while the remaining tumors are clas
sified as "non-target lesions." In the evaluation process, CR and PR are 
primarily assessed by examining the "target lesion." However, the 
determination of PD involves a comprehensive evaluation of both 
intrahepatic and extrahepatic lesions. PD is confirmed if any new lesion 
emerges, or if the "target lesion" exhibits an increase of 20% or more, 
regardless of the lesion’s location. 

2.2. Therapeutic regimens 

Patients with unresectable HCC were administered oral lenvatinib 
(Levima®, Eisai, Tokyo, Japan) at a dose of 8 mg/day for patients 
< 60 kg or 12 mg/day for those ≥ 60 kg plus ICIs therapy. In this 
retrospective study, ICIs included tislelizumab (BGB-A317, BeiGene), 
camrelizumab (SHR-1210, Jiangsu HengRui Medicine Co., Ltd.), sinti
limab (IBI308, Innovent Biologics [Suzhou] Co. Ltd.), and toripalimab 
(triprizumab, JS001, Shanghai Junshi Biosciences Co., Ltd.), with dose 
and duration according to the manufacturer’s guidelines. All patients 
with positive hepatitis B antigen or hepatitis B virus DNA received 
tenofovir or entecavir antiviral therapy. [22,23]. 

2.3. CT methods 

The CT acquisition parameters are presented as follows: the acqui
sition encompassed three distinct phases for preprocessing liver CT 
scans—namely, the plain scan phase, the arterial phase, and the portal 
phase. The arterial phase was initiated approximately 90 s following the 
plain scan, while the portal phase commenced 60 s subsequent to the 
arterial phase. The administration of the contrast agent, iodixanol (300 
mgI/mL), occurred immediately after the plain scan, with a dosage of 
1.5 mL/kg. This was injected into the antecubital vein using a high- 
pressure injector, maintaining a flow rate of 3.5 mL/s. CT scans were 
performed for all study participants within one month prior to the 
initiation of CLICI treatment, utilizing Siemens Somaton Sensation 64- 
slice MSCT and GE Discovery 750 HD CT scanners (Scanning parame
ters: tube voltage 120 kV, tube current 250 mAs, layer thickness 5 mm, 
layer spacing 5 mm, pitch 0.8, matrix 512 ×512). CT images were ac
quired while patients maintained an inspiration breath-hold following 
the contrast injection. All scans adhered to the facilities’ established CT 
chest protocols and utilized standard image reconstruction techniques. 
Only the axial-phase images were used for subsequent analysis. 

2.4. Preprocessing of CT images 

In the development of our model, three phases of CT image slices that 
encompassed the entire liver were identified as regions of interest (ROI). 
All CT image slices were size of 224 × 224. Considering the range of 
values across all CT image slices extended from − 1024 to 2000, a 
comprehensive normalization process was imperative. The normaliza
tion was conducted using the following steps: a common window width 
of 400 and window bit of 0 were selected. Then, truncation normali
zation was adopted, where the window width minus the window posi
tion (minimum and maximum) of the ROI was used to truncate the gray 
range, and the resulting values were normalized to [0,1]. 
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2.5. Model development 

Fig. 2a illustrates the detailed architecture of a multi-pathway deep 
learning network, engineered for the analysis of multiphase CT images. 
Initially, the network individually processes each imaging sequence. The 
ResNet-18 model, pre-trained and fine-tuned via transfer learning from 
the ImageNet dataset, forms the basis. It is then enhanced with several 
convolutional layers equipped with BatchNorm and ReLU activations. At 
each pathway’s end, 1 × 1 two-dimensional average pooling layers 
compile spatial features. These features are integrated across pathways 
to create a comprehensive multiphase feature vector. To emphasize 
crucial features, the combined output feeds into a self-attention layer, 
facilitating dynamic interaction among inputs to prioritize key features 
within each phase. The network predicts the CLICI response using two 
fully connected layers and a softmax function, aiming to minimize 
softmax cross-entropy loss. Dropout at a probability of 0.5 is applied 
across the fully connected layers to mitigate overfitting. 

Our models were developed using the PyCharm (version 2022.1.3) 
deep-learning framework on a computer equipped with dual Intel Xeon 
CPUs (Gold 6230, 2.1 GHz) and Tesla T4 GPUs for training and valida
tion. We utilized an ADAM optimizer with a batch size of 20 and an 
initial learning rate of 0.0001, which was halved every 50 epochs. 
Training was capped at 13,000 iterations, employing early stopping 
based on loss and accuracy improvement to halt the process. To enhance 
model robustness, we augmented the training data with Gaussian noise, 
blur, brightness and contrast adjustments, and image rotations ranging 
from − 20◦ to 20◦, all chosen randomly within specific ranges. Consid
ering the unique phases of computed CT imaging, specifically the plain 
scan phase, arterial phase, and portal vein phase, along with their in
tegrated combinations, we developed models across uniphase, biphase, 
and multiphase frameworks. These deep-learning models were trained 
to autonomously analyze CT images and determine the corresponding 
response. 

2.6. Predicting patient in distinct therapeutic response groups through 
model 

For each patient, ROI slices were analyzed across multiphase 
consecutive slices, extracting features from each slice. Each slice was 
treated as an individual sample and fed into the model to predict a label. 
We employed a decision-making approach known as the B-voting 
strategy to categorize subjects into appropriate groups, based on a ma
jority vote among the labels of CT slices per subject. Consequently, a 
patient’s subgroup was determined by the predominant label across 
their ROI slices. For example, if the ROI slices of a patient received labels 
0, 1, 1, 1, 0 (where 1 indicates a response and 0 indicates no response), 
the B-voting strategy would classify the patient as 1, suggesting a pre
dicted positive response to CLICI. This workflow is succinctly outlined in 
Fig. 2b. 

2.7. Interpretability of the deep learning models 

To enhance clinicians’ insights into the model’s rationale for its 
response predictions, we employed a gradient-weighted class activation 
mapping (Grad-CAM) approach [24] as a method to produce a heatmap 
from the final convolutional layer of a test image. This method enables 
the generation of a heatmap that aligns in size with the convolutional 
feature map, thereby facilitating the visualization of the model’s 
decision-making process. We adjusted the grid size to correspond with 
the original dimensions of the CT image and then carefully super
imposed the relevant image patches, providing a detailed and intuitive 
depiction of the areas that influence the model’s predictions. 

2.8. Statistical analysis 

The efficacy of the models’ classification performance was appraised 
through the computation of AUC values, with comparisons drawn uti
lizing Delong’s test accompanied by binomial exact confidence in
tervals. To elucidate the impact of each phase image on the models, key 
metrics including accuracy, precision (positive predictive value), recall 

Fig. 1. Flowchart of the selected study patients.  
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(sensitivity), and the F1-score (the harmonic mean of recall and preci
sion) were determined for each model. For the estimation of confidence 
intervals pertaining to sensitivity and specificity, data underwent 1000 
bootstrap resampling procedures. A threshold of P < 0.05 was estab
lished to denote statistical significance. All statistical analyses were 
conducted using standard statistical software (IBM SPSS, version 26.0). 

2.9. Model comparison 

Given the effectiveness of pre-trained models trained on large 

datasets in various medical image classification tasks, we used popular 
CNN models such as MobileNetV3, VGG19, ResNet34, and ResNet50 to 
compare their performance. These baseline models, pre-trained with 
ImageNet dataset parameters through transfer learning, were meticu
lously fine-tuned on a multiphase CT image dataset, specifically 
designed for three-input classification tasks. Parameter optimization for 
these baseline models was performed using grid search, and they were 
trained using cross-entropy loss function and Adam optimizer. To pre
vent overfitting, the training employs early stopping, which halts the 
process based on the lack of improvement in loss and accuracy observed 

Fig. 2. (a)The schematic deep-learning architecture of multi-input convolutional network is shown. (b）The flowchart displays the process of prediction, where 
features were extracted for each CT slice. 

N.-Q. Liao et al.                                                                                                                                                                                                                                 



Computational and Structural Biotechnology Journal 24 (2024) 247–257

251

on the validation set. 

3. Results 

3.1. Patients’ characteristics 

Patients within the development dataset were randomly allocated to 
either the training or validation set, as depicted in (Fig. 1). Deep learning 
models aimed at predicting the response to CLICI in patients with 
unresectable HCC were crafted using a dataset comprising 10,815 CT 
images from 120 patients who underwent live CT scans. The de
mographic and clinical characteristics of these patients are detailed in  
Table 1, revealing no significant disparities between the training and 
validation cohorts. The ORR (responders), based on RECIST 1.1, were 
observed at 27.8% in the training set and 27.1% in the validation set, 
respectively. 

3.2. Performance of deep learning models 

The multi-pathway deep CNN was meticulously designed, incorpo
rating a convolution operator that enabled the network to extract 
informative features within each pathway (Fig. 2). Using the Grad-CAM 
technique, features from the terminal convolutional layer of each 
pathway were harnessed to create a heatmap for each phase image. To 
identify the most effective base CNN architecture, we evaluated the 
performance of ResNet-18 in comparison with other prevalent CNN 
models such as VGG19, [25] ResNet-50 [26] and Mobilenetv3, [27] 
using only uniphase data (the portal phase). As shown in Fig. 3a, 
ResNet-18 achieved the best performance with less complexity. 

We introduced a self-attention-based multiway model to fine-tune 
the weighting of live image features. To rigorously test its effective
ness, we carried out ablation studies comparing models with and 
without the self-attention mechanism. This involved evaluating both our 
multiphase model and the CV model (our highest-performing biphase 
model trained on datasets including plain scan and portal phase images) 
against each other in terms of AUC on the validation set. As depicted in 
Fig. 3b, incorporating self-attention significantly enhanced model per
formance, yielding an AUC greater than 0.70—noticeably superior to 
the 0.60–0.70 AUC of models lacking this feature. On average, models 
with self-attention outperformed their counterparts by a margin of 9.2% 

in AUC. 
Table 2 and Fig. 4 illustrate the performance outcomes. Our multi

phase model, incorporating plain scan (C), arterial (A), and portal (V) 
phases, demonstrated the highest prediction accuracy for CLICI response 
in the validation set, achieving an AUC of 0.802. To assess comparative 
predictive performance, we also developed several biphase models with 
varying phase combinations. The ROC curves displayed in Fig. 4a for 
these models reveal that the CV-based model attained an AUC of 0.760, 
the AV model reached 0.740, and the AC model, showing the lowest 
efficacy among the biphase models, registered an AUC of 0.719. 

3.3. Phase importance 

As depicted in Fig. 4, we assessed the impact of individual phases on 
model performance. The V phase emerged as the most effective, 
achieving superior metrics (AUC = 0.719, ACC = 0.671, Precision =
0.823, Recall = 0.705) compared to the A and C models (AUCs = 0.708 
and 0.688, ACCs = 0.637 and 0.640, Precisions = 0.786 and 0.743, 
Recalls = 0.697 and 0.696, respectively). Among dual-phase models, 
combinations including the V phase (VA and VC) demonstrated 
enhanced performance over the AC model, which lacks the V phase. 
Specifically, VA excelled in all evaluated metrics (AUC = 0.740, Preci
sion = 0.779, Recall = 0.818, F1 = 0.786), while VC surpassed AC in 
three metrics (AUC = 0.760, Recall = 0.762, F1 = 0.775). Removing the 
V phase significantly impacted the models, with the AUC of CV dropping 

Table 1 
Patient baseline demographic and clinical characteristics.  

Variables Training set, 
n = 72 (%) 

Validation set, 
n = 48 (%) 

P 
value 

Age, median, yrs 48 (26-72) 47 (37-63)  0.824 
Female 11 (15.2) 10 (20.8)  0.547 
Hepatitis B surface antigen, 

positive 
62 (86.1) 38 (79.2)  0.273 

α-fetoprotein, ≥ 200 ng/mL 42 (58.3) 30 (62.5)  0.710 
Platelet, ≥ 100 × 109/L 57 (79.2) 40 (83.3)  0.780 
Child-Pugh grade    0.838 
A 52 (72.2) 34 (70.8)   
B 20 (27.8) 14 (29.2)   
Tumor size    0.780 
< 5 cm 30 (41.6) 18(37.5)   
≥ 5 cm 42 (58.4) 30 (62.5)   
Tumor number    0.386 
Single 23 (31.9) 20 (41.7)   
Multiple 49 (68.1) 28 (58.3)   
Macrovascular invasion, 

present 
50 (69.4) 34 (70.8)  0.843 

Extrahepatic metastases, 
present 

32 (44.4) 18 (37.5)  0.646 

Tumor responses    0.572 
CR 1 (1.4) 0 (0)   
PR 19 (26.4) 13 (27.1)   
SD 29 (40.3) 20(41.7)   
PD 23 (31.9) 15 (31.2)    

Fig. 3. (a)A total of four deep convolutional neural networks were further 
compared, including VGG19, Mobilenetv3, ResNet50, ResNet18. (b)AUC dis
tribution for self- attention and no self- attention in multiphase model and the 
biphase model. The horizontal line represents the median AUC, and the boxes 
represent the first and third quartiles. 

N.-Q. Liao et al.                                                                                                                                                                                                                                 



Computational and Structural Biotechnology Journal 24 (2024) 247–257

252

Table 2 
The performance of model in the training set and validation set.  

Model Training set (n = 72)  Validation set (n = 48) 

AUC (95%CI) Accuracy Sensitivity Specificity  AUC (95%CI) Accuracy Sensitivity Specificity 

V 0.923 (0.864–0.985)  0.929  0.880  0.929  0.719 (0.620–0.818)  0.671  0.706  0.794 
C 0.874 (0.830-0.918)  0.894  0.867  0.894  0.688 (0.633-0.743)  0.640  0.692  0.777 
A 0.908 (0.843-0.973)  0.910  0.890  0.910  0.708 (0.626-0.790)  0.637  0.698  0.650 
AV 0.937 (0.890-0.984)  0.926  0.871  0.926  0.740 (0.675-0.805)  0.682  0.810  0.816 
AC 0.931 (0.901-0.961)  0.930  0.866  0.930  0.719 (0.684-0.754)  0.689  0.715  0.742 
CV 0.919 (0.887-0.951)  0.928  0.901  0.928  0.760 (0.716-0.804)  0.664  0.760  0.780 
Multi 0.956 (0.931-0.981)  0.941  0.899  0.941  0.802 (0.753-0.851)  0.725  0.829  0.803 

(Model V: portal phase, Model C: plain scan phase, Model A: arterial phase, Model AV: arterial phase + portal phase, Model AC: arterial phase +plain scan phase, Model 
CV: plain scan phase +portal phase, Model Multi: portal phase+ arterial phase +plain scan phase) 

Fig. 4. (a)The ROC curve of the three models is presented for the validation set. (b)Shows all 4 evaluation metrics (accuracy, precision recall, and F1-score) for the 
possible combinations of phases. 
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from 0.760 to 0.688 and AV from 0.802 to 0.719. 

3.4. Heatmaps for understanding deep-learning models results- predicting 

We introduced heatmaps into our analysis to spotlight regions crucial 
for prediction accuracy, as depicted in Fig. 5a. These visual guides aid in 
understanding the ROI across different CT imaging phases, highlighting 
their potential clinical importance (Fig. 5b-m). In the arterial phase 
images, four key areas emerged as significant predictors for CLICI 
response in unresectable HCC: necrosis, tumor heterogeneity, intra
hepatic multifocal tumors, and areas adjacent to transarterial chemo
embolization (TACE) iodide. For plain scan phase images, the heatmaps 
showcased vasculature, tumor, and peritumoral regions, with a specific 
focus away from intrahepatic multifocal tumors and areas adjacent to 
TACE iodide. When analyzing portal phase images, the model similarly 
identified tumor and peritumoral regions, tumor heterogeneity, intra
hepatic multifocal tumors, and regions near TACE iodide as crucial for 
predicting CLICI response. 

3.5. Comparison with other baseline models 

During the model’s initial development phase, to find the most 
effective CNN architecture, we evaluated ResNet-18 against other pop
ular CNN models using only the uniphase (portal phase). To delve 
deeper into our model’s performance, we compared the top-performing 
multiphase model (ResNet18) with other baseline models (Mobilenetv3, 
VGG19, ResNet34, and ResNet50) using three phases of CT images on 
the validation set. The metrics of ResNet18 on the validation set were 
0.802(0.753–0.851) (AUC (95%CI)), 0.725(Accuracy), 0.829(Sensi
tivity), 0.803(Specificity). The multiphase model (ResNet18) surpassed 
all other baseline models in performance metrics, demonstrating its 
superior robustness. (Table 3). 

3.6. Development of a webserver platform for models 

We’ve developed a user-friendly web platform for predicting thera
peutic responses in CT images, available at http://uhccnet.com/. Built 
with Vue3 for the frontend and Django for the backend, this server 
supports our trained models, enabling the creation of sophisticated 
analytical applications. It’s tailored for the analysis of CT images to 
forecast responses to CLICI treatment in unresectable HCC. Users can 
upload DICOM-formatted CT images across three phases. With a simple 
click on the ’Submit’ button, the system activates the models to process 
the data. It then provides predictions of response or no response by 
integrating and analyzing input from multiphase CT images (Fig. 6). 

4. Discussion 

This study leveraged CT images from three distinct phases—plain 
scan, arterial, and portal—to enhance liver feature extraction and 
develop a robust prediction model. Our approach encompassed uni
phase, biphase, and multiphase models, tailored for potential clinical 
applicability. Our prediction model effectively integrates these three CT 
phases to anticipate the CLICI response in unresectable HCC before 
treatment, showing exceptional performance on validation set. The 
multiphase model, in particular, significantly outperformed the uni
phase and biphase models, underscoring the clinical utility of multi
phase CT images in predicting unresectable HCC’s response to CLICI 
treatment. Furthermore, the findings suggest that the V phase is a crucial 
catalyst for predicting CLICI response. We posit that this empirical 
advantage arises from the V phase’s ability to convey more extensive 
information about HCC and its environment relative to the C and A 
phases, which enhances the model capacity to represent and interpret 
data effectively. Heatmaps, providing explainability, revealed six key 
features crucial for predicting CLICI response in unresectable HCC, 
including necrosis, vasculature, tumor heterogeneity, tumor and 

peritumoral regions, intrahepatic multifocal tumors, and tumor regions 
surrounding TACE iodide. These results underscore deep learning’s 
ability to capture the complex spatial variability of tumors and the 
impact of the tumor microenvironment on immune sensitization. By 
providing such detailed insights, deep learning enhances its clinical 
relevance, helping clinicians identify key areas of interest and thereby 
facilitating more informed clinical decisions. 

The CLICI has shown increasing efficacy in treating unresectable 
HCC. [1,2,28] Nevertheless, the necessity for a reliable, non-invasive 
method to forecast treatment effectiveness remains crucial for select
ing appropriate candidates. While MRI is esteemed for its soft tissue 
resolution in assessing HCC, its limitations—cost, speed, availability, 
and patient contraindications—render CT scans a more accessible, faster 
alternative. [29] Multiphase CT images, capturing diverse liver changes, 
allow for a comprehensive feature extraction, underlining the potential 
of deep-learning models based on these images for clinical use. 

Many previous studies have employed prior knowledge as attention 
to guide feature extraction. [30] And when it comes to live CT images, it 
is unreasonable to extract information from each phase of CT images 
equally, as this inevitably reduces the attention directed towards the 
diseased region. Our study employed a multi-pathway deep learning 
approach, incorporating a self-attention mechanism to refine feature 
discrimination across multiphase models without the need for manual 
segmentation. Demonstrating effectiveness, with AUC surpassing 0.802, 
our methodology marks a significant advancement in forecasting re
sponses to CLICI treatment, similar to a prior study predicting treatment 
response in gastric cancer using deep learning features. [31] This also 
aligns with findings in some studies where deep learning prediction 
models outperform handcrafted signature models in terms of identifi
cation capabilities. [32] On the other hand, we conducted a performance 
comparison between the multiphase model and other baseline models to 
demonstrate the superior reliability and robustness of our model. 

Our evaluation explored each CT phase’s importance in predicting 
therapeutic responses, aiming to clarify the model’s decision-making 
process. Notably, the V phase is the key to significantly enhance the 
model performances. While dual-phase applications generally improved 
results over single-phase models, the standalone V phase model’s per
formance matched that of combining C and A phases. The V phase 
model’s precision and recall not only exceeded those of single-phase 
models but also outperformed CV and AC biphase configurations. 

Radiologists believe that, the V phase offers a more precise obser
vation of HCC when compared to the A and C phases. This superior 
accuracy stems from the tendency of C phase images to be compromised 
by fatty liver, which can obscure lesion visibility. Although most HCC 
lesions are significantly enhanced during the A phase, it may fail to 
highlight a small subset of lesions as effectively. Additionally, the 
presence of hepatic cirrhosis nodules and uneven blood perfusion can 
affect the observation of lesions in A phase. Unlike A and C phases, V 
phase, on the other hand, shows HCC lesions with a relatively lower 
density compared to normal liver parenchyma, reducing the impact of 
fatty liver and uneven blood perfusion. This phase also allows for the 
identification of more lesions relative to both the A phase and C phase. 
[33] Currently, the V phase is valuable in the histological grading of 
HCC [34] and the recognition of HCC differentiation levels. [35] Studies 
have revealed that V phase can reveal evidence of liver disease in most 
patients [36] and assess the effectiveness of TACE treatment. [37] 
Moreover, compared to the A phase, the V phase can more accurately 
predict the survival rates of patients undergoing surgical resection for 
HCC [38] and those with advanced HCC receiving sorafenib treatment. 
[39] The above findings indicate that V phase has a superior advantage 
in reflecting the imaging information of HCC patients, thereby making a 
critical contribution to the development of models. 

The inherent opacity of deep learning models presents a challenge in 
clinical trust. [40] Research indicates that models offering interpret
ability not only boost clinicians’ confidence in diagnosis but also provide 
valuable educational feedback, benefiting those less specialized, such as 
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Fig. 5. (a) The workflow of the heatmap generation process is shown. For each patient, information was extracted from three CT images, including plain scan phase, 
arterial phase and portal phase, and corresponding heatmaps were generated. (b)-(m) Examples of regions with potential clinical value for predicting the response of 
unresectable HCC to CLICI treatment in the validation set are shown. In each set of images, the 1st row shows raw image, the 2nd row shows corresponding heatmap. 
(b)-(e)the arterial phase images, (f)-(i) the plain scan phase images. (j)-(m)the portal phase images. The highlighted six regions include necrosis (b), vasculature (f), 
tumor heterogeneity (c,k), tumor and peritumoral regions (g,j), intrahepatic multifocal tumors (d,h,l), and tumor regions surrounding TACE iodide (e,i,m). 
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general radiologists and non-radiologist clinicians. [41] To enhance our 
model’s potential clinical applicability, we’ve incorporated explain
ability features like heatmaps, making the decision-making process 
more transparent to human experts. Heatmaps give clinicians a visual 
representation of the model’s predictive insights, aiding in clinical 
decision-making. These heatmaps highlight six key features—necrosis, 
vasculature, tumor heterogeneity, tumor and peritumoral regions, 
intrahepatic multifocal tumors, and tumor regions surrounding TACE 
iodide—essential for predicting CLICI response in unresectable HCC. 

Studies have revealed that necrosis is a constituent of complex 
intratumoral components that may stimulate the immune system. [42] 
Tumor heterogeneity could contribute to the survival of HCC and 
facilitate the treatment of CLICI. [43,44] The vasculature can be 
partially explained by the fact that lenvatinib is known to be anti
angiogenic, primarily interacting with VEGF. [45] Consequently, it may 
be more effective in tumors with ample blood supply and high degrees of 
enhancement. Neutrophil infiltration in the peritumoral region of HCC is 
widely distributed around the cancer, rather than within the cancer it
self. Peritumoral infiltration from the cancer center can potentially 
impact the aggregation and immune function of immune cells, thus 
influencing the prognosis. [46] Furthermore, the peritumoral region is 
associated with anti-PD-1 therapy for patients with HCC. [47] Intra
hepatic multifocal tumors, characterized by genetic diversity with 
multiple clonal origins, exhibits strong metastatic potential and multiple 

metastatic patterns, especially linear and parallel diffusion models, 
leading to a poor prognosis. [48,49] The spatial relationship between 
TACE iodide deposits and the tumor could be a critical determinant, as 
prior TACE iodide therapy has been shown to elicit immune responses 
within and around the tumor in HCC. Research further suggests that the 
presence of tumor-associated antigen responses tends to be more pro
nounced in patients who have undergone pre-treatment with TACE. [50] 
Therefore, it is believed that there are positive antigens that play a role 
in patient selection for unresectable HCC in CLICI therapy. 

This critical insight underscores the significant role these factors play 
in selecting patients for CLICI therapy in unresectable HCC. The heat
maps serve as crucial tools for identifying key patient characteristics, 
offering insights that help clinicians identify areas of concern in the 
predictive model’s process. These features deepen understanding of the 
model’s outcomes and aid in interpreting highlighted regions’ signifi
cance. Future work will aim to enlarge dataset sizes for a more 
comprehensive evaluation of interpretable AI systems’ benefits. Despite 
the ongoing development of interpretability in deep learning, our 
methodology shows great promise in improving clinical decision- 
making. 

We have developed a web server with the hope that it can serve as a 
preliminary exploratory analysis tool for researchers with data akin to 
ours, allowing for the testing and comparison of their data or model 
predictions. Paramount to us is the protection of patient privacy in the 
operation of this web server. To this end, we have enacted stringent 
security protocols to encrypt and safeguard patient information, in strict 
compliance with both international and regional data protection stat
utes, including the General Data Protection Regulation (GDPR) and the 
Health Insurance Portability and Accountability Act (HIPAA). In terms 
of regulation, our web server’s development and its open utilization 
align with the pertinent regulatory standards for health information 
technology, ensuring, through ongoing dialogue with regulatory 
agencies, that our platform adheres to all relevant medical norms and 
directives. 

Table 3 
Performance comparison of baseline models using multiphase CT images on 
validation set.  

Model AUC (95%CI) Accuracy Sensitivity Specificity 

VGG19 0.732 (0.710–0.754)  0.692  0.763  0.738 
Mobilenetv3 0.764 (0.728-0.800)  0.701  0.787  0.746 
ResNet34 0.789 (0.742-0.836)  0.718  0.809  0.795 
ResNet-50 0.771 (0.730-0.812)  0.722  0.811  0.784 
ResNet-18(ours) 0.802 (0.753-0.851)  0.725  0.829  0.803  

Fig. 6. The content of webserver.  
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Our study is subject to several limitations: (1) The current accuracy 
and sensitivity levels of our model require enhancement to fulfill clinical 
standards. We are committed to refining our model accordingly. (2) The 
patient data were sourced exclusively from a single hospital, restricting 
the breadth of our findings’ applicability. To bolster the model’s 
generalizability, future validations should incorporate data from mul
tiple healthcare institutions. (3) Although we employed data augmen
tation techniques to mitigate the effects of data scarcity and overfitting, 
these methods cannot perfectly emulate real-world physical phenomena 
and equipment settings. 

5. Conclusion 

In this study, these findings represent a significant advance in pre
dicting the response to chemoimmunotherapy in unresectable HCC 
using a deep-learning-based AI model. The integration of CT images and 
a user-friendly heatmap in the workflow has the potential to guide 
clinical practice in a prospective setting. In addition, we have developed 
a web server to make it more convenient to analyze CT images and 
predict therapeutic responses to CLICI in unresectable HCC. 
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