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Abstract: Immune activation is now understood to be fundamentally linked to intrinsic and/or extrinsic
metabolic processes which are essential for immune cells to survive, proliferate, and perform their
effector functions. Moreover, disruption or dysregulation of these pathways can result in detrimental
outcomes and underly a number of pathologies in both communicable and non-communicable
diseases. In this review, we discuss how the metabolism of carbohydrates and amino acids in
particular can modulate innate immunity and how perturbations in these pathways can result in
failure of these immune cells to properly function or induce unfavorable phenotypes.
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1. Carbohydrate and Amino Acid Metabolism

The field of immunometabolism has grown significantly over the past several decades, perhaps
driven by the realization that cellular metabolism is fundamental to the activation and effector function
of all cells within the body. While early links between immunity and metabolism were uncovered in the
late 1900s, it was not until the early 2000s when it was observed that macrophages within the adipose
tissue of obese mice exhibited an upregulation of inflammatory gene expression that this association
was fully appreciated [1,2]. Since then, detailed reports into the activation and effector function of these
adipose tissue-associated macrophages have paved the way to insights into how cellular metabolism
affects other immune cell subtypes as well as how these signaling cascades influence global changes
in these cells. Here, we discuss how carbohydrate and amino acid metabolism shape phenotypic
outcomes in innate immune cells.

1.1. Carbohydrate Metabolism

Perhaps the most well-known metabolic pathway is glycolysis. Glycolysis begins with the
acquisition of glucose through glucose transporters (e.g., GLUT1) (Figure 1). Upon entering the cell,
glucose is catalytically broken down in the cytosol via an ATP-dependent hexokinase reaction into
the first product of the glycolytic pathway glucose-6-phosphate (G6P). G6P is further metabolized
to the eventual final glycolytic product pyruvate, resulting in a net gain of 2 ATP [3,4]. In parallel
to glycolysis, G6P can also enter the pentose phosphate pathway (PPP) in the cytosol, where G6P
is converted into ribose for RNA synthesis, NADPH production and reactive oxygen species (ROS)
generation. This pathway is also necessary to reduce glutathione (GSH), an antioxidant and ROS
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scavenger that is crucial to protect pro-inflammatory immune cells from incurring damage from
increased ROS production [5]. In the oxidative phase, G6P is converted to ribulose-5-phosphate
by 6-phosphogluconate dehydrogenase (PGD) for NADPH production, which is not only used
by NADPH oxidase (NOX) to generate ROS [6], but is also utilized for fatty acid biosynthesis in
the prostaglandin production, plasma membrane synthesis, and phagocytic function in phagocytic
cells [7,8]. Furthermore, the generation of ribose-5-phosphate serves as a precursor for nucleotides
and amino acids, which have roles in many other biosynthetic functions that will be described below.
Pyruvate can enter the mitochondria and be catabolized by pyruvate dehydrogenase into acetyl-CoA.
Acetyl-CoA shuttles into the tricarboxylic acid (TCA) cycle as fuel for the production of citrate, isocitrate,
alpha-ketoglutarate (α-KG), succinyl-CoA, succinate, fumarate, malate, and oxaloacetate (Figure 1).
While successful completion of the TCA cycle and electron transport chain results in a net gain of 36
molecules of ATP, these TCA cycle intermediates are also known to participate in metabolic processes
outside of ATP production. Prominent examples of this are citrate and succinate metabolism. Citrate,
produced from oxaloacetate and acetyl-CoA, can escape the mitochondria through the mitochondrial
citrate carrier (SLC25A1). Once in the cytosol, citrate can be used in the production of nitric oxide (NO),
ROS, prostaglandin E2 (PGE2), and cytosol acetyl-CoA which are crucial for modulating inflammatory
responses [9,10]. Similarly, succinate entering the cytosol can be used as a cue to inhibit the activity of
HIF-1α prolyl hydroxylase (PHD) and aid HIF-1α-stabilization. This in turn, increases expression of
glycolytic machinery during inflammation [11,12]. Thus, TCA cycle is one point of disparity amongst
pro-inflammation and anti-inflammation in immune cells which will be discussed in detail below.
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Figure 1. Overview of major carbohydrate metabolic pathways. Carbohydrates are highlighted in
red with the major contributions of the respective pathways described in the brackets. ETC, electron
transport chain; F-1-P, fructose-1-phosphate; F-1,6-BP, fructose 1,6-bisphosphate; FAD, flavin adenine
dinucleotide; FAS, fatty acid synthase; FAO, fatty acid oxidation; GLS, glutaminase; GLUT1, glucose
transporter 1; NAD, nicotinamide adenine dinucleotide; OXPHOS, oxidative phosphorylation; PPP,
pentose phosphate pathway; SGLT1, sodium/glucose con-transporter 1; SLC1A5, neutral amino acid
transporter family 1 member 5; SLC2A5, neutral amino acid transporter family 2 member 5; TCA,
tricarboxylic acid cycle or Krebs cycle; UDPG, uridine diphosphate-glucose.
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TCA cycle generates the reducing equivalents NADH and FADH2 which are essential to support
the activity of mitochondrial respiratory chain, also known as the electron transport chain (ETC).
The ETC is composed of four large multiprotein complexes (complex I to IV), and two diffusible
electron carriers (cytochrome C and ubiquinone) in the inner membrane of mitochondrion. It is known
that Toll-like receptor (TLR) activation via tumor necrosis factor receptor-associated factor 6 (TRAF6)
translocation to the mitochondria interacts with evolutionarily conserved signaling intermediate in
the Toll pathway (ECSIT) to promote mitochondrial ROS (mtROS) production and the recruitment of
the mitochondria to phagosomes [13]. The complexes of the ETC except for complex II (or Succinate
dehydrogenase (SDH)) are able to form supercomplexes in the mitochondrial inner membrane which
limit excessive mtROS formation from the respiratory chain [14]. The oxidation of succinate into
fumarate by SDH is coupled to the reduction of ubiquinone (UQ) to ubiquinol (UQH2). However, high
levels of succinate oxidation favor the process of reverse electron transport (RET) at complex I, which
is associated with significant release of mtROS leading to oxidative damage and cell death [12,15].
Rotenone or the diabetic drug metformin can suppress the activity of ETC complex I and markedly
impair the production of mtROS, as well as IL-1β to abate inflammation [16]. Inhibition of complex II
(SDH) by dimethyl malonate (DMM) displays a similar effect having reduced IL-1β but increase IL-10
production [16].

Glucose can also polymerize to form larger polysaccharides such as glycogen [17]. Glycogen
has been extensively studied in hepatocytes, muscle cells, and neuronal tissue in which it serves
as an intracellular cytosolic carbon reservoir [18–21]. A number of enzymes are required for
the synthesis of glycogen in cells. As previous described, glucose taken into the cell can be
phosphorylated by hexokinase into G6P and then isomerized by phosphoglucomutase-1 into
glucose-1-phosphate. Glucose-1-phosphate is catalyzed by UDP-glucose pyrophosphorylase to become
uridine diphosphate-glucose (UDPG) for the construction of glycogen [22–24] (Figure 1). Glycogen
breakdown occurs in the cytoplasm and also the lysosomes. In the cytosol, glycogen is catabolized
by the enzymes glycogen phosphorylase and glycogen debranching enzyme to generate free glucose.
Glucose-1-phosphate derived from glycogen in the cytosol may be isomerized into glucose 6-phosphate
and dephosphorylated to free glucose by glucose-6-phosphatase (G6Pase) [18,25]. Moreover, lysosomal
acid α-1,4-glucosidase, 1,4-α-glucan hydrolase, and/or acid maltase primarily hydrolyze the branched
polymer points of glycogen in the lysosomes to release glucose [26]. The regulation of glycogen-glucose
homeostasis is mediated by G6Pase complex, including hydrolase and glucose-6-phosphate transporter
(G6PT) subunits. It has been reported that G6PT deficiency causes glycogen storage diseases (GSD) and
develops myeloid progenitor dysregulation and neutrophilia with tendency to bacterial infections [27].
Patients with G6PT deficiency tend to be at risk for inflammatory bowel disease (IBD) and autoimmune
endocrine disorders [28]. Furthermore, deficiency of G6PT impairs glucose homeostasis reducing
glucose uptake and cellular levels of G6P, lactate, ATP, and NADH of cells [27].

Galactose is a monosaccharide hydrolyzed from lactose by α-galactosidase, which can be
utilized and transported across the cell membrane via the Na+/glucose co-transporter or symporter
sodium/glucose con-transporter 1 (SGLT1) in cells [29]. Galactose exists in two forms, the α- and
β-pyranose structures. Upon its release from lactose, galactose exists in a β-conformation and is then
converted to α-galactose by galactose mutarotase prior to entering the Leloir pathway. Galactokinase
catalyzes the first step of galactose phosphorylation generating galactose-1-phosphate (Gal-1-P) at the
expense of one ATP [30]. Then galactose-1-phosphate uridylyltransferase (GALT) converts Gal-1-P into
uridine diphosphate galactose (UDP-gal), with the UDP derived from UDP-glucose (UDPG), and as a
result glucose-1-phosphate is generated. UDP-gal can be converted to UDPG for glycosylation reactions
and glucose-1-phosphate can be further metabolized to form G-6-P for glycolysis respectively [31]
(Figure 1). The conversion of galactose to glucose can modulate the effector function of immune
cells [32,33]. It has been reported that deficient GALT activity results in a marked accumulation of
galactose and Gal-1-P in tissues leading to inflammatory dysregulation and developmental disorder of
galactosemia [34,35].
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Fructose appears as uniquely contributed to obesity and obesity-related cardiometabolic
complications [36,37], and its metabolism greatly differs from glucose. Fructose is predominantly
taken up by the transporter SLC2A5 (GLUT5) [38] (Figure 1). In the tissues of muscles, adipose tissue
and kidney, fructose is phosphorylated to fructose-6-phosphate (F-6-P) by hexokinase (HK) in the
glycolytic pathway. However, in the liver, fructose is first phosphorylated by glucokinase (GK) to
fructose-1-phosphate (F-1-P) and is further converted to produce dihydroxyacetonephosphate (DHAP)
and glyceraldehyde (GA). Catabolism of GA is phosphorylated to glyceraldehydes-3-phosphate
(GA3P) and joins to DHAP to make fructose-1,6-bisphosphate (F-1,6-BP) into the metabolite pools
of glycolysis [39]. In parallel, DHAP can also be converted to glycerol-3-phsophate, which can be
packaged into very-low density lipoproteins (VLDL). Therefore, excessive intake of fructose may create
an unfavorable lipid profile leading to metabolic disorders [40]. Fructose-induced obesity exhibits
higher levels of chronic inflammation and accumulated macrophages in adipose tissues. Importantly,
it has been demonstrated that macrophages are responsible for the production of TNF-α, IL-6, NO, and
IL-1β in adipose tissues of the obese [1,41], and these secreted pro-inflammatory cytokines seem to
be associated with pathogenesis of hepatic insulin resistance and the progression of fatty liver [42].
Furthermore, high fructose intake induces a metabolic shift in human dendritic cells towards glycolysis
and cell activation by promoting IL-6 and IL-1β production [43]. Increased numbers of myeloid cells
and induction of TLRs and TLR-dependent pathways (e.g., MyD88, iNOS, and TNF-α) were found to
present in liver with fructose-induced hepatic steatosis [44]. Collectively, high fructose environment
appears to affect metabolic reprogramming and pro-inflammatory activation of immune cells and
defining the molecular compartments and mechanisms of which may offer potential therapeutic targets
for lessening fructose-induced inflammation.

1.2. Amino Acid Metabolism

Amino acids, in addition to carbohydrates, have recently been deemed necessary for the
development of immune cells, particularly in polarization and effector function [45–47]. Arginine,
a non-essential amino acid, is the precursor for ornithine, citrulline, and nitrite in macrophages [48].
Later, NO was identified as the active intermediate of the arginine to nitrite pathway in cells [49–51].
Arginine can both be synthesized de novo [52,53] or taken up from the extracellular environment
through the arginine transporter CAT-1 [54,55] (Figure 2). De novo synthesis of arginine is a means
through which excess citrulline can be scavenged to produce more arginine for nitric oxide species
(NOS) generation and requires the amino acid aspartate [52,53]. The conversion of citrulline to arginine
is an energy intensive process which requires the hydrolysis of ATP to AMP. After acquiring ATP
and becoming the reactive intermediate citrulline adenylate, it undergoes a rate-limiting reaction
catalyzed by arginosuccinate synthetase (ASS1) that requires aspartate and liberates AMP to produce
arginosuccinate. Arginosuccinate is then converted into arginine by arginosuccinate lyase (ASL),
freeing fumarate as a byproduct. Once acquired, arginine is further catabolized into ornithine and
urea by arginase-1 (Arg1) or into NO and citrulline by iNOS. Both ornithine and citrulline can be
shuttled into downstream metabolic pathways such as the uric acid cycle. The upregulation of iNOS
and arginase-1 are strongly associated with the activation state of macrophages and are intimately
integrated with immune responses under physiological and pathological conditions [56–58].

While arginine metabolism serves as a classic example of how amino acids can differentially regulate
immune cell function, glutamine is perhaps the most well studied. Glutamine is a non-essential amino
acid used predominantly in nucleotide synthesis, energy production, and a majority of the biosynthetic
pathways associated with cell proliferation and biological function [59–62]. Moreover, glutamine
metabolism funneling into arginine synthesis is known to be important for the production of NO [63].
Glutamine has emerged as a key regulatory component necessary for numerous aspects of adaptive
and innate immune function in the inflammatory microenvironment [46,64]. Inhibition or deficiency
of glutamine metabolism results in dysregulation/unbalance of activation and/or development in
macrophage, Th17, regulatory T (Treg), and B cells, respectively [63,65–70]. The acquisition of glutamine
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occurs either through uptake from the extracellular space or via de novo synthesis. Glutamine intake can
occur through a wide array of amino acid transporters such as SLC1A5 [71] and used for downstream
biosynthetic reactions or shuttled back out of the cell via glutamine antiporters for use as an amino
acid exchange factor [72]. This exchange capacity allows cells to acquire essential amino acids such as
leucine which cannot be synthesized de novo [72]. In contrast to glutamine intake, glutamine synthesis
occurs in the mitochondria by an ATP-dependent conversion of ammonia and glutamate driven by
the enzyme glutamine synthetase (GS) [73,74]. Further, intracellular glutamine can be hydrolyzed
by glutaminase (GLS) to generate glutamate as a critical step to the TCA cycle entry at α-KG [75]
(Figure 2).Cells 2020, 9, 562 5 of 22 
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Figure 2. Overview of major amino acid metabolic pathways. Amino acids are highlighted
in red with the major contributions of the respective pathways described in the brackets. Key
enzymes are highlighted in blue. 3PHP, 3-phosphohydroxypyruvate; 3PS, 3-phosphoserine; ASL,
argininosuccinate lyase; ASS1, argininosuccinate synthetase; CAT1, cationic amino acid transporter 1;
IDO, Indoleamine-pyrrole 2,3-dioxygenase; iNOS, induced nitric oxide synthase; FAD, flavin adenine
dinucleotide; FAO, fatty acid oxidation; GLS, glutaminase; NAD, nicotinamide adenine dinucleotide;
NO, nitric oxide; OXPHOS, oxidative phosphorylation; PHGDH, phosphoglycerate dehydrogenase;
PSAT1, phosphoserine aminotransferase; PSPH, phosphoserine phosphatase; ROS, reactive oxygen
species; TCA, tricarboxylic acid cycle or Krebs cycle; TDO, tryptophan 2,3-dioxygenase.

Recently, important epigenetic roles for serine and glycine have been uncovered in a number of
immune cells as well as cancer. In T cells, serine was found to be essential for proliferation by supporting
purine biosynthesis [76]. Moreover, impaired serine/glycine metabolism led to compromised naïve T
cell activation [77]. The role for serine and glycine in innate immune cells has not been fully elucidated,
but what has been uncovered will be discussed below. Immune cells can acquire serine through
de novo synthesis or extracellular uptake [78]. Briefly, de novo synthesis of serine is an offshoot
of glycolysis in which the glycolytic intermediate 3-phosphoglycerate is enzymatically converted
into serine. This process occurs in three steps, with the rate-limiting step being the conversion of
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3-phosphoglycerate into 3-phosphohydroxypyruvate via phosphoglycerate dehydrogenase (PHGDH).
3-phosphohydroxypyruvate is then converted into 3-phosphoserine by phosphoserine aminotransferase
(PSAT1) and requires the transamination of glutamate intoα-KG. The last step converts 3-phosphoserine
into serine by phosphoserine phosphatase (PSPH). Notably, the conversion of serine into glycine occurs
in the mitochondria and is the beginning step of one-carbon metabolism which provides one-carbon
units into the folate cycle and methionine cycle leading to methylation reactions, purine synthesis, and
redox homeostasis.

Unlike the other amino acids described in this review, tryptophan is an essential amino acid
that can only be acquired through dietary intake. Once acquired by the cell, tryptophan can be
shuttled into two major pathways, the serotonin pathway and the kynurenine pathway, where it acts
as a precursor for the synthesis of biologically essential compounds [79–81]. The role of tryptophan
metabolism has been well studied in the context of neurological research due to its necessity in
serotonin synthesis; however, it has recently become of interest in the context of tumor biology due
to the production of kynurenine, a potent T and NK cell immunosuppressant. Kynurenine is the
central metabolite of the kynurenine pathway but is not the final product; this is nicotinamide adenine
dinucleotide (NAD). Briefly, tryptophan is catabolized by the enzyme indoleamine 2,3-dioxygenase
(IDO) into N-formyl-kynurenine which is then converted into kynurenine. IDO is expressed on a
number of immune cells including macrophages and dendritic cells and has been found to modulate T
cell behavior. Increased IDO, coupled with increased kynurenine production, has been reported to
suppress antitumor responses and aid in tumor progression.

2. Regulation of Carbohydrate and Amino Acid Metabolism in Innate Immunity

2.1. Macrophages—M1 Macrophages

As resident cells of almost every tissue in the body, macrophages play critical roles in defense against
pathogens through phagocytic and inflammatory activities, and maintenance of tissue homeostasis [82].
Macrophages adopt different functional phenotypes with distinct gene expression profiles and
functions due to their plasticity. These result in the pro-inflammatory (or classically activated; M1)
and anti-inflammatory (or alternatively activated; M2) distinctions [83–85]. How macrophages adopt
these distinct pathways have been the subject of study for many years, and it is now recognized
that cellular metabolism plays an essential role in determining cell fate [57,86,87]. For instance, M1
macrophages, upon stimulation with TLR agonists in combination with interferon-γ (IFN-γ), employ
aerobic glycolysis rather than mitochondrial oxidative phosphorylation (OXPHOS) to increase the
dependency of glucose for rapid ATP production [86]. Glucose is poorly oxidized, but is converted into
lactate [88], by which this process provides key metabolic intermediates (e.g., NADH) for biosynthetic
pathways to support M1 macrophage activation [89], and also pro-inflammatory cytokine secretion
and phagocytosis [86,90–92] (Table 1).

Stimulation of TLR signaling in macrophages is known to induce activation of hypoxia-inducible
factor 1α (HIF-1α), a key transcription factor regulating inflammation in a number of different
contexts [11], and which acts as a metabolic switch to induce glycolytic gene expression, such as
GLUT1 [93], phosphoglyceratekinase (PGK) [94], and lactate dehydrogenase (LDH) [95]. Increased
expression of HIF-1α has been shown to induce the expression of iNOS, an important enzyme for
arginine metabolism which generates NO to support macrophage phagocytic activity [56]. However,
inhibition of glycolysis with 2-DG can hinder HIF-1α activation and impairs cytokine production of
IL-1β and TNF-α in M1 macrophages [8,94,96]. HIF-1α-deficient M1 macrophages exhibit decreased
iNOS expression [96] and are less capable of curbing bacterial infection [97]. The mechanistic target of
rapamycin (mTOR) is known to control the activation of HIF-1α signaling to fine-tune the metabolism
of glucose and has been reviewed extensively elsewhere [98–100].
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Table 1. Summary of immunological and metabolic features in M1 and M2 macrophages. AMPK,
AMP-activated protein kinase; ETC, electron transport chain; FAO, fatty acid oxidation; FAS, fatty
acid synthase; HIF-1α, hypoxia-inducible factor 1α; IL-1Ra, interleukin 1 receptor antagonist; iNOS,
inducible nitric oxide synthase; mTORC1, mechanistic target of rapamycin complex 1; mTORC2,
mechanistic target of rapamycin complex 2; OXPHOS, oxidative phosphorylation; PGC1β, peroxisome
proliferative activated receptor gamma coactivator 1 beta; PPAR-γ, peroxisome proliferator-activated
receptor gamma; PPP, pentose phosphate pathway; TCA cycle, tricarboxylic acid cycle.

Cell Type Inducers Activation
Markers

Cytokine/Chemokine
Production

Metabolic
Pathways

Cellular Signaling
Pathways Functions

M1 LPS/IFN-γ
CD80, CD86,

MHC-II,
CCR7, iNOS

IL-1β, IL-6, IL-12,
IL-15, IL-23, TNF-α,

CCL3, CCL5, CXCL10

Glycolysis,
PPP, Broken
TCA cycle,

FAS

NF-kB, PI3K/Akt,
mTORC1, HIF-1α,

STAT1, IRF5

Killing
intracellular
pathogens;
Anti-tumor
immunity

M2 IL-4/IL-13

CD206, CD301,
PD-L2,

RELMα,
CD163, Arg1

IL-10, TGF-β, IL-1Ra,
CCL17, CCL22,

CCL24

Glycolysis,
OXPHOS/ETC,

FAO,
Glutaminolysis

PI3K/Akt, AMPK,
PGC1β PPAR-γ

mTORC1, mTORC2,
STAT6, IRF4

Tissue repair;
Anti-helminth

immunity;
Pro-tumor

activity

In line with increased glucose dependency, another metabolic hallmark of TLR-stimulated
macrophages is to shutdown reactions of mitochondrial oxidative metabolism, and induce reverse
electron transport (RET) [12,57,101]. Recently, it has been reported that the glycolytic intermediate
glycerol 3-phosphate dehydrogenase (GPD2) oxidizes glycerol-3-phosphate (G3P) to dihydroxyacetone
phosphate (DHAP) to facilitate the generation of mitochondrial electrons and also to induce glucose
oxidation for acetyl-CoA production [102]. Furthermore, the activity of the pentose phosphate
pathway (PPP), a metabolic pathway parallel to glycolysis is enhanced in LPS-stimulated macrophages
to support nucleotide synthesis and nicotinamide NADPH used for ROS production and fatty
acid synthesis [66,103]. Inhibition of 6-phosphogluconate dehydrogenase (PGD) in the PPP was
demonstrated to suppress pro-cytokine secretion and also the inflammatory response of macrophages
stimulated with LPS [7]. Conversely, carbohydrate kinase-like protein (CARKL) involved in the
conversion of sedoheptulose into sedoheptulose-7-phosphate in the PPP is repressed in M1 macrophages,
suggesting the expression of CARKL is responsible for reprogramming glucose metabolism and
activation states of macrophages during inflammation [103].

Glucose can be obtained from glycogen degradation in cells. It has been indicated that
overexpression of glucose transporter (GLUT1) will elevate the metabolic rate of glucose and increase
lactate production, glucose oxidation, and also glycogen storage in macrophages [92]. Indeed, glycogen
exhibits immunomodulatory activity that was found to interact with TLR2 to upregulate iNOS
expression and the production of NO and inflammatory cytokines (e.g., IL-6 and TNF-α) [104,105].
Moreover, glycogen negatively regulates oxidative stress and cytokine secretion from intestinal
macrophages, which mitigates mouse colitis [106]. Similarly, oral administration of glycogen has been
found to increase natural killer cell activity and promote anti-tumor activity in mice [107].

In addition to changes in glucose metabolism, it is known that the availability of arginine is
one of the rate-limiting factors for generating NO, which is a pivotal pro-inflammatory effector for
macrophages to control and eliminate intracellular pathogens and/or tumor cells [56]. As a byproduct
of arginine metabolism, citrulline can be recycled to arginine via the regulation of ASS1 and ASL of the
citrulline-NO cycle to generate NO [108,109]. It has been shown that macrophages require ASS1 to
import citrulline to synthesize arginine and sustain NO output as ASS1 deficiency in macrophages fails
to control mycobacterial infection in animal models [110]. In contrast, M2 macrophages upregulate
Arg1, breaking down arginine into L-ornithine and urea [111,112]. Arg1 activity is required for
local tissue wound healing [113], and its expression is greatly increased by Th2 cytokine signaling
through STAT6 in M2 macrophages associated with anti-helminth functions [114]. However, Arg1
expression can also be induced by TLR-mediated signaling independent of STAT6 [115]. Inhibition of
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macrophage Arg1 produces more NO to eliminate mycobacterial infection [115], but prolongs local
tissue inflammation and wound repair in animals [113].

In addition to arginine, increased glutamine is crucial for anaplerosis of the TCA cycle in
macrophages. The levels of glutamine-derived α-KG were found to contribute to M2 macrophage
polarization, which mechanistically suppresses IKK activation required for NF-κB mediated
pro-inflammatory effects [65]; however, reduced cellular level of α-KG aids in the accumulation
of succinate to stabilize the activity of HIF-1α for the expression of M1-specific genes and enzymes
required for glycolysis and effector function [8,94,116].

2.2. Macrophages—M2 Macrophage

In contrast to pro-inflammatory M1 macrophages, M2 macrophages are canonically considered
to be anti-inflammatory effector cells which function in a range of physiological and pathological
processes, including tissue homeostasis, wound healing, helminth infection, and also malignancy
(Table 1) [82,117–119]. Metabolic reprogramming in activated M2 macrophages is characterized by an
intact TCA cycle and enhanced mitochondrial respiration, mitochondrial mass, and fatty acid oxidation
(FAO) [89,120,121]. This continuous flux of metabolites through the TCA cycle is crucial to meet the
energy demands of M2 macrophages required for cell proliferation and glycosylation of lectin and
mannose receptors [66,122,123].

Glucose utilization through aerobic glycolysis is known to be essential for M1 macrophages;
however, it has been suggested that glucose metabolism is also important for protumoral (or M2)
macrophages [122,124]. While less than M1, M2 macrophages exhibit higher glucose uptake, expression
of genes encoding glycolytic enzymes and lactic acid production than naïve macrophages. Therefore,
both M1 and M2 macrophages require glycolytic metabolism but at varying degrees to support their
immunological activity [122,124].

Metabolic intermediates generated from the TCA cycle can be signal transducers participating
in alternative pathways to modulate cell fate and function in macrophages and also other immune
cells [125,126]. For instance, the TCA intermediate succinate is linked to the inflammatory activity
of macrophages [127]. Extracellular succinate can activate succinate receptor SUCNR1 (or GPR91) to
induce IL-1β production in macrophages during the inflammatory microenvironment [128]; yet
conversely, macrophage-secreted succinate can also interact with neural stem cell SUCNR1 to
promote PGE2 secretion for ameliorating chronic neuroinflammation [129]. Moreover, a recent
study has demonstrated that cancer cells also secrete succinate to activate the succinate receptor and
HIF-1α signaling axis in tumor-associated macrophages (TAMs) that can control M2 polarization and
immunosuppression for tumorigenesis [130]. In addition to succinate, itaconate diverted away from
cis-aconitate in the TCA cycle is mediated by immune-responsive gene 1 protein (IRG1), and functions
similarly to malonate to disrupt SDH activity. This results in the accumulation of succinate and
remodeling of immunoactivation in macrophages [101,131]. Furthermore, high levels of itaconate are
present in TAMs and deficiency of IRG1 markedly reduces this scenario, impairing the mitochondrial
respiratory activity of TAMs and thereby effectively stunting tumor progression in the peritoneal
cavity [132]. Mechanistically, itaconate activates a nuclear factor erythroid 2-related factor 2 (Nrf2) via
alkylation of Kelch ECH associating protein 1 (KEAP1) to limit inflammation and type I interferon for
anti-inflammatory macrophage response [133].

As mentioned previously,α-KG is an important intermediate from the TCA cycle that is appreciated
not only as a metabolite, but also a cofactor for several epigenetic-modifying enzymes involved in
histone or DNA demethylation [134,135]. Glutaminolysis of glutamine can generate α-KG that is
essential to sustain mitochondrial fitness and promote M2 activation [66]. Further, glutamine-derived
α-KG has been shown to reprogram JMJD3-mediated demethylation of H3K27 at the promoters of
genes specific to M2 macrophages [65]. Additionally, α-KG is also generated as a byproduct from serine
biosynthesis in which 3-phosphohydroxypyruvate is catabolized into 3-phosphoserine by PSAT1. This
suggests that the serine biosynthesis cascade may provide an alternative route of α-KG for downstream
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metabolism and/or support the activity of α-KG-dependent regulations. Although it has recently been
indicated that serine metabolism is important to support T cell function [76,77] and IL-1β production
in pro-inflammatory macrophages [136,137], the role of PSAT1 in immune cells is still hazy.

In addition to generating α-KG, glutamine is known to be a necessary substrate for generating
UDP-GlcNAc via the hexosamine biosynthesis pathway to promote protein glycosylation during
polarization [66,138]. M2 macrophages do not exclusively rely on glutamine uptake for their
function, but they induce cell-intrinsic glutamine synthesis from glutamate via glutamine synthetase
(GS). Inhibition of GS leads to induction of NO, IL-6, and IL-12 secretion by microglia during
inflammation [139]. It was found that TAMs have induced GS expression, and attenuation of GS
decreases the M2 phenotype and lessens tumor metastasis in animal models [116,140].

The resolution of macrophage inflammation is mediated by tryptophan metabolism through IDO
and tryptophan 2, 3-dioxygenase (TDO). TAMs have been found to scavenge tryptophan and express
high levels of IDO and TDO to decrease tryptophan availability in the tumor microenvironment [141],
which in turn promotes immunosuppressive M2 immunity to suppress T cell function [64]. Importantly,
in addition to starving T cells of tryptophan, IDO and TDO can metabolize tryptophan to kynurenine,
the accumulation of which can lead to reduced effector T cell proliferation [142] and dendritic cell
priming [143], but increase regulatory T cell numbers [142].

While each cell undergoes its specific metabolic processes, systemic metabolism is carried
out across tissues and organs, and liver is one of the major venues to participate in carbohydrate
(e.g., glycogenolysis, glycogenesis, fructose metabolism, galactose metabolism) and amino acid
metabolism (e.g., glucose-alanine cycle) [39,144,145]. Kupffer cells (KCs) are tissue-specific resident
macrophages and are known to regulate tissue homeostasis and metabolism in the liver [146]. KCs
can express a range of polarization markers from pro-inflammatory M1 to anti-inflammatory M2, and
this plasticity and heterogeneity is crucial for hepatic immune response and is tightly associated with
various metabolic disorders including obesity [146]. In the lean liver, KCs tend to exhibit an M2-like
phenotype, coordinating with other immune cells to aid in the function of tissue homeostasis and
repair [147,148]. Conversely, greater fat accumulation in the liver will skew KCs into an M1 phenotype
leading to an increased production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, and IL-1β),
chemokines (e.g., MCP-1), and prostaglandins (e.g., PGE2) which exacerbate the hepatic inflammatory
response and perturb liver homeostasis [147–149]. Moreover, inflammatory activation of KCs has been
associated with obesity-induced insulin resistance and fatty liver disease. As reported previously,
depletion of hepatic macrophages can protect against insulin resistance, where TNF-α serves as an
important mediator of this effect [150]. On the other hand, alternative activation of KCs has been
considered to ameliorate obesity-induced insulin resistance in a PPARδ-dependent manner [151].

2.3. Dendritic Cells (DCs)

Like macrophages, DCs are present in nearly all tissues of body and serve as professional
antigen presenting cells which help initiate antigen-specific adaptive immune responses. DCs exhibit
heterogeneity in cell marker and distinct capabilities for engagement of effector T cells [152]. DCs
express a range of pattern recognition receptors (PRRs) which can sense danger signals. Importantly,
DCs can process peptide epitopes onto MHC class I or II molecule to stimulate T cells and effectively
evoke adaptive immune response. It is increasingly clear that different DC subsets exhibit different
metabolic dependencies to support their activation and function [153]. An increased reliance on
mitochondrial activity and FAO for energy production has been associated with GM-CSF generated
BMDCs or tolerogenic DCs, which were shown to reduce T cell engagement and activation [154,155].
However, upon TLR stimulation, activated DCs manifest enhanced glycolytic metabolism with
increased glucose consumption and lactate production [156,157], and inhibition of glycolysis by 2-DG
strongly blocks DC activation [154,158]. Akt and HIF-1α pathway are involved in the regulation of DC
activation [11,57]. mTORC1 positively regulates Akt signaling in DC activation, and antagonization
of mTORC1 selectively impairs cell activation and cytokine secretion in TLR-activated BMDCs and
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human DCs [159–161]. Activation of Akt is dependent on TANK-binding kinase 1 (TBK1) and inhibitor
of NF-κB kinase subunit-ε (IKKε) which can directly phosphorylate and activate hexokinase II (HK2)
to promote glycolysis for rapid DC activation in response to environmental danger cues [158]. It
has been reported that TLR stimulation increases the expression of HIF-1α, promoting glycolysis
and activation of DCs [156]. Additionally, HIF-1α but not mTORC1 can mediate the sirtuin 1
(SIRT1)-dependent signaling axis for the production of IL-12 and TGF-β1 in DCs which in turn mediate
T cell differentiation [162]. Further, recent work has illustrated that glycolytic metabolism is essential
for DC motility and CCR7-dependent migration to lymph nodes [163]. Intriguingly, however, this
migration can be terminated by the intrinsic feedback regulation of long noncoding RNA (lnc)-Dpf3 to
inhibit HIF-1α-mediated glycolysis in DCs [164]. In addition, a recent study reported that apart from
glucose, DCs can also utilize cell-intrinsic glycogen stores to fuel basal glycolytic demands and support
their immune effector function, particularly at early stages of activation and in glucose-restricted
conditions [165].

Plasmacytoid DCs (pDCs) are a rare type of immune cells known to express a limited number of
PRRs (i.e., TLR7 and 9) but at the same time, are the most efficient cells to produce type I interferon
for antiviral and/or anti-cancer responses [166]. Mouse pDCs generated from FMS-like tyrosine
kinase 3 ligand (FLT3L) stimulation display an increase of mitochondrial FAO and OXPHOS upon
exposure to IFN-α. Importantly, elevated mitochondrial lipid catabolism is regulated by PPAR-α and
administration of FAO inhibitor significantly disrupts IFN-α production of pDCs leading to higher
viral loads in animals [167]. Respiratory viral infection was showed to increase the activity of glycolysis
in human pDCs, and inhibition of which attenuates pDC antiviral responses [168]. In addition, it has
been indicated that immunostimulatory function of intratumoral pDCs is affected by the high level of
extracellular lactate promoting immunosuppression in the tumor microenvironment [169].

Similar to macrophages, catabolism of arginine and tryptophan are critical for DCs to balance
inflammation and tolerance. This is especially apparent in the tumor microenvironment where DCs
can be educated toward a protumoral tolerogenic phenotype, characterized by low costimulatory
molecule expression, poor antigen presentation, and high expression of Arg1 and IDO [170,171]. pDCs
has been reported to accumulate in tumor-draining lymph nodes that constitutively express IDO to
mediate immunosuppression against T cell function [172]. It is known that tumor-derived PGE2 can
impair the function of dendritic cells resulting in cancer immune evasion [173]. PGE2 increases the
expression of Arg1 to promote tolerogenic phenotype in DCs to inhibit the proliferation of CD4+ T
cells in the tumor microenvironment [174]. Further, IL-6 was also found to induce the expression of
Arg1 leading to downregulation of MHC-II in DCs to dysregulate T cell immunity in tumors [175].
These Arg1-expressing tumor-infiltrating DCs also contribute to local arginine depletion and indirectly
dampen T cell anti-tumor response [176].

2.4. Neutrophils

Neutrophils are the most abundant leukocytes in the circulation, are fully differentiated, and have
a relatively short lifespan. As one of the first line in host defense, neutrophils circulate to damaged
tissue and initiate an anti-pathogenic response including phagocytosis, extracellular ROS production,
neutrophil extracellular trap (NET) production, and cytotoxic granule release [177,178]. However,
the metabolic reprogramming in the regulation of neutrophil development and function is still not
fully understood.

Neutrophils have been traditionally considered to selectively utilize glycolysis for energy
metabolism due to having only a few mitochondria [179]. Extrinsic glucose is taken up into human
neutrophils via GLUT1, which is expressed and upregulated in glucose-rich environments [180].
Patients with genetic deficiency in enzymes related to glucose metabolism suffer from neutrophil
dysfunctions and neutropenia [20,27,180,181]. Neutrophils from glycogen storage disease (GSD)
patients having glucose-6-phosphate transporter (G6PT) deficiency and manifest dysregulated
function of energy homeostasis, ROS production, and chemotaxis, suggesting the importance of
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glucose metabolism in neutrophils [27]. Although mitochondrial bioenergetics is dispensable for
neutrophils, mitochondrial proteins have been observed to regulate their motility. Deficiency of
mitochondrial enzymes superoxide dismutase (SOD1), DNA polymerase (POLG), and IDH1 impaired
neutrophil chemotaxis, suggesting the importance of mitochondria for neutrophil chemotaxis during
inflammation [182–184].

Furthermore, it has been shown that neutrophil phagocytic function predominantly depends on
glycolytic metabolism, as glycolytic inhibition, but not mitochondrial respiration, has a significant
impact on phagocytizing neutrophils, suggesting a dispensable role of mitochondrial metabolism
to neutrophil phagocytosis [185,186]. The production of NADPH by glucose-dependent PPP was
shown to be essential for the cytosolic NOX-dependent ROS production for NET formation, which
allow neutrophils to prevent the dissemination of pathogenic insults [187]. G6PD is a key enzyme
that shifts glucose metabolism toward PPP, and patients with G6PD deficiency exhibit such as
deficient bacterial killing and chronic granulomatous disease due to dysregulated metabolic activity of
neutrophils [188,189]. It has been demonstrated that neutrophils can also utilize glutamine [190,191]
and is similar to PPP which is important for the generation of NADPH and the expression of NOX [192].
Interestingly, however, utilization of extracellular glucose, but not glutamine, can protect human
neutrophils from spontaneous and anti-Fas antibody-induced apoptosis [193].

Autophagy has a crucial role in providing metabolites (e.g., amino acids, free fatty acids) as
substrates for biomolecule synthesis and energy generation in cells [194]. Autophagy-deficient
neutrophils display decreased mitochondrial fitness and pronounced lipid accumulation, which lead to
differentiation defects and metabolic crisis [195]; however, the mechanism of how metabolic networks
shape neutrophil development and homeostasis remains elusive.

2.5. Myeloid-Derived Suppressor Cells (MDSCs)

MDSCs constitute a heterogeneous population of two major subsets, monocytic (M)-MDSCs and
granulocytic (G)-MDSCs, which share an immature myeloid phenotype and the ability to suppress
adaptive immune response in a number of inflammatory environments, including cancer [196],
infections [197], and autoimmune diseases [198].

A metabolic hallmark of MDSCs is the increase of cellular amino acid metabolism. MDSCs control
immune tolerance using different mechanisms, one of which is by depleting metabolites from the
extracellular space, such as arginine, tryptophan, and cysteine, and preventing their uptake by T
cells [199]. Metabolic conversion of arginine via either Arg1 or iNOS is the key mechanism strongly
associated with MDSC immunosuppressive property. The increased activity of Arg1 in MDSCs results in
deprivation of arginine from the environment and inhibits T cell proliferation; whereas, iNOS-mediated
NO generation affects T cell effector function and induces cell apoptosis [200]. MDSCs were shown
to engage in cystine uptake which reduces the extracellular cystine pool and subsequently limits the
availability of cysteine required for T cell activation [201]. Additionally, it has been demonstrated
that MDSCs express IDO that degrades tryptophan to kynurenines, promoting the expression of
aryl hydrocarbon receptor (AHR) for Treg expansion [202] and impeding DC immunostimulatory
activity [203].

MDSCs seem to exhibit a higher level of glycolysis than their mature myeloid counterparts in the
tumor microenvironment, and this higher glycolytic activity is able to dampen excess ROS production
contributing to the survival of MDSCs in the tumor [204]. HIF-1α upregulation has also been shown to
significantly govern the suppressive activity of MDSCs in the tumor microenvironment [205]. Moreover,
tumor-derived lactate has been suggested to directly impair the cytotoxic function of NK and T cells
and can control MDSC development and increase cell numbers [206–208]. Tumor-associated MDSCs
were shown to adapt lipid metabolism as fuel via the upregulation of lipid uptake and mitochondrial
fatty acid oxidation to enhance their inhibitory cytokine production in cancer [209,210]. Yet, it is still
not fully understood what specific regulatory factors facilitate MDSC metabolic adaption shift from
glycolysis to mitochondrial FAO for controlling their immunoinhibitory role in the tumor milieu.
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3. Concluding Remarks

Myriad findings from the past two decades have solidified the relationship between metabolism
and immunity, and it continues to become clear that these two systems are intimately connected. Cells of
the innate immune system in particular have evolved conserved metabolic pathways, and utilize these
pathways similarly depending on signals from the surrounding environment. Increased glycolysis
seems to be induced in the context of inflammation, where the quick energy turnover and focus on
pathways involving ROS and antioxidants favor phenotypes associated with phagocytosis, pathogen
killing, and antigen presentation. Conversely, enhanced mitochondrial respiration and oxidative
TCA cycle reaction have been associated with the resolution of inflammation, wound healing/tissue
homeostasis, and poorer antigen presentation. We have also learned that key modulators of these
pathways, glucose and amino acids, drive the expression of these phenotypes. Yet, despite this
paradigm, we have also learned that these networks can become dysregulated. Loss of carbohydrates
and amino acids result in activation failure in a number of the cell types discussed, and inhibition of
key enzymes along these pathways can prevent or significantly impair effector function.

While great strides have been made toward understanding how metabolism interfaces with
immunity, there is still much that is unclear. We have only begun to appreciate how cell metabolites
including amino acids contribute to epigenetic regulation in innate immune cells, and further study
is needed to uncover how this signaling axis promotes gene expression of key cytokines associated
with activation state. Many of these metabolic enzymes and products have become of interest as
therapeutic targets for diabetes, obesity, and cancer. Employing targeted approaches to intervene
metabolic programs or rewire dysfunctional pathways could become a novel means by which to
enhance current immunotherapies and improve therapeutic outcomes.
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