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Abstract: Tea trees are kept in shaded locations to increase their chlorophyll content, which influences
green tea quality. Therefore, monitoring change in chlorophyll content under low light conditions
is important for managing tea trees and producing high-quality green tea. Hyperspectral remote
sensing is one of the most frequently used methods for estimating chlorophyll content. Numerous
studies based on data collected under relatively low-stress conditions and many hyperspectral
indices and radiative transfer models show that shade-grown tea performs poorly. The performance
of four machine learning algorithms—random forest, support vector machine, deep belief nets,
and kernel-based extreme learning machine (KELM)—in evaluating data collected from tea leaves
cultivated under different shade treatments was tested. KELM performed best with a root-mean-square
error of 8.94 ± 3.05 µg cm−2 and performance to deviation values from 1.70 to 8.04 for the test data.
These results suggest that a combination of hyperspectral reflectance and KELM has the potential to
trace changes in the chlorophyll content of shaded tea leaves.

Keywords: deep belief nets; extreme learning machine; first derivative spectra; random forest;
shade-grown tea; support vector machine

1. Introduction

Green tea, which is produced from unfermented tea leaves, is widely consumed in East Asia
and has recently gained popularity in the West [1]. Consumption of matcha (powdered green
tea) or matcha-flavoured sweets has increased to the extent that Japan’s green tea exports reached
approximately USD 14.1 billion in 2018 [2]. The chlorophyll content is strongly correlated with the
colour of dry tea leaves [3], with a high chlorophyll content improving the tea leaf appearance. Shade
treatment reduces plant transpiration compared with plants in full photosynthetic photon flux density,
but it also reduces photosynthesis sensitivity [4] and tends to increase leaf nutrient concentrations and
leaf chlorophyll content [5]. Based on this phenomenon, in Shizuoka prefecture, Japan, shade nets
(70%–95% shading) are used to control light transmission for 14 to 30 days before picking, thereby
increasing the leaf chlorophyll content [6,7]. While, traditionally, only first-grade tea (from the first
picking) for producing tencha (tea used for preparing matcha) has been shade-treated, the application
of shade treatment for the second picking of tea to increase matcha production has recently been
implemented in Shizuoka, Japan [6]. However, the excessive environmental stresses caused by low
light conditions sometimes lead to early mortality of tea trees [7]. Thus, techniques are required for
better management of tea trees, for quantifying chlorophyll content, and for detecting environmental
stresses [8].
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Ultraviolet and visible light (UV–vis) spectroscopy and high-performance liquid chromatography
(HPLC) techniques have previously been used to quantify chlorophyll content. These are destructive
methods and may enforce a limited sample size because they are expensive and labour-intensive. It is
also not always possible to apply these methods in situ. Alternately, some portable chlorophyll content
meters, such as CL-01, SPAD-502, Dualex, and CCM-200, have been used to estimate chlorophyll
content [9]. However, light intensity also influences leaf thickness [10], and then it often makes the
output of the meter obscure [11]. In contrast, hyperspectral reflectance measurements may be used for
detecting various responses from crops [12] or evaluating vegetation properties [13,14], and the use of
reflectance for estimating chlorophyll content is being seriously considered. Some pigments, such as
chlorophylls and carotenoids, absorb energy strongly in the ultraviolet, blue, and red regions, and
then the reflectance and transmittance are weak [15]. The reflectance from vegetation is characterised
by the low reflectance over the blue (400–500 nm) and red (650–690 nm) spectral regions due to
strong absorption by chlorophylls plus carotenoids in the blue wavelengths and chlorophyll a in
the red wavelengths, and the steep rise in reflectance between 680 and 750 nm is caused by the
chlorophylls increasing to absorb at wavelengths beyond 700 nm [16]. Based on these features, some
empirical approaches, such as vegetation indices, which are generally based on a few narrow or broad
spectral bands, are convenient for use to estimate chlorophyll content. Most vegetation indices for
chlorophyll content use wavelengths ranging from 400 to 860 nanometres [17–19] or the red edge (680 to
750 nm) [20,21]. However, some datasets, such as LOPEX, CALMIT, ANGERS, and HAWAII, that have
been used for the development of vegetation indices, were collected under relatively low light-stress
conditions. Their coefficients of linear regression for estimating chlorophyll a content from carotenoid
contents range from 2.99 (for the LOPEX dataset) to 3.45 (for the HAWAII dataset) [22]. Further, some
proposed techniques are not appropriate for evaluating the chlorophyll content of shade-grown tea,
since shade treatment imposes environmental stress on vegetation and alters the relative content as
well as the allocation of chlorophyll and carotenoids. Furthermore, a shift of the red edge toward
longer wavelengths (red shift) and a shift toward shorter wavelengths in the 700–780 nm region (blue
shift) are caused by environmental stresses [23], and more shading makes the reflectance lower at the
red edge inflection point (REIP) in tea cultivation [6].

Using machine learning algorithms is effective for expressing complex relationships [24].
Deep learning algorithms, in particular, have been used for classification purposes, and the
convolutional neural networks-based approach is effective for detecting plant diseases [25].
This methodology also has potential in the analysis of hyperspectral reflectance data. Deep belief nets
(DBN) is a probabilistic generative model composed of multiple layers of stochastic latent variables [26]
that has performed well when using hyperspectral remote sensing [27]. Random forest (RF), another
machine learning algorithm, is a regression technique that combines numerous decision trees to classify
or predict the value of a variable. It has been used for estimating vegetation properties [28–30] as well
as for classification and regression [31]. Support vector machine (SVM) is an approach used with a
Gaussian kernel function [32] that is expedient for identifying the relationship between reflectance
and leaf water status [33]. In addition to these three techniques, the kernel-based extreme learning
machine (KELM), which uses only two hyperparameters, performs well in fault diagnosis, recognition,
classification, and signal processing [34].

The use of machine learning algorithms requires tuning of their hyperparameters.
The determination of hyperparameters corresponds to a convex optimization problem [35]; traditionally,
grid search strategies have been applied as a solution [36]. However, such strategies are poor choices
for configuring algorithms for new data sets, in which case a random search is thought to be a superior
approach [37]. Previous studies have demonstrated that Bayesian optimisation (a framework used
to optimise hyperparameters of noisy, expansive black-box functions that constitutes a structured
approach to modelling uncertainty) performs even better [38]. A Gaussian process (GP) is commonly
used for Bayesian optimisation [39]. Recently, approaches using extreme learning machines (ELMs) or
neural networks have been given consideration for generating regression models [40,41]. Although
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there are several machine learning algorithms that are currently used in hyperspectral remote sensing,
to date, there has been no consensus regarding the best algorithm, and a comparison of different
algorithms is thus beneficial.

The first derivative of reflectance has been used to detect specific points such as the green peak
and the red edge inflection point (REIP) [42]. Various hyperspectral indices based on the first derivative
spectra have been recommended for evaluating vegetation properties [43–47], since the first derivative
spectra may enhance weak spectral features which are effective for evaluating target parameters [48].
Therefore, the first derivative spectra were also evaluated.

The main objectives of this study are (1) to evaluate the potential of hyperspectral data, including
reflectance and first derivative spectra, for estimating the chlorophyll content of tea leaves cultivated
in full sunlight (0% shading) and low-light (shaded) conditions and (2) to identify which algorithms
are the most suitable for constructing regression models from these data.

2. Results

2.1. Chlorophyll Content, Spectral Reflectance, and Their Correlations

Chlorophyll content was measured based on the absorbance of the supernatant
dimethyl-formamide extract (Table 1). The mean values of chlorophyll content per leaf area (µg
cm−2) were 53.77 and 74.92 on 10 May, 47.07 and 46.25 on 12 July, and 111.93 and 95.32 on 26 July for
0% and 85% shading, respectively (Table 1). The difference in chlorophyll content was only significant
between the treatments on 10 May, although a Tukey–Kramer test showed that shading was not effective
for increasing the chlorophyll content of second picking leaves. In fact, this treatment prevented
increases in chlorophyll content and merely resulted in an increased difference (albeit not significantly
so). Figure 1 shows the chlorophyll/carotenoid ratios calculated for the different picking dates and
shade treatments. While ratios ranged from 2.71 to 3.91 for the unshaded samples picked on 10 May,
they were greater than 4.00 for all other samples (barring some irregular values).

Table 1. Chlorophyll content (µg cm−2) for each treatment and each date.

Sampling
Date TreatMent

Number
of

Samples
Minimum Median Mean Maximum Standard

Deviation Skewness Kurtosis

10/05/2019 Open 15 44.45 52.55 53.77 68.47 7.22 0.54 −0.86

10/05/2019 Shaded 15 64.04 75.39 74.92 84.39 6.20 −0.41 −1.11 a, d

12/07/2019 Open 12 31.19 46.36 47.07 60.12 7.43 −0.18 −0.17 a, b

12/07/2019 Shaded 10 37.81 47.93 46.25 53.08 5.89 −0.36 −1.65 b

26/07/2019 Open 15 86.66 115.59 111.93 146.53 20.18 0.01 −1.55 c

26/07/2019 Shaded 10 63.37 95.15 95.32 137.92 19.68 0.54 −0.05 c, d

All 77 31.19 64.80 72.60 146.53 28.08 0.82 −0.25

Values with the same letter (i.e., a, b, c or d) are not significantly different (p < 0.05).
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Figure 2 shows the mean reflectance for each date and treatment. A comparison of leaves from
the first picking (10 May) showed that shading pushed the reflectance near to the green peak and
lower at the red edge inflection point (REIP). Further, the reflectance of the 0% and 85% shaded
samples separated completely at certain wavelengths (e.g., 725 nm). However, these tendencies were
not observed during subsequent pickings. Reflectance values at some wavelengths were required to
separate the samples of the two treatments. Thus, reflectance values at 400, 414, 427, 437, 515, 692,
and 780 nm and at 539, 698, and 752 nm were differentiated using a stepwise linear discriminant
analysis for measurements obtained on 12 and 26 July, respectively.
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Figure 2. Mean reflectance spectra.

The correlation coefficients between the reflectance and chlorophyll content (Figure 3) revealed
two troughs: one near the green peak (R = −0.70 at 552 nm for shaded leaves on 10 May; R = −0.75 at
535 nm for non-shaded leaves on 10 May; R = −0.74 at 553 nm for shaded leaves on 12 July; R = −0.71
at 555 nm for non-shaded leaves on 12 July; R = −0.70 at 550 nm for shaded leaves on 26 July; R = −0.38
at 551 nm for non-shaded leaves on 26 July) and the other near the REIP (R = −0.85 at 718 nm for
shaded leaves on 10 May; R = −0.70 at 707 nm for non-shaded leaves on 10 May; R = −0.88 at 720 nm
for shaded leaves on 12 July; R = −0.91 at 720 nm for non-shaded leaves on 12 July; R = −0.91 at 735 nm
for shaded leaves on 26 July; R = −0.74 at 726 nm for non-shaded leaves on 26 July). With the exception
of non-shaded leaves collected on 10 May, the reflectance near the REIP showed higher absolute
values of correlation coefficients than those near the green peak. Furthermore, no clear correlation
existed between reflectance near the green peak and chlorophyll content when all measurements
were combined.

The first derivative spectra confirmed a positive correlation between the REIP and wavelengths
that are slightly longer than at the green peak (between 550 and 650 nm) and a negative correlation
between wavelengths that are slightly shorter than at the green peak (between 500 and 550 nm) and
the start of the red edge domain. The highest positive correlations were confirmed at 576 (R = 0.92),
633 (R = 0.93), 644 (R = 0.99), 735 (R = 0.97), 562 (R = 0.96), and 755 nm (R = 0.91) and the highest
negative correlations were confirmed at 533 (R = −0.91), 525 (R = −0.92), 515 (R = −0.96), 702 (R = −0.98),
526 (R = −0.97) and 702 nm (R = −0.90) for shaded leaves on 10 May, non-shaded leaves on 10 May,
shaded leaves on 12 July, non-shaded leaves on 12 July, shaded leaves on 26 July, and non-shaded
leaves on 26 July, respectively.
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Figure 3. Correlations (a) between chlorophyll content and reflectance and (b) between chlorophyll
content and first derivative spectra.

2.2. Performance of Machine Learning Approaches Using Original Reflectance and First Derivative Spectra

The optimal values of hyperparameters are shown in Figure 4. When the original reflectance was
used, the mean values for combinations of hyperparameters were (ntree, mtry, nodesize, nodedepth,
nsplit) = (513, 11, 4, 30, 10) for RF, (C, ) = (218, 2−10) for SVM, (number of hidden layers, unit size
of first layer, unit size of second layer, unit size of third layer, unit size of the fourth layer, unit size
of the fifth layer, unit size of the sixth layer, batch size, learning rate, number of epochs, rate of drop
out, weight decay) = (4, 41, 45, 41, 43, 44, 39, 13, 0.006919, 100, 0.157386, 0.005528) for DBN, and (Cr,
Kp) = (215, 21) for KELM, while (ntree, mtry, nodesize, nodedepth, nsplit) = (519, 13, 4, 30, 11) for RF,
(C, ) = (220, 2−12) for SVM, (number of hidden layers, unit size of first layer, unit size of second layer,



Plants 2020, 9, 368 6 of 19

unit size of third layer, unit size of fourth layer, unit size of fifth layer, unit size of sixth layer, batch size,
learning rate, number of epochs, rate of drop out, weight decay) = (4, 43, 46, 46, 44, 43, 41, 11, 0.006685,
104, 0.157487, 0.005637) for DBN, and (Cr, Kp) = (217, 2−6) for KELM.Plants 2020, 8, x FOR PEER REVIEW 7 of 21 
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Figure 5 shows the relationships between estimated and measured chlorophyll contents,
the statistics of RPD (ratio of performance to deviation) and RMSE values calculated using regression
models based on machine learning algorithms are shown in Table 2, and the performances of regression
models based on machine learning algorithms are shown in Figures 6 and 7. For RF and KELM,
derivative spectra values were effective for estimating chlorophyll content rather than reflectance values,
while the other two algorithms had smaller RMSEs when reflectance was used. For all algorithms,
the mean values of RPD were greater than 1.4 (Category B) when original reflectance values were
applied, which indicates that all resulting regression models were acceptable for estimating chlorophyll
content. Mean RPD values were greater than 2.0 (Category A) when derivative spectra values were
used. For all 100 repeats, DBN and KELM displayed RPD values of greater than 1.4 when reflectance
data were used. When derivative spectra values were used, KELM was still acceptable for all 100
repeats; however, DBN occasionally produced RPD values below 1.4 (four instances).

Table 2. Ratio of performance to deviation (RPD) and root-mean-square error (RMSE) for each
regression model (statistical results are based on 100 repetitions). RF: random forest, SVM: support
vector machine, DBN: deep belief nets, KELM: kernel-based extreme learning machine.

RPD

Minimum Median Mean Maximum Standard
Deviation Skewness Kurtosis

Original Reflectance
RF 1.12 1.80 1.87 2.90 0.42 0.21 −0.81

SVM 0.81 2.59 2.69 5.68 1.18 0.44 −0.40
DBN 1.66 2.83 2.99 5.51 0.86 1.04 0.88

KELM 1.70 3.65 3.59 8.05 1.27 0.62 0.33

First derivative spectra
RF 1.39 2.77 2.79 5.02 0.51 1.01 3.35

SVM 0.59 2.77 2.65 5.92 1.20 0.21 −0.55
DBN 1.27 2.46 2.57 5.62 0.81 1.02 1.85

KELM 1.81 3.47 3.51 5.76 0.88 0.25 −0.47

RMSE

Minimum Median Mean Maximum Standard
deviation Skewness Kurtosis

Original reflectance
RF 9.63 15.31 16.03 27.03 3.66 0.64 0.03

SVM 4.43 10.59 13.34 37.98 7.40 1.47 1.52
DBN 5.28 10.36 10.24 16.77 2.55 0.11 −0.66

KELM 3.68 7.82 8.95 18.25 3.06 0.72 −0.14

First derivative spectra
RF 6.20 10.39 10.56 18.82 1.91 0.96 3.20

SVM 4.92 10.72 13.91 49.61 8.12 1.51 2.39
DBN 5.26 11.55 12.06 20.72 3.30 0.47 −0.34

KELM 5.22 8.37 8.60 14.32 1.98 0.75 0.23
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2.3. Sensitivity Analysis

The DSAs (data-based sensitivity analyses) showed similar patterns of importance among the
different algorithms (Figure 8). The highest importance values were confirmed at 701–750 nm for SVM
and at 751–800 nm for RF, DBN, and KELM when first derivative spectra were used. The reflectance at
701–750 nm still had the greatest influence on chlorophyll content estimation; however, its importance
was mostly unclear, except when using the RF technique and near the green peak for SVM and KELM.
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Figure 8. Data-based sensitivity analyses (DSA) results for random forest (RF), support vector machine
(SVM), deep belief nets (DBN), and kernel-based extreme learning machine (KELM) from (a) reflectance
and (b) first derivative spectra. Values were averaged over 100 replicates.

3. Discussion

3.1. Characteristics of Leaf Samples Based on Photosynthetic Pigment Contents

In higher plants like tea trees, chlorophyll pigment consists of chlorophyll a and chlorophyll
b. Concentrations relate closely to primary production because these pigments absorb sunlight and
use their energy to synthesize carbohydrates using CO2 and H2O [49]. While carotenoids are also
involved in photoprotection and light collection during photosynthesis [50], they also help to protect
unsaturated fatty acids, phospholipids, and galactolipids from oxidative damage [51]. Some previous
studies showed that the chlorophyll a/b ratio increases linearly, and the ratio is positively correlated
with the amount of the core complex of photosystem II [52,53]. On the other hand, carotenoids are also
involved in photoprotection and light collection in photosynthesis [54], and they also help to protect
unsaturated fatty acids, phospholipids, and galactolipids from damage [51]. Based on these features
of photosynthetic pigments, the total chlorophyll/carotenoid ratio or chlorophyll a/carotenoid ratio
have been used as good indicators for evaluating environmental stress in plants [8,22,55]. Generally,
shaded leaves contain more photosynthetic pigments than leaves in sunlight, because such leaves
increase their chlorophyll a content to allow themselves to harvest more light and nitrogen [56]. Thus,
light stress increases the chlorophyll/carotenoid ratio. In this study, an experiment was conducted in a
greenhouse, an environment that may stress tea trees over and above shade treatment.
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3.2. Performance of Different Machine Learning Algorithms

Previous studies have evaluated the performance of random forest (RF) regression and reported
that it possessed better results than stepwise regression and support vector machine (SVM), linear
regression, and radiative transfer modelling [57] for estimating vegetation properties [58]. However,
more suitable algorithms were found and kernel-based extreme learning machine (KELM) generally
performed the best (49 and 57 out of 100 repetitions for reflectance and first derivative spectra,
respectively) for estimating the chlorophyll content when assessed using the ratio of performance
to deviation (RPD) values. Although SVM’s robustness has been reported in some studies [59–61],
and it performed best in 20 and 37 of the repeats, it also showed the worst performance in 28 and 33
repetitions for the reflectance and first derivative spectra, respectively. These results strongly suggest
that SVM is not a stable method. KELM and SVM are both kernel-based algorithms, and poor selection
of kernel function parameters may negatively affect their accuracies [62]. Indeed, the variance of
the kernel function parameters of KELM was apparently smaller than that of SVM. The selected the
kernel bandwidth (σ) values (of the SVM-based approach) ranged from 2−40 to 250 and from 2−50 to
249, while the kernel parameter (Kp) ranged from 2−8 to 224 and from 2−10 to 210 for reflectance and
first derivative spectra, respectively. Furthermore, ELM has fewer optimisation constraints [63], which
has been shown to be an advantage in regression applications [64]. Although deep belief nets (DBN)
has also been reported to have great performance [65] and it performed best in repetitions 30 and 6, its
poor performance was also recognised. DBN had the maximum number of hyperparameters of the
four algorithms examined in this study since a total of twelve hyperparameters (unit sizes of six layers,
batch size, learning rate, number of epochs, rate of drop out and weight decay) had to be optimised.
The relatively small training data set may have prevented the method from producing sufficient results
for tuning its measured chlorophyll content for both reflectance and first derivative spectra. Further,
the order of KELM, DBN, and SVM was the same for both the reflectance and first derivative spectra,
although the similarity with the measured chlorophyll content decreased. The use of reflectance was
more effective for this purpose due to its ability to recognise patterns, and the first derivative spectra
were noisier than the original reflectance data (Figure 3), which might have prevented the machine
learning algorithms from producing robust results. However, the models based on RF changed
dramatically, and there was a clear advantage for using first derivative spectra. Generally, importance
is focused on a small number of variables in RF-based models [6]. Its performance may be improved
if the variables highly correlated with chlorophyll content are selected and if the effects from noisy
variables (e.g., first derivative values from 400 to 500 nm and longer than 800 nm) are negligible.

3.3. Differences in Estimation Accuracy among Treatments

High correlation coefficients were confirmed between the measured values and estimated values
from KELM or DBN, and irregular values were not confirmed for any data or treatment (Figure 4).
On the contrary, RF-based methods produced less stressed samples (i.e., non-shaded samples on 10 May
and 12 July). In this study, most of the samples were affected by shading treatments or the greenhouse,
and this result implies that RF is unsuitable for imbalanced data caused by the small sample size of
lower stressed measurements. SVM also had a similar feature, and its estimated values were almost
constant in some combinations of training data, even though a stratified random sampling approach
was applied (Figure 4). Generally, models based on KELM performed best for both reflectance and
first derivative spectra for each treatment (open or shaded tea trees; Figure 6). However, those based
on DBN performed best for the shaded samples collected on 10 May and for the unshaded samples
collected on 26 July when reflectance was used. DBN tended to estimate the chlorophyll content
with greater error since the sample sizes and standard deviations calculated from the chlorophyll
content were small. If either of these issues is removed, DBN may, however, constitute the better
option. It performed relatively well for the shaded samples collected on 26 July, which was the smallest
sample collected.
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Derivative spectra have been applied for quantifying the leaf chlorophyll content, and its great
potential has been shown [21,44,45,66,67]. However, the first derivative spectra were only advantageous
for the RF-based method since the accuracies of the other algorithms were reduced, or the differences
in accuracy were small. Furthermore, although RF performed better for the shaded samples when
reflectance data were used, this tendency was obscure for the first derivative spectra for all observations.
RF was effective in certain bands because the importance concentrated on some specific bands (Figure 8).
However, it is usually difficult to calculate first derivative spectra from the hyperspectral data obtained
from satellite- or air-borne remote sensing, whose bandwidths are wider than those from FielSpec 4,
limiting the applicability of this algorithm.

4. Materials and Methods

4.1. Measurements and Datasets

Our experiments were performed on six tea trees in a greenhouse at the Institute of Fruit Tree and
Tea Science, National Agriculture and Food Research Organization, Shimada, Japan. Three trees were
placed under a Dio Chemicals shading net #1800 (80%–85% shading, Dio Chemicals Ltd., Japan), while
the remaining three trees were cultivated under 0% shading (unshaded; Figure 9), for the periods from
19 April to 10 May and 14 June to 12 July for the first and second flushes of leaves, respectively. After
the first two pickings (sampled on 10 May and 12 July), all shade nets were removed, and the last
samples were collected on 26 July. The numbers of samples are shown in Table 1.
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Figure 9. Shade treatments used during this study.

New shoots were sampled from each tree on each sampling day, and reflectance and chlorophyll
contents were measured from them. The numbers of samples collected differed between the two
treatments since one tree and several leaves died before sampling.

An ASD FieldSpec4 unit (Analytical Spectral Devices, USA) was used to obtain reflectance data
from leaf clippings. This device has three detectors: visible and near-infrared (VNIR), short wave
infra-red (SWIR) 1, and SWIR 2. The splice correction function of ViewSpec Pro Software (Analytical
Spectral Devices) was applied to correct differences in the spectral drifts (at 1000 and 1800 nm) caused
by inherent variation in detector sensitivities. The first derivative spectra were also calculated from
these reflectance spectra. After measuring reflectance, leaf discs (8 mm in diameter) were prepared
and soaked in dimethyl–formamide to measure pigment concentrations using dual-beam scanning
ultraviolet-visible spectrophotometers (UV-1280, Shimadzu, Japan). To quantify chlorophyll a, b and
carotenoid contents (in µg ml−1) from the dimethyl–formamide extracts, the following calculations [68]
were applied, and the results are expressed in µg cm−2:

Car = (1000A480 − 1.12Chla− 34.07Chlb)/245 (1)

Chla = 12A663.8 − 3.11A646.8 (2)
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Chlb = 20.78A646.8 − 4.88A663.8 (3)

where A is the absorbance, and the subscripts represent the wavelength (nm).
For modelling, all measurements were divided into three groups (a training dataset (50%),

a validation dataset (25%) and a test data dataset (25%)) using a stratified sampling approach [69] that
was repeated a hundred times to obtain robust results.

4.2. Regression Model

When applying machine learning algorithms, it is necessary to select wavelengths that are effective
for removing non-informative variables to obtain better and simpler prediction models [70]. The genetic
algorithm (GA)-based approach is an adaptive heuristic search algorithm based on the concept of
natural selection and survival of the fittest among individuals over consecutive generations. It was
used to estimate the chlorophyll content because of its high performance in both regression and
classification [70–73]. In this approach, each of five generations was composed of a population of
character strings (i.e., combinations of narrow wavebands) analogous to a chromosome, from which the
best waveband combination was finally selected after a process of evolution using R version 3.5.3 [74].
The regression models were then created using the selected bands and different supervised learning
methods: RF, SVM, DBN, and KELM. For optimising the hyperparameters of these machine learning
algorithms, Bayesian optimisation was applied with the Gaussian process [37,39] using R version
3.5.3 [74] and the “rBayesianoptimization” package [75].

4.2.1. Random Forest (RF)

Random forest regression builds multiple decision trees called classification and regression trees
(CART) based on randomly bootstrapped samples of the training data [76] via generalization of the
binomial variance (using a Gini index) and with nodes that are split using the best split variable
from a group of randomly selected variables [77]. Since previous research has demonstrated the
effectiveness of RF [78,79], it was used as a benchmark in this study. The number of trees (ntree) and
the number of variables used to split the nodes (mtry) are normally defined by the user. RF differs
from CART in growing non-deterministically to decorrelate the trees and reduce variance using a
two-stage randomisation procedure related to a bootstrap sample and random variable selection. Prior
to the construction of each decision tree, several samples were extracted at random and replaced from
the original training dataset; these samples were used for tree building. When ntree is increased, the
generalisation error always converges; thus, over-training is not a problem. As a result, a tree of RF
is grown as deeply as possible under the constraint that each terminal node must contain at least
one case with node size ≥1. Furthermore, it is generally assumed that randomising the splitting rule
can improve the performance of the ensembles [80]. Therefore, three additional hyperparameters
were considered: the minimum number of unique cases in a terminal node (nodesize), the maximum
depth to which a tree should be grown (nodedepth), and the number of random splittings (nsplit).
RF regression was implemented using R version 3.5.3 [74] and the “randomForestSRC” package [81].

4.2.2. Support Vector Machine (SVM)

Regression models based on SVM are effective for resolving the problems of high dimension and
local minima [82], and SVM was used with the Gaussian radial basis function (RBF) kernel [83] using R
version 3.5.3 [74] and the “e1071” package [84]. In this method, two hyperparameters, the regularisation
parameter C and the kernel bandwidth σ, are tuned to generate regression models. For C, high values
could result in over-fitting due to high penalties for inseparable points, while low values might lead to
under-fitting. The σ value defines the reach of a single training example.
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4.2.3. Deep Belief Nets (DBN)

Deep belief net modelling consists of multi-layer, unsupervised, restricted Boltzmann machines
(RBMs), which are two-layer neural networks [85]. Dropout is used during the training phase since
this is known to facilitate good predictions. Eleven hyperparameters (unit sizes of six layers, batch
size, learning rate, number of epochs, rate of drop out and weight decay) were optimised in this study.
DBN regression was implemented using R version 3.5.3 [74] and the “darch” package [86].

4.2.4. Kernel-Based Extreme Learning Machine (KELM)

The extreme learning machine (ELM) is based on a single hidden layer feedforward neural
network. Its input weights and hidden layer biases are randomly assigned [87]. ELM has been
successfully used in prediction, fault diagnosis, recognition, classification, and signal processing [34].
The kernel trick was applied to ELM instead of attempting to fit a non-linear model [88], for which
the RBF kernel is a good choice [6,7]. The regulation coefficient (Cr) and the kernel parameter (Kp)
should be optimised when KELM is applied. KELM was applied using MATLAB and Statistics Toolbox
Release 2016a (The MathWorks, Inc., Natick, MA, USA), and the source code was downloaded from
http://www.ntu.edu.sg/home/egbhuang/.

4.3. Statistical Criteria

The root-mean-square error (RMSE, Equation (4)) and the ratio of performance to deviation (RPD,
Equation (5)) [89] were applied to evaluate each method’s estimation accuracy using R version 3.5.3 [74].
Each method was classified into three categories according to RPD values: Category A (RPD > 2.0),
Category B (1.4 ≤ RPD ≤ 2.0) and Category C (RPD < 1.4). The models categorised as A or B were
assumed to have the potential to estimate chlorophyll content [90]:

RMSE =

√√
1
n

n∑
i = 0

(ŷi − yi)
2 (4)

RPD = SD/RMSE (5)

where SD is the standard deviation of the real chlorophyll content, which was calculated from the
measurements from the HPLC in the test data, n is the number of samples, yi is the real chlorophyll
content, and ŷi is the estimated chlorophyll content.

Although RF generates important measures for variables, other algorithms are generally more
difficult to implement. Since few studies have attempted cross-algorithm comparisons, a sensitivity
analysis of selected narrow-bands of the machine learning algorithm-based regression models using
data-based sensitivity analysis (DSA) was conducted. This analysis performs a black-box use of the
fitted models with their machine learning algorithms by querying the fitted models with sensitivity
samples and recording their responses [91].

5. Conclusions

Some stresses are utilised to improve the quality of agricultural products, and the control of light
transmission by shade treatment has been conducted to increase chlorophyll content in tea plants.
Although chlorophyll content estimation is one of the most common applications of hyperspectral
remote sensing, previous studies were based on measurements under relatively low-stress conditions.
Therefore, the chlorophyll content estimations based on four algorithms (random forest (RF), support
vector machine (SVM), deep belief nets (DBN) and kernel-based extreme learning machine (KELM))
were evaluated using the original reflectance or the first derivative spectra from shade grown tea
leaves in this study. The regression models based on KELM and the original reflectance data yielded
the most accurate estimations with a root-mean-square error of 8.94 ± 3.05 µg cm−2 and the ratio of

http://www.ntu.edu.sg/home/egbhuang/
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performance to deviation values from 1.70 to 8.04, which means the regression models based on KELM
were excellent for quantifying chlorophyll content.

The advantage of the first derivative spectra was confirmed for only RF but remains obscure for
the other three algorithms. Considering that satellite or airborne remote sensing data are preliminary
data sources for large-scale assessments (from which the first derivative index is usually unavailable
due to spectral resolution), KELM might also be a useful tool for estimating the chlorophyll content of
shade-grown tea leaves from satellite- or airborne-based remote sensing data.
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