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Dysregulated axonal RNA
translation in amyotrophic lateral
sclerosis
Kyota Yasuda and Stavroula Mili*

Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease that
has been associated with a diverse array of genetic changes. Prominent among
these are mutations in RNA-binding proteins (RBPs) or repeat expansions that
give rise to toxic RNA species. RBPs are additionally central components of
pathologic aggregates that constitute a disease hallmark, suggesting that dysre-
gulation of RNA metabolism underlies disease progression. In the context of
neuronal physiology, transport of RNAs and localized RNA translation in axons
are fundamental to neuronal survival and function. Several lines of evidence sug-
gest that axonal RNA translation is a central process perturbed by various patho-
genic events associated with ALS. Dysregulated translation of specific RNA
groups could underlie feedback effects that connect and reinforce disease mani-
festations. Among such candidates are RNAs encoding proteins involved in the
regulation of microtubule dynamics. Further understanding of axonally dysregu-
lated RNA targets and of the feedback mechanisms they induce could provide
useful therapeutic insights. Published 2016. This article is a U.S. Government work and is in

the public domain in the USA.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is the most
common adult-onset motor neuron disease and

is characterized by the degeneration of cortical and
spinal motor neurons. This degeneration induces pro-
gressive muscle atrophy that ultimately leads to respi-
ratory failure within a few years from disease onset.
On a cellular level, studies for many years have linked
the disease with prominent manifestations including
oxidative damage, excitotoxicity, protein aggregation,
defective axonal transport, and mitochondrial dys-
function.1 Up until 2008, the only known genetic

cause of the disease was mutations in the SOD1 gene.
SOD1 encodes a Cu/Zn superoxide dismutase, a
major antioxidant protein, which when mutated
aggregates in association with mitochondria, thus
providing some obvious links to the observed disease-
associated cellular malfunctions. More recently, how-
ever, advances in sequencing and genotyping technol-
ogies have significantly expanded the list of known
genetic causes and have led to the identification of
numerous additional disease-causing mutations.2 The
most prominent of them correspond to dominant
mutations in genes encoding proteins involved in
RNA biogenesis events (FUS, TARDBP) or repeat
expansions that might give rise to toxic RNA species
(C9ORF72). This has shifted the focus to defects in
RNA metabolism as the underlying cause of disease
and has raised the question of how very similar dis-
ease manifestations can arise from a seemingly quite
diverse set of underlying genetic changes.3

In patients and in mouse models of the disease,
the expression of ALS-causing mutants specifically
affects neuronal cells and spares most other somatic
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cell types. This suggests that some aspect of neuronal
cell physiology underlies this selective vulnerability.
Neurons exhibit an intricate morphology with a cell
soma that gives rise to an elaborate network of den-
drites and axons responsible for signal receipt and
transmission. Axons of motor neurons can extend for
distances up to 1 m, in humans, and contain a cyto-
plasmic volume up to a thousand times greater than
the neuronal cell body itself.4 Maintaining
this morphological and functional polarization is nec-
essary for proper neuronal function and survival
and requires a constant supply of proteins, lipids, and
whole organelles from the soma to the periphery
through active transport on cytoskeletal elements.

However, apart from simple maintenance of
their morphology, both axons and dendrites exhibit
the need to process and respond to stimulation in a
local and segregated manner and can function with a
remarkable degree of autonomy from the cell soma. A
major way of achieving autonomous localized
responses is through transport of a diverse set of
RNA molecules, encoding enzymes, structural and
signaling proteins, whose translation is tightly con-
trolled.5 Indeed, localized translation is important for
fundamental neuronal processes,6 including axon
guidance during development and regeneration after
injury, synaptic plasticity, and transmission of sur-
vival signals to the cell soma.7 Not surprisingly,
defects in localized translation have been linked to
various neuronal diseases.8

In the case of ALS, mounting evidence suggests
that ‘dying-back’ axonopathy and axonal degenera-
tion are primary causes of pathology.4,9 Pathological
changes in nerve terminals appear to occur before
detectable changes in the neuronal cell somas or onset
of symptoms, indicating that an inability to sustain
normal peripheral functions initiates the disease proc-
ess.9,10 Interestingly, the prominent cellular dysfunc-
tions associated with ALS, namely oxidative damage,
excitotoxicity, protein aggregation, defective axonal
transport, and mitochondrial dysfunction, can all lead
directly or indirectly to dysregulation of localized
RNAs. We discuss here the idea that localized RNA
translation is a central process affected by a series of
interconnected events associated with ALS pathology
(Figure 1). The existence of several interconnections
and the potential for feedback effects would provide
the basis for directing different initial pathogenic sti-
muli toward the same end response. Diverse stimuli,
derived for example, from disparate genetic mutations
or environmental triggers, could provide different
points of entry to initiate a common cascade of patho-
genic events, leading to dysregulation of axonal RNA
translation and eventual axonal degeneration.

GENETIC CAUSES OF ALS

ALS occurs mainly in adults (45–60 years of age)
and most cases are sporadic. Only 5–10% of ALS
cases are inherited in an autosomal dominant pat-
tern. Genetic causes for the disease have been uncov-
ered mostly for familial cases; however, given the
quite similar phenotypic manifestations of the disease
it is thought that understanding the underlying path-
ogenic mechanisms of familial cases would provide
information also relevant to the spectrum of sporadic
disease. Recent technological advances have resulted
in the identification of an ever-increasing number of
genetic alterations associated with ALS. Some of
the major ones are mapped to the genes for
SOD1, TARDBP, FUS, C9ORF72, OPTN, VCP,
UBQLN2, PFN1, HNRNPA2, and TUBA4A.2,11

We provide, below, a brief overview of mutations in
SOD1, TARDBP, FUS, and C9ORF72 genes, which
are the focus of the majority of studies. We are refer-
ring to additional genetic alterations where relevant.

SOD1 (copper/zinc superoxide dismutase 1)
was the first identified genetic cause of familial ALS.
The SOD1 gene encodes an enzyme that catalyzes
the removal of superoxide species. More than
180 mutations within SOD1 have been linked to
ALS, with the majority resulting in amino acid substi-
tutions throughout the length of the protein.12 Sev-
eral of these mutations do not have an effect on
SOD1 dismutase activity but are linked to misfolding

FIGURE 1 | Axonal RNA translation as a central process
dysregulated in amyotrophic lateral sclerosis (ALS). Potential
interconnections between ALS-associated pathogenic events and
feedback effects discussed in the text. Disparate genetic mutations or
environmental triggers could provide different points of entry to
initiate cascades of events leading to dysregulation of RNA
metabolism in axons through affecting RNA transport and/or
translation. Red fonts indicate affected RNAs or events that could
impact on axonal RNA translation.
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and aggregation of the protein.12 The mitochondrial
accumulation of SOD1 aggregates is thought to
result in the mitochondrial dysfunction associated
with ALS.13 Mutant SOD1 mouse models recapitu-
late many features of ALS including mitochondrial
dysfunction, axonal degeneration, and defective
axonal transport.13–16 Interestingly, overexpression
of wild-type human SOD1 in mice also causes pro-
gressive motor neuron degeneration, supporting a
pathogenic role for misfolded SOD1 protein.12

TDP-43 (Tar DNA-binding protein 43 kDa,
encoded by the TARDBP gene) is a ubiquitously
expressed and highly conserved RNA/DNA-binding
protein that is predominantly found in the nucleus,
but also shuttles between the nucleus and cyto-
plasm.17 TDP-43 has two RNA-binding motifs and is
involved in gene transcription, pre-mRNA splicing,
mRNA stability, and mRNA transport.3,17 Identifica-
tion of TDP-43 RNA targets in a number of studies
has indicated that TDP-43 binds to thousands of
RNA targets with a preference for UG-rich RNA
sequences.18–22 ALS mutations in TDP-43 are mainly
found within highly conserved amino acids of its
Gly-rich low-complexity domain (LCD).3,17 How-
ever, even in the absence of pathogenic mutations,
TDP-43 constitutes a major component of protein
aggregates found in the vast majority of familial and
sporadic ALS patients,3,23–25 thus pointing to a cen-
tral role for TDP-43 protein aggregation, which can
be triggered by diverse pathogenic stimuli.

FUS (fused in sarcoma; also known as TLS,
translocated in liposarcoma) is another DNA/RNA-
binding protein that shares very similar structure and
domain features to TDP-43. FUS is also predomi-
nantly observed in the nucleus and has been ascribed
a number of nuclear-related functions such as in
DNA damage and repair, transcription regulation,
RNA splicing, and microRNA processing.3,17,26 FUS
also shuttles to the cytoplasm and functions in RNA
transport. FUS is a component of neuronal transport
RNPs,27 it translocates to dendrites upon mGluR5
activation facilitating transport of mRNAs in these
structures, and regulates spine morphology.28,29

Identification of its RNA targets has revealed that,
similar to TDP-43, FUS binds to a large number of
RNAs through a loosely defined consensus.30–33

Mutations in FUS account for ~4% of familial ALS
cases and are mostly found within the N-terminal
LCD of the protein or at a C-terminal sequence com-
prising a nuclear localization signal.17 Both types of
mutations are thought to lead to the formation of
cytoplasmic inclusions either directly by increasing
the aggregation propensity of the LCD or indirectly
by increasing the concentration of the protein in the

cytoplasm.34,35 Supporting the importance of tightly
regulating the concentration of FUS, overexpression
of wild-type FUS has been associated with disease in
humans and in animal models.36–38 While FUS and
TDP-43 inclusions are associated with similar pheno-
typic consequences, they nevertheless appear to be
distinct on a molecular level, with TDP-43 being
mostly absent from FUS-positive inclusions.39 Poten-
tially relevant to this observation, genetic studies in
zebrafish indicate that FUS and TDP-43 act on the
same pathogenic pathway, with TDP-43 acting
upstream of FUS.40

The recent identification of a large hexanucleo-
tide (G4C2) repeat expansion (HRE) in the
C9ORF72 gene (chromosome 9 open reading frame
72) has provided a genetic explanation for ~40% of
familial ALS cases.41,42 The expansion can contain
up to thousands of repeats and how it leads to ALS
pathology is a subject of intense investigation. Sense
and antisense transcription of the HRE locus leads to
production of HRE RNA species that adopt G-
quadruplex structure.43 HRE transcription addition-
ally causes a reduction in the amount of the normal
protein product produced from the C9ORF72 gene.
However, loss of function of C9ORF72 protein does
not lead to motor neuron phenotypes,44 indicating
that pathogenic effects arise from expression of the
toxic HRE RNA species. Potential mechanisms for
this include sequestration of RNA-binding proteins
(RBPs)45–47 and/or noncanonical, repeat-associated
non-AUG (RAN) translation of HREs that give rise
to toxic dipeptide-repeat proteins.48 Independent
concurrent reports have identified nucleocytoplasmic
transport as a crucial cellular process affected by
C9ORF72 mutations. Both nuclear import and RNA
export were found to be affected in Drosophila and
yeast models of HRE toxicity.49–51 These effects
could be mediated through sequestration of the Ran-
GAP regulator by HRE RNAs.49 Additionally, spe-
cific C9ORF72 protein isoforms associate with
importin β1 and the Ran-GTPase.52 Interestingly,
TDP-43 is one of the cellular proteins whose nucleo-
cytoplasmic distribution is affected, both in Drosoph-
ila cells and in differentiated, patient-derived
neurons, providing a potential connection between
C9ORF72 mutations and TDP-43 pathology.49

EFFECTS OF ALS PATHOLOGIC
EVENTS ON LOCALIZED RNA
TRANSLATION

Our focus here is to discuss effects of genetic ALS
mutations and pathogenic events on RNA translation
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in axons and to point out interconnections and
potential feedback effects. We refer to other reviews
for additional discussions on ALS pathogenesis.1,53

RNA-Binding Protein Aggregation

Pathogenic Potential and Mechanisms of
RBP Aggregate Formation
A major hallmark of affected motor neurons in ALS
is the presence of protein aggregates containing the
RBPs FUS and TDP-43. These proteins are found in
aggregates not only in patients carrying mutations in
the corresponding genes but also in patients carrying
distinct or no known mutations, supporting a wide-
spread role of RBP aggregation in neuronal degenera-
tion.54 Consistent with that, both FUS and TDP-43
need to aggregate in the cytoplasm in order to confer
toxicity in yeast.55,56 Additionally, in a Caenorhabdi-
tis elegans model of the disease, the abundance of
insoluble FUS directly correlates with neurotoxicity
and, importantly, increasing or decreasing these
insoluble FUS assemblies exacerbates or ameliorates
neurotoxicity, respectively.57 Supporting the patho-
genic role of protein aggregation, other strategies
of dissolving such aggregates have shown that this
can be beneficial. The yeast protein Hsp104, a hex-
americ AAA+ ATPase that deconstructs various amy-
loids and fibrillar oligomers, has been engineered to
target FUS and TDP-43 aggregates. Dissolution of
FUS and TDP-43 aggregates, in yeast models,
restored proper protein localization and suppressed
toxicity.58,59

Transgenic rodent models of FUS and TDP-43
proteinopathy have demonstrated varying levels of
inclusion formation, lethality, and motor defects.
This variability could be due to differences in pro-
moter usage, level and timing of transgene expres-
sion, or type of mutant protein expressed.60,61

Another potential consideration is that pathogenic
protein insolubility could occur in the absence of
overt, microscopically visible inclusion formation.62

Indeed, in response to heat shock, submicroscopic,
biochemically detectable aggregates are formed,
despite the absence of obvious in vivo foci.63 Never-
theless, in motor neurons differentiated from patient-
derived induced pluripotent stem cells an increase in
detergent-insoluble TDP-43 is observed,64,65 while
cytoplasmic levels of mutant FUS correlate with
mutation severity66 and lead to spontaneous aggrega-
tion upon aging of the culture,67 supporting a role
for protein aggregation also in these patient-derived
cell systems.

In recent years, there has been substantial prog-
ress in our understanding of the underlying mechan-
isms leading to pathologic protein aggregation. An
important consideration is that both FUS- and TDP-
43-containing aggregates appear to be related to
stress granules,68 which are RNA–protein assemblies
formed under conditions of stress and reduced trans-
lation initiation, and are thought to represent a pool
of translationally stalled RNPs.69 The connection of
pathologic inclusions to stress granules is based on
the fact that pathologic inclusions contain several
stress granule markers. Additionally, several patho-
genic RBPs (such as FUS, TDP-43, and hnRNPA1)
associate normally with stress granules in response to
stress and can induce their formation in cell culture
systems.70

Formation of stress granules was originally
shown to be driven by multimerization of the RBP
TIA-1 that contains a prion-like domain.71 The last
few years have led to the realization that such prion-
like LCDs are particularly abundant in RNA- and
DNA-binding proteins, several of which have been
implicated in ALS and other neurodegenerative dis-
eases.72 Interactions of LCDs as well as multivalent
interactions mediated through RNA underlie a
liquid–liquid phase separation that leads to the for-
mation of various membrane-less cellular compart-
ments, including stress granules.73 However, under
normal conditions, such liquid-demixed phases are
very dynamic, their components are recycled in short
time scales, and are thus quite distinct from the solid
aggregates associated with disease. A series of recent
reports have addressed this question, showing that
pathogenic mutations in the LCD-containing proteins
FUS and hnRNPA1 can accelerate the conversion of
dynamic liquid phases into fibrillar aggregates that
can further seed the assembly of additional amyloid-
like deposits.34,74,75

Apart from aggregation-inducing mutations
in RBPs, persistence of RNP granules could be
caused by mutations in additional factors that regu-
late their dynamic properties or by blocking
quality control pathways that are normally involved
in their removal. Indeed, ALS mutations in the
VCP/p97 protein, a AAA-ATPase, have been associ-
ated with impaired autophagic clearance of stress
granules,76 while mutations in Profilin1 similarly
impair stress granule dynamics.77 The current
hypothesis, therefore, suggests that pathologic inclu-
sions arise from the perturbation of physiologic
RNP remodeling events, which convert dynamic
RNP assemblies into self-propagating stable
fibrous assemblies or prevent their efficient
clearance.70
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Effects of RBP Aggregates on RNA
Localization and Translation
How are RBP aggregates mediating neurotoxic
effects? Under conditions of stress or in response to
toxic insults, dynamic formation of stress granules is
important to promote cell survival. Stress granule
formation accompanies polysome disassembly and
translational arrest of most cellular mRNAs to ensure
specific production of proteins involved in response
to stress and eventual recovery. Inability to disassem-
ble these structures could lead to a persistent reduc-
tion in protein production, which could be
particularly detrimental to neuronal cells given their
high energy and metabolic demands. Translational
arrest, in response to several stressful stimuli, is
mediated through phosphorylation of the initiation
factor eIF2a.69 Phospho-eIF2a cannot support forma-
tion of a functional eIF2-GTP-tRNAMet ternary com-
plex, thus blocking translation at the initiation stage.
Consistent with a pathogenic role for prolonged
translational repression, eIF2a phosphorylation is
upregulated by TDP-43 toxicity and inhibition of this
phosphorylation mitigates TDP-43 toxicity in fly
models and mammalian neurons.78 Underscoring the
importance of correct translational regulation in neu-
ronal physiology, sustained translational repression
has been suggested to also have a causative role in
prion-mediated neurodegeneration.79 In the case of
ALS, important RNA targets affected by translational
repression include axonal RNAs. TDP-43 proteino-
pathy prevents translation of futsch RNA in the Dro-
sophila neuromuscular junction (NMJ) and restoring
futsch expression rescues TDP-43 toxicity and NMJ
defects.80,81

Despite their resemblance to stress granules,
pathogenic aggregates could additionally have dis-
tinct properties. Imaging assays to detect newly
synthesized proteins and translation sites have shown
that cytoplasmic granules formed by mutant FUS can
support translation of at least some RNA species.82

Some of the RNAs found in FUS granules are nor-
mally localized in cell protrusions and neuronal
axons,82,83 suggesting that in certain cases the patho-
genic contribution might not be derived through loss
of translation but rather through ectopic translation
leading to an imbalance in the local protein produc-
tion between the neuronal periphery and the
cell soma.

Formation of persistent RNP aggregates could
additionally trigger toxicity through sequestration of
protein factors and reduction of their functional cyto-
plasmic pool (Figure 2). As detailed below, the inte-
gral components of pathogenic aggregates, FUS and
TDP-43, have roles in axonal RNA transport that

are perturbed by disease mutations. Additionally, the
adenomatous polyposis coli (APC) protein is
recruited in cytoplasmic FUS granules in cell culture
systems and in patient tissue.82 Interestingly, this
association is observed in cytoplasmic granules
induced by pathogenic mutations, but not in
arsenite-induced stress granules (K. Yasuda, unpub-
lished observations). APC is an RBP that functions in
targeting a large group of RNAs in cellular protru-
sions and neuronal axons.83,84 Sequestration of APC
in cytoplasmic aggregates could thus impact a num-
ber of axonal functions relying on localized RNA
translation, including microtubule dynamics and
organization84 (see below). Indeed, APC has impor-
tant functions in the nervous system, which have,
however, been investigated mostly in the context of
development. Conditional loss of APC leads to dis-
rupted cortical layer formation, aberrant axon tract
development, and microtubule disorganization.85 In
cell culture systems, APC is important for neurite
extension, axon specification, and outgrowth and
localized APC inactivation leads to growth cone
collapse.86–89 Additionally, however, APC is abun-
dantly expressed in neuronal cells of the adult central
nervous system where it distributes within dendritic
and axonal processes.90 Apart from its function
related to RNA metabolism, APC also has a well-

FIGURE 2 | RNA-binding protein (RBP) aggregation and
connections to microtubule dynamics. RBP aggregates associated with
amyotrophic lateral sclerosis (ALS) can lead to translation arrest,
ectopic translation, or sequestration of RBPs and subsequent
perturbation in axonal RNA transport. Some of the affected RNAs
encode microtubule regulators thus leading to alterations in
microtubule dynamics. Such RNAs include the futsch/MAP1B RNA
affected by TDP-43 mutations or APC-associated RNAs that can be
affected by APC sequestration in FUS granules. Changes of the
microtubule cytoskeleton could subsequently affect transport of
additional cargo, such as mitochondria, or could have feedback effects
on the dynamics of RNA granules.
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established role as a regulator of the β-catenin tran-
scription factor in the context of the Wnt signaling
pathway. It will be interesting to determine how
these two APC functions are coordinated and how
APC association with pathogenic granules affects
Wnt signaling, a pathway that, intriguingly, has been
implicated in other neurodegenerative diseases.91,92

Another FUS-binding partner, the RNP-
assembly protein SMN, has revealed potential con-
nections between ALS and the motor neuron disease
spinal muscular atrophy caused by reduced levels of
the SMN protein. Formation of mutant FUS aggre-
gates leads to redistribution of SMN within cytoplas-
mic granules, which trap SMN and impede its
dynamic release.57,93 Among other functions in spli-
cing and snRNP biogenesis, SMN additionally loca-
lizes to axons and regulates axonal mRNA transport
and local translation.94 Interestingly, overexpression
of an SMN fragment, known to mediate its axonal
functions, rescues axonal defects induced by mutant
FUS.93

Axonal RNA Transport Defects
and the Dynamics of the Microtubule
Cytoskeleton
Motor neurons are highly polarized cells with long
axons, and transport along the axonal length is
required for delivery of essential components, such as
RNAs, proteins, and organelles, to the axonal com-
partment. Axonal transport is primarily carried out
on microtubules through the action of molecular
motors, kinesins, and cytoplasmic dynein that medi-
ate transport in the anterograde and retrograde direc-
tion, respectively.95 Apart from maintenance of the
axonal compartment, retrograde transport is addi-
tionally important for relay of survival signals from
the periphery to the neuronal soma. RNAs encoding
nuclear import and transcription factors are locally
translated within axons in response to injury or
trophic factor stimulation, and this local protein pro-
duction is required for efficient retrograde signaling,
survival, and recovery.96–99

Disturbances in axonal transport are observed
in ALS patients as well as in ALS mouse models.
Mutant SOD1 mice exhibit defects in axonal trans-
port, which occur early in the disease process.95 The
exact mechanisms are unknown, but likely involve
several pathways involving modification of
microtubule-dependent motors or of cargoes them-
selves. For example, TNF elevation disrupts kinesin
function through p38 activation, while glutamate
reduces axonal transport of neurofilaments through
phosphorylation.95 There is also evidence, in SOD1

mice, for the existence of microtubules with altered,
hyperdynamic properties.100 Given that kinesin
motors exhibit preferences for specific sets of stable,
modified microtubules,101 such a change in microtu-
bule dynamics could affect their recognition by
motor proteins and thus alter the efficiency of trans-
port of specific cargoes.

Which cargoes are relevant to pathogenicity is
not clear. Studies of mutant SOD1 mice have focused
on transport of mitochondria and organelles.102–104

However, impairment of mitochondrial transport
does not appear to be a direct cause of motor neuron
degeneration,105,106 suggesting that transport of
other cargoes might better correlate with axonal
degeneration. In this regard, it is interesting that both
the ALS-associated RBPs FUS and TDP-43 have been
implicated in RNA transport events in neuronal cells.

TDP-43 is trafficked in neurons107,108 and is
found in cytoplasmic RNP granules along the length
of the axon and at the presynaptic axon terminals in
the NMJ both in mice and Drosophila motor neu-
rons.109,110 TDP-43 axonal granules are transported
bidirectionally in a microtubule-dependent manner.
By contrast TDP-43 mutants (M337V and A315T)
accumulate in the soma and proximal axons and
exhibit impaired anterograde movement in Drosoph-
ila motor neurons, in primary mouse cortical neu-
rons, and in patient iPS-derived motor neurons.110

One of the RNAs associated with TDP-43 granules is
the neurofilament L (Nefl) mRNA. Association with
TDP-43 promotes its anterograde transport, which is
impaired in the presence of pathologic TDP-43
mutants.110 At least during early days in culture the
transport defect is specific for TDP-43 RNP granules
and axonal transport of mitochondria is not affected.
However, TDP-43 mutations affect mitochondrial
transport in transgenic mice or after longer periods
of in vitro culture, suggesting that RNP transport
defects precede, and might cause (see below), more
generalized transport abnormalities.110,111

Coyne et al.81 have used a Drosophila ALS
model based on TDP-43 to uncover potential RNAs
whose defective transport underlies TDP-43 toxicity.
They focused on the futsch RNA, which encodes a
protein homologous to the mammalian MAP1B and
which regulates microtubule organization at
synapses. In the context of TDP-43 proteinopathy,
futsch localization to the NMJ and its translation
were found to be impaired. Interestingly, MAP1B dis-
tribution is also altered in spinal cord motor neurons
from ALS patients and restoring Futsch expression in
Drosophila motor neurons was neuroprotective by
restoring microtubule acetylation and stability at the
NMJ and, additionally, reducing TDP-43
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aggregation. Another TDP-43 target linked to tubulin
modification is HDAC6,112 a tubulin deacetylase,
suggesting that local microtubule acetylation and sta-
bilization could be an important factor mediating
TDP-43 toxicity. Stable microtubules could poten-
tially affect transport of additional cargo requiring
specific sets of microtubule filaments.101 This could
offer a potential explanation for the late, secondary
effects of TDP-43 mutations on transport of mito-
chondrial cargo, mentioned above. Additionally,
microtubules or microtubule motors have been impli-
cated in determining the dynamics of RNP aggregates
such as stress granules113,114 and could thus play a
role in modifying the aggregation state of pathogenic
inclusions. These data suggest the existence of an
interplay, whereby functional TDP-43 RNP transport
granules direct correct expression of microtubule reg-
ulators, ensuring the formation of a microtubule net-
work that can support transport of additional cargo.
At the same time, microtubules ensure the functional-
ity of TDP-43 granules by modulating their aggrega-
tion propensity (Figure 2).

Interestingly, FUS targets could similarly
include microtubule regulators. FUS is a component
of localized RNPs associated with the APC tumor-
suppressor protein.82 HITS-CLIP of APC, from
mouse brain tissue, identified its neuronal RNA inter-
actome and revealed that APC targets were enriched,
among others, for RNAs encoding tubulin isotypes
and microtubule regulators. Preventing the interac-
tion of APC with one of these targets, the β2B-
tubulin mRNA, prevented its axonal localization and
expression and disrupted dynamic microtubules
within axonal growth cones.84 ALS mutations and
aggregation of FUS lead to reduced overall transla-
tion in axon terminals57 and can prevent correct
localization of APC-associated RNAs. Interestingly,
the mechanism underlying this mislocalization
appears to involve additional ways through which
FUS can impact on the stable microtubule network
(Yasuda et al., in preparation). It seems, therefore,
that mutations in both TDP-43 and FUS can com-
monly lead to disruption of local RNA translation
and can affect microtubule structure and dynamics,
potentially consequently affecting transport of addi-
tional cargo (Figure 2).

Supporting the involvement of the microtubule
cytoskeleton in ALS pathogenesis, an exome-wide
rare variant burden analysis of familial ALS cases
has revealed mutations in the gene encoding the
tubulin alpha-4A isoform (TUBA4A). The identified
TUB4A4 mutants affect microtubule dynamics and
destabilize the microtubule network.11 Hyperdy-
namic microtubules have additionally been detected

in an SOD1 mouse model and pharmacologic treat-
ments to reduce the dynamicity and stabilize neu-
ronal microtubules prevented neuronal death,
restored axonal transport, and delayed disease
onset.100 Such effects on microtubule dynamics
would link ALS to several other neurodegenerative
diseases characterized by mutations in tubulin iso-
forms or microtubule-interacting proteins.11,115

Effects of Oxidative Stress on RNA
Translation and RBP Distribution
Oxidative stress, resulting from an accumulation of
reactive oxygen species (ROS), has been documented
in a large number of ALS cases.116 Particular interest
has been shown in the role of oxidative stress in
ALS, because mutations in SOD1, which encodes a
major antioxidant protein, account for a significant
proportion of familial ALS cases.2 Elevated levels of
oxidative damage to proteins, lipids, and DNA have
been found in ALS patient tissue.1 Oxidative damage
to RNA species has also been shown in ALS patient
tissue as well as in mSOD1 mouse models where it
has been shown to occur early during disease pathol-
ogy and to promote degeneration.117 mRNA oxida-
tion is primarily found in motor neurons and
oligodendrocytes. Interestingly, some mRNA
species are more susceptible to oxidative damage and
include RNAs encoding proteins involved in mito-
chondrial electron transport, protein biosynthesis,
myelination, protein folding, and degradation.117

Oxidatively damaged RNA negatively affects the
fidelity of translation and leads to an overall reduc-
tion in the amount of functional polypeptides
produced.118,119

Apart from direct effects on translation through
RNA oxidation, oxidative stress can indirectly affect
RNA metabolism through affecting RBP aggregation.
Specifically, oxidative stress can affect TDP-43 in
multiple ways. It induces TDP-43 crosslinking
through cysteine oxidation and disulfide bond
formation leading to reduced solubility.120 It
further induces TDP-43 acetylation, impairing its
binding to RNA and enhancing its aggregation
propensity.121

On the other hand, expression of mutant TDP-
43 in motor neuron cell lines can induce oxidative
stress,122 suggesting the existence of feedback effects.
Potential mechanisms could be through preventing
expression of detoxification genes such as HO-1122

or through affecting formation and dynamics of
stress granules,123 which exhibit an antioxidant
activity by reducing ROS production124 (Figure 1).
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Effects of Excitotoxicity on RBP
Distribution and Axonal Transport
Excitotoxicity, the phenomenon of neuronal degener-
ation induced by overstimulation of glutamate recep-
tors, has been widely associated with ALS.
Excitotoxicity can be caused from increased synaptic
levels of glutamate, the main neurotransmitter med-
iating excitatory neurotransmission in motor neu-
rons, or by increased sensitivity of the postsynaptic
neuron to glutamate as a result of changes in gluta-
mate receptor expression.125 The main receptors
mediating glutamate neurotransmission are the α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors, consisting of four types of subu-
nits (GluR1–R4/GluA1–A4). The tetrameric receptor
forms a channel, whose permeability and response
rates are controlled posttranscriptionally. A to I
RNA editing of the GluA2 subunit converts a gluta-
mine (Q) residue to arginine (R) and prevents Ca++

entering through the channel pore. Under normal
conditions almost all GluA2 subunits are edited and
the prevention of calcium entry is proposed to guard
against excitotoxicity. The rate of desensitization or
resensitization of the receptor can additionally be
modified through alternative splicing of its subunits.
Editing and splicing of AMPA receptor subunits is
also coordinated with trafficking of their mRNAs at
dendritic sites, where they are locally translated in
response to synaptic stimulation.126,127

Expression of ADAR2, an RNA editing enzyme
catalyzing A to I conversion, as well as RNA editing
of GluA2 mRNA are significantly downregulated in
the motor neurons of the majority of sporadic ALS
patients exhibiting TDP-43 but not SOD1 pathology.
Consistently, loss of ADAR2 in mice is linked to
TDP-43 pathology.128 The consequent assembly of
unedited GluA2 subunits into Ca-permeable
AMPA receptors has been linked to other manifesta-
tions of ALS pathogenicity. First, increased Ca++ per-
meability leads to accumulation of aggregation-prone
N-terminal TDP-43 fragments generated through
proteolytic cleavage by the Ca-dependent protease
calpain.128 Additionally, excitotoxicity can lead to
transport defects.95 Glutamate can activate JNK and
p38 kinases. JNK phosphorylates the kinesin motor
domain and inhibits kinesin from binding to microtu-
bules. P38, which is also induced by mutant SOD1,
can phosphorylate the kinesin light chain and inhibit
cargo binding.95 Therefore, deregulated transmission
through AMPA receptors can provide another entry
point for initiating the cascade of pathogenic events
including RBP aggregation and defective axonal
transport associated with ALS.

Whether other ALS mutations can lead to
defects in AMPA receptor editing is not known. FUS
can regulate stability of GluA1 RNA likely through
controlling its polyA tail length, and FUS depletion
affects synaptic transmission both in vitro and
in vivo.129 GGGGCC RNA foci formed by a repeat
expansion of the C9ORF72 gene have been shown
to sequester another member of the ADAR family
(ADAR3/ADARB2), which was also required for
their formation or maintenance.45 However, ADAR3
does not exhibit RNA editing activity suggesting that,
in this case, its role could be mostly mediated
through its ability to bind RNAs.

Mitochondrial Dysfunction—Roles
of RBPs and Axonal Translation
Mitochondrial impairment has been extensively asso-
ciated with ALS and shown to contribute signifi-
cantly to disease symptoms.130 Mutant SOD1 alters
mitochondrial morphology and distribution within
motor neuron axons.103,104 Expression of mutant
FUS leads to mitochondrial fragmentation and dam-
age131; while mutant TDP-43 induces mitochondrial
morphology and transport abnormalities in trans-
genic mice and cultured neurons.111,132,133 Although
mitochondrial defects are a common occurrence,
in vivo tracking of mitochondria showed that SOD1
and TDP43 mutant mice differ in the temporal and
spatial characteristics of these abnormalities, suggest-
ing that different genetic causes lead to the same out-
come through different underlying mechanisms.111

Potential mechanisms could include direct asso-
ciation of the mutant proteins with mitochondria as
described for aggregated, misfolded SOD1.13 Fus
also associates with mitochondria in an interaction
mediated by hsp60. Downregulating hsp60 partially
rescues Fus-induced mitochondrial defects and degen-
eration in flies.131 A similar association with axonal
mitochondria has been reported for TDP-43.132

Another mechanism leading to mitochondrial dys-
function could rely on effects on microtubule-
dependent motors and microtubule dynamics. As
mentioned above, ALS mutations can lead to dysre-
gulated transport and translation of RNAs encoding
microtubule regulators. Alteration of microtubule
dynamics could potentially affect transport of mito-
chondria to the periphery as mitochondrial transport
requires the kinesin-1 protein, Kif5B,134 which
belongs to a family of motors exhibiting preference
for movement along detyrosinated microtubule
tracks,135 a subset of posttranslationally modified
stable microtubules. Indeed, redistribution of
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mitochondria to the periphery in response to nutrient
starvation requires microtubule detyrosination.136

Despite its prevalence, the contribution of defec-
tive mitochondrial transport to disease progression has
been questioned, as increasing mitochondrial mobility,
in G93A-SOD1 mice, did not rescue ALS-like symp-
toms106 and furthermore, defects in mitochondrial
transport were uncoupled from axonal degenera-
tion.105 It is likely that other aspects of mitochondrial
damage, affecting for example membrane conductance
or calcium homeostasis, could make more significant
contributions to motor neuron loss.106,137

In this regard, it is interesting that localized
axonal RNA translation is important for maintaining
mitochondrial functionality. The RNA encoding the
intermediate filament protein lamin B2 (LB2) is
found in axons and its translation is induced upon
axonal stimulation. The locally synthesized axonal
LB2 associates with mitochondria and loss of axonal
LB2 leads to defects in mitochondrial morphology
and function.138 LB2 is not the only nuclear-encoded
mitochondrial protein that is locally synthesized in
nerve terminals. Several others are locally translated,
including cytochrome c oxidase IV (CoxIV) or ATP
synthase 9 (ATP5G1), which encode key subunits of
the oxidative phosphorylation complexes.139–141

Interfering with the localized production of mito-
chondrial components results in compromised mito-
chondrial membrane potential, reduced local ATP
levels, and enhanced production of local ROS in both
cultured neurons and mice.141,142 Interestingly,
increased ROS levels could lead to oxidative RNA
damage, to which, as mentioned above, RNAs
encoding mitochondrial components exhibit
increased susceptibility.117 This could therefore indi-
cate the existence of feedback effects between transla-
tion of mitochondrial components, mitochondrial
dysfunction, and ROS production that enhances and
perpetuates disease-related phenotypes (Figure 1).

Whether local translation of mitochondrial
RNAs is affected by ALS mutations is not known. It
is, however, potentially interesting that RNAs

encoding mitochondrial proteins or mitochondrial
RNA regulators have been identified in at least some
screens looking for FUS and TDP-43 RNA
targets.19,22,33

CONCLUSION

Transport of RNAs along axons and axonal RNA
translation are important for survival and regenera-
tion of neuronal cells. RNA transport and translation
are disrupted by diverse genetic mutations and
pathologic events associated with ALS, suggesting
that local RNA translation is a central event dysregu-
lated during disease progression. Multiple interconnec-
tions and feedback effects can propagate an initial
pathogenic stimulus and reinforce deleterious effects,
providing a framework for understanding how diverse
genetic mutations or environmental factors can lead to
the common phenotypic manifestations associated
with ALS. While the particular localized RNAs, which
participate in these pathogenic mechanisms, are not
fully identified, some emerging groups are providing
useful insights. Aggregation of the RBPs TDP-43 and
FUS can impact on transport and translation of RNAs
encoding components or regulators of the microtubule
cytoskeleton. Such changes in microtubule dynamics
could subsequently disrupt transport of additional rel-
evant cargo, such as mitochondria, and could further
promote RBP aggregation through altering the
dynamic properties of RNA granules. Interestingly,
reduced stability and changes in the dynamic proper-
ties of microtubules have been observed in other neu-
rodegenerative diseases and approaches to restore
microtubule stability can have therapeutic
potential.143–146 Another potentially important group
of localized RNAs encodes mitochondrial components
and its dysregulation could contribute to the observed
mitochondrial dysfunction phenotypes. Approaches to
globally identify mislocalized RNAs and changes in
axonal translation would be important to further
understand affected pathways and processes that
could be therapeutically modulated.
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