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Abstract: Bacterial infection activates the innate immune system as part of the host’s defense against
invading pathogens. Host response to bacterial pathogens includes leukocyte activation, inflamma-
tory mediator release, phagocytosis, and killing of bacteria. An appropriate host response requires
resolution. The resolution phase involves attenuation of neutrophil migration, neutrophil apoptosis,
macrophage recruitment, increased phagocytosis, efferocytosis of apoptotic neutrophils, and tissue
repair. Specialized Pro-resolving Mediators (SPMs) are bioactive fatty acids that were shown to be
highly effective in promoting resolution of infectious inflammation and survival in several models of
infection. In this review, we provide insight into the role of SPMs in active host defense mechanisms
for bacterial clearance including a new mechanism of action in which an SPM acts directly to reduce
bacterial virulence.

Keywords: resolvins; lipoxin; quorum sensing; innate immunity; neutrophils; macrophages

1. Introduction

During bacterial infection, host defense is activated. The earliest part of host defense,
the innate immune system, comprises: (i) physical barriers such as tight junctions, mucous
membranes, epithelial cells, endothelial cells, and smooth muscle, (ii) immune cells, and
(iii) complement formation. This innate immune system is the first line of host defense
critical for pathogen clearance. Adaptive immunity is involved in the later stage clearance
of pathogen and for memory. With respect to innate immunity, there are three processes
that are particularly important: (1) phagocytosis, (2) inflammation, and (3) production of
antimicrobial molecules or traps, namely, defensins, free radicals, and neutrophil extracel-
lular traps. In this review, we will focus specifically on the innate immune cell component
of host defense to bacterial infection.

Infectious activation of innate immunity occurs when biological molecules termed
Pathogen Associated Molecular Patterns (PAMPs) bind to Pattern Recognition Receptors
(PRRs), of which the Toll-Like Receptor systems (TLRs) are the most studied. In particular,
TLRs 2 and 4 respond to binding of PAMPs such as lipopolysaccharide (LPS) and lipotei-
choic acid (LTA) [1–5]. These receptors are widely expressed on cells of innate immunity
(neutrophils, monocytes, macrophages, NK cells, dendritic cells, T and B cells) as well as
nonimmune cells (epithelial cells, endothelial cells, fibroblasts) [4,5]. Binding of TLRs acti-
vates intracellular signaling cascades that result in the production of defensins, increased
phagocytosis and inflammatory mediators such as cytokines, chemokines, arachidonic
acid metabolites and free radicals [6,7]. The production of defensins, formation of reactive
oxygen species, extracellular traps and phagocytosis are processes that are directly involved
in killing the bacterial pathogen. The inflammatory response is also essential for pathogen
clearance. At the cellular level, the inflammatory response helps leukocytes move along
blood vessels, adhere to the endothelium, and cross the endothelial barrier to reach the site
of infection. Clinically, the inflammatory response causes raised body temperature, pain,
redness, and edema. It is now believed that this acute inflammatory response requires
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an active, coordinated resolution for the host to achieve homeostasis and prevent chronic
inflammation [8,9]. Failure to resolve acute inflammation, which is a result of sustained
infection (particularly in bacterial infection), leads to initial hyperinflammation with tissue
injury, followed later by immunosuppression where the host is unable to clear the preex-
isting infection or has increased susceptibility to secondary opportunistic infections. This
immunosuppression is characterized by (i) reduced lymphocyte numbers, (ii) decreased
macrophage function (reduced phagocytic ability, decreased response to LPS stimulation),
and (iii) attenuated neutrophil migration [1,10]. Although there is a major difference in
the pathophysiological presentation of chronic inflammation versus chronic infection in
that there must be an invading pathogen to be termed “infection”, the “solution” to the
problem is similar: active resolution of the process (inflammation or infection) and return
to homeostasis.

Resolution of bacterial infection involves (i) clearance of bacterial load, (ii) inhibition
of neutrophil sequestration and increased neutrophil apoptosis, (iii) reduction in systemic
proinflammatory response, (iv) increased macrophage recruitment, and (v) augmentation
of macrophage phagocytosis and efferocytosis of apoptotic neutrophils [11,12]. These
processes are essential for returning the host to homeostasis. Therefore, an unanswered
paradox is: do resolution mediators, which typically reduce inflammation and neutrophil
function, also attenuate host defense in general? If so, which parts of host defense? This
review will examine the pertinent literature on a specific group of bioactive fatty acids—the
Specialized Proresolving Mediators (SPMs) to provide insight into their role in host defense
during bacterial infection.

2. Specialized Proresolving Mediators (SPMs)

Serhan and colleagues isolated and elucidated the structure of a group of novel lipid
compounds, the SPMs, which have strong inflammation resolution activity [8,9]. The SPMs
are formed from arachidonic acid (20:4), eicosapentaenoic acid (20:5), docosahexaenoic
acid (22:6), and docosapentaenoic acid (22:5) (Figure 1), and they exert their resolution
actions through binding of specific receptors [8,9,13–16]. These compounds are produced
by transcellular synthetic pathways involving various cell types, such as macrophages,
neutrophils, platelets, epithelial cells, and endothelial cells.

Briefly, arachidonic acid can be converted to Lipoxins (Lx) through the actions of sev-
eral lipoxygenase (LOX) enzymes on different cell types. For instance, neutrophil-derived
5-LOX and either platelet-derived 12-LOX or monocyte/macrophage-derived 15-LOX can
form LxA4. Aspirin-triggered LxA4 (AT-LxA4) also known as 15-epi-LxA4 is made from
the acetylation of the cyclooxygenase-2 (COX-2) enzyme by aspirin. This acetylation of
COX-2 directs the enzyme to form 15(R)-hydroxyeicosatetraenoic acid (15(R)-HETE) from
arachidonic acid. 5-LOX then converts the 15(R)-HETE to 15-epi-LxA4 [17]. D-series
resolvins (Rvs) are formed from docosahexaenoic acid (DHA). 15-LOX converts DHA
to 17(S)-hydroperoxyDHA (17(S)-HpDHA), which then can be converted by 5-LOX to
Rvs D1, D2, D3, D4, D5 and D6. Similar to AT-LxA4, aspirin acetylates COX-2, which
then acts on DHA to form the 15-epi-RvDs [18]. Lx compounds, Rvs D1 and D3 bind
to Formyl Peptide Receptor-2 (FPR2) and G-Protein coupled Receptor (GPR)-32 to exert
their actions [19]. RvD5 also uses GPR32. RvD2, on the other hand, signals through
GPR18 [19]. 17(S)-HpDHA can also be converted to Protectin D1 (PD1), while 14(S)-DHA
formed from the action of 12-LOX on DHA, can give rise to Maresin 1 (Mar1). PD1 is a
ligand for GPR37 [20], while Mar1 signals through Leucine-rich repeat G-protein coupled
receptor-6 (LgR6) [21]. E-series Rvs are formed from EPA in a similar fashion as Rvs of the
D-series. Thus, 15-LOX converts EPA to 17(S)-HpEPA, which then can be acted upon by
5-LOX to make Rvs of the E-series. Similarly, Aspirin-triggered 15-epi-RvEs are formed
after acetylated COX-2 acts on EPA. Rvs E1 and E2 are ligands for ChemR23 receptors [19].
RvE1 also binds and inhibits leukotriene B4 receptor-1 (BLT1) [19].
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More recently, a novel set of sulfido-conjugated metabolites derived from DHA
were elucidated [22–24]. These compounds can be formed from epoxide intermedi-
ates of Maresin, Resolvin and Protectin and are termed Maresin Conjugates of Tissue
Regeneration-1 (MCTR1), Resolvin Conjugates of Tissue Regenaration-1 (RCTR1) and Pro-
tectin Conjugates of Tissue Regeneration-1 (PCTR1). All of these compounds can then be
converted to the 2 and 3 series metabolites by glutathione S-transferase, forming RCTR2,
RCTR3, MCTR2, MCTR3, PCTR2, and PCTR3.

There are also resolvins formed from docosapentaenoic acid (22:5; DPA) [15]. These
resolvins, termed RvTs, are generated after neutrophil and endothelial cell interactions in
much the same way as the resolvins are formed from DHA and EPA. These reports provide
strong evidence that SPMs are formed from intercellular interactions.

3. SPM Actions in Infectious Inflammation Resolution

The inflammation resolution mechanisms include decreased neutrophil migration,
increased neutrophil apoptosis, macrophage recruitment, efferocytosis of apoptotic neu-
trophils, increased macrophage phagocytic ability, reduced inflammatory mediator and free
radical release, and tissue repair [7–9,13,14,17,25–30]. These actions are critical to return
the host to homeostasis. Specifically, increased recruitment of macrophages, a professional
phagocyte, promotes bacterial clearance. By the same token, increased neutrophil apoptosis
after bacterial phagocytosis, together with efferocytosis by macrophages, also enhances
bacterial clearance [17,25–30]. Reduction in inflammatory mediator and free radical release
helps to attenuate oxidative stress and tissue injury [16]. As inflammatory responses also
occur in infection (infectious inflammation), it is reasonable to assume that the beneficial
effects of SPMs in infection may also be attributed to their proresolution actions. The
question is whether SPMs, in carrying out certain proresolution actions, also affect host
defense, i.e., do SPM actions to reduce neutrophil migration, increase neutrophil apoptosis,
and attenuate the inflammatory response impede the hosts’ initial ability to fight infection?

4. SPM Levels in Bacterial Infections

There is evidence that SPM levels are altered in various bacterial infection models. In
a nonhuman primate model of Streptococcal pneumonia induced pulmonary infection, blood
levels of RvE1 were significantly lowered [31]. Similarly, RvD1 levels were decreased in a
rodent model of Pseudomonas aeruginosa induced pneumonia [32], suggesting that reduced
SPM formation is implicated in pathogenesis of disease.

All RCTRs can be found in human spleens and are present at elevated levels after
Staphylococcus aureus administration [22]. Human macrophages, when stimulated with
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Escherichia coli, also show an increased production of MCTR1 and MCTR2 [23]. Specific
populations of macrophages, the “anti-inflammatory” M2 phenotype, produce resolvins
and maresins when stimulated with E. coli or S. aureus [33]. Similarly, peritoneal exudates
taken from mice given E. coli showed an increased production of RvD5 and PD1 [34]. Germ-
free mice had greater colon levels of RvD1 and RvD5 [34]. Plasma taken from self-resolving
infection in mice administered E.coli showed a time-dependent rise in D-series Rvs (D1,
D2) from 5–8 pg/mL to 20–28 pg/mL in 12 h. RvTs rose from 6–10 pg/mL to 30–50 pg/mL
within 4 h [15]. Taken together, the results suggest that SPM production is increased
during infection and that this increased production may be an important component of
host defense for bacterial clearance and infection resolution.

Dalli et al., 2016 [15] reported that levels of Rvs of the D and E-series, as well as LxA4,
were significantly increased by 3- to 10-fold in plasma of septic patients. On the other hand,
blood taken at days 1, 3, and 7 from sepsis patients showed increased levels of specific
SPMs—RvE1, RvD1, RvD5, and PD1 in nonsurvivors versus survivors [35]. The authors
attribute this increase to a “failure to resolve” in the non-survivors.

In early reports, Mori’s group showed that dietary fish oil supplementation (2.4 g/day;
1.4 g EPA, 1 g DHA) for 21 days (long-term) significantly increased plasma levels of 17-
hydroxy-DHA (17-HDHA, precursor of D-series resolvins), 18-hydroxy-eicosapentaenoic
acid (18-HEPE, precursor of E-series resolvins), RvD1, RvD2 and RvE1 to approximately
0.1–0.5 nM [36]. Shorter term feeding (5 days) was similar but did not raise RvD1 or RvD2.
These early reports were supported by more recent work showing that fish oil supple-
mentation (3.4 g/day) for 8 weeks, followed by endotoxin challenge, raised total plasma
SPM levels to 3–4 nM [37]. This provides evidence that SPM levels could be raised by
dietary precursors of SPMs. In cases of acute bacterial infections, fish oil supplementation
apparently may not be particularly efficacious as a therapeutic modality, as it requires
weeks to increase SPM levels. Using pure SPMs may be more appropriate in the setting of
acute bacterial infections, as it will increase SPM levels quickly. It is possible to speculate
that dosing in the high nM range may be of some value. The SPMs that should be con-
sidered are RvD2 and LxA4, as these two were shown to be effective in preclinical rodent
models [38,39], and they were not shown to correlate with nonsurvivors of sepsis [35].

The results from these independently conducted studies provide evidence that endoge-
nously produced SPMs are implicated in the pathophysiology of bacterial infection. The
results also suggest that specific SPMs could be biomarkers of disease severity. SPMs were
measured in the range of pg (low nM), which is the bioactive range of these compounds [7].

5. SPM-Mediated Effects on Neutrophil Activity

Neutrophils are early cellular responders to infection. Responding to various chemo-
tactic signals, neutrophils migrate to the site of infection, where they attack the invading
pathogens by several broad mechanisms: phagocytosis, production of reactive oxygen
species, complement and neutrophil extracellular traps (NETs) [11,40,41]. These activities
of host defense are essential for bacterial clearance, but sustained neutrophil activation
with the release of cytokines and free radicals in this manner can result in tissue injury and
organ damage [40,42–44].

On the other hand, in severe sepsis where there is overwhelming inflammation and
bacteremia, neutrophil dysregulation occurs. In this “dysregulation”, neutrophils fail to
respond to chemoattractants, do not migrate to the site of infection, have lowered apoptosis,
and can suppress immune function [45–51]. Interestingly, it was recently reported that
bacterial and mitochondrial DNA impaired neutrophil phagocytic ability in lungs of
mice administered P. aeruginosa [52], suggesting that bacterial components directly impair
neutrophil function. This dysregulation can lead to the host’s inability to clear existing
infection and can increase susceptibility to opportunistic infections. This paradoxical,
deregulatory effect on neutrophil function highlights the importance of resolution of
infection and precise modulation of host defense.
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SPMs inhibit neutrophil transmigration across the vascular compartment, increase
neutrophil apoptosis, and increase phagocytosis [52–57]. RvE1 reduced neutrophil number
and bacteria load in E. coli infected mouse lungs [58]. Similarly, Aspirin-triggered RvD1
increased the rate of neutrophil clearance as well as gram-negative bacterial clearance in
infected lungs [59]. Use of an FPR2 antagonist, which is the common receptor for LxA4
and RvD1, impaired bacterial clearance and lung injury in a Streptococcal pneumoniae mouse
model [60]. These studies are consistent with the postulate that SPMs promote host defense
to clear pathogen.

There is evidence that supports the notion that the decreased neutrophil number
and/or increased neutrophil clearance is due to neutrophil apoptosis and macrophage
efferocytosis of dead neutrophils [26,55,61]. How do decreases in neutrophil migration to
infected sites correlate or effect a reduction in bacterial burden? One possible mechanism is
through potentiation of neutrophil phagocytic ability. Indeed, LxA4 was shown to increase
neutrophil phagocytic ability in neutrophils isolated from blood of cecal ligation and
puncture (CLP)-induced septic mice [62,63]. Further evidence to support this hypothesis
comes from work showing that FPR2 activation in human neutrophils increased neutrophil
phagocytic ability by promoting the expression of FcγR1 on neutrophils [64]. After the
increased phagocytosis, there is evidence that SPMs (RvE1 and PD1) promote phagocytosis-
induced apoptosis in neutrophils [26]. The mechanism for this effect appears to be by
reducing neutrophil elastase and proteinase 3 release [52]. These reports suggest that
certain SPMs promote host defense by increasing neutrophil phagocytic ability as well as
augmenting later resolution by increasing neutrophil apoptosis.

LxA4 decreased neutrophil migration and reduced bacterial biofilm in a model of
periodontitis caused by the Porphyromonas gingivalis bacterium [65]. This bacterium lays
down biofilm on tooth and surrounding surfaces, which then initiates an inflammatory
response, especially of neutrophils, which then migrate to the site of infection [65]. There
was a clinical trial examining the use of a stable LxA4 analog in periodontitis. In this trial,
1 µM of LxA4 analog mouthwash reduced the amount of gingivitis plaque and bleeding
over the 28-day time course of the study [66], providing clinical evidence that an SPM can
be beneficial in resolving infectious inflammation. In this particular setting, it appears that
inhibiting chronic host defense activation was beneficial.

NETs are traps formed from the release of nuclear chromatin into the extracellular
environment. These traps contain large quantities of bactericidal protein granules, which
contribute to the bacterial killing actions of neutrophils. The proteins extruded by neu-
trophils that make NETs bactericidal are histones, primary and secondary granules such as
myeloperoxidase, elastase, gelatinase, cathepsin G, and proteinase 3. NETs formation is an
important process in bacterial clearance [41,67]. On the other hand, high levels of NETs
are associated with exacerbation of LPS-induced lung injury [68], formation of thrombi in
murine sepsis [69], increased severity in patients with acute respiratory disease (ARDS) [70],
and is a major mediator of death in sepsis [71]. Preincubation of mouse bone marrow
neutrophils with LxA4 was shown to reduce NETs formation [70], while RvD4 decreased
NETs formation in ionomycin-stimulated human neutrophils [72]. Therefore, the overall
evidence shows that SPMs reduce NETs formation.

In a study of P. aeruginosa chronic lung infection, the authors administered RvD1
5 days after bacterial inoculation, near the peak of infection. Under these conditions, RvD1
reduced bacterial load, neutrophil infiltration, and lung injury [32]. A major mechanism
of host defense in this setting was the increased phagocytosis of bacteria by neutrophils
and macrophages to reduce bacterial burden. A similar result was obtained in a model of
chronic P. aeruginosa infection in cystic fibrosis, where once again RvD1 reduced bacterial
titer, neutrophil lung infiltration, and pulmonary tissue damage [73].

A report that showed a negative impact of SPM use was in a pneumonia model where
the authors showed that use of LxA4 before administration of the pathogen was dele-
terious [74]. As LxA4 is one of the earliest SPMs produced [7], it is possible that these
detrimental effects of LxA4 were due to its inhibitory effects on neutrophil action such
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that very early LxA4 administration may leave the host unable to mount an appropriate
response. Taken together, all of these reports suggest that SPMs have dual contrasting
effects on neutrophils during infection where they increase phagocytosis and help in bacte-
rial clearance, but they also reduce neutrophil infiltration and promote apoptosis which
help reduce acute inflammation. The precise mechanism by which an SPM can elicit such
contrasting effects on neutrophils has not been fully elucidated. However, SPMs act on
neutrophils to help clear pathogens as well as resolve infectious inflammation.

6. SPM Effects on Macrophage Activity

Resident tissue macrophages and monocyte-derived macrophages are involved in both
phagocytosis of bacteria and the inflammatory response in host defense during bacterial
infection [12]. These cells are also important in infection resolution, as they phagocytose
apoptotic neutrophils in the process of efferocytosis. SPMs such as LxA4 have direct
effects on monocytes to increase migration [75]. LxA4 also has direct effects on monocyte
myofilaments to promote phagocytic ability [76,77]. Orally administered RvD1 down-
regulated peritoneal macrophage genes involved in the transcription of mediators that
regulate the reduction of macrophage phagocytosis [78]. These studies strongly indicate
that SPMs promote monocyte/macrophage activity as part of host defense.

Cecal ligation and puncture (CLP) is a commonly used rodent model of polymicrobial
sepsis [79]. The major advantage of this model is that it mimics important characteristics
of human sepsis, such as being caused by bacterial infection and having an immunosup-
pressive phase [79,80]. Therefore, it is thought to be a better model for sepsis than the
older LPS-injected models as the latter do not show an immunosuppressive phase nor
are they caused by bacterial infection [81]. In this model, immunosuppression was well
studied with respect to macrophages where these cells have lowered responsiveness to
LPS [82,83]. LxA4 and RvD2 were able to reduce bacteria load and blood cytokine levels
and increase survival in the CLP model of sepsis [38,39,84]. RvD2 acts specifically on its
cognate receptor GPR-18 to promote macrophage phagocytic ability and efferocytosis of
apoptotic neutrophils [85]. Furthermore, these effects of RvD2 on macrophage activity
were mediated by enhancement of protein kinase A and Stat3 [39]. These reports suggest
that in this model of sepsis, early administration of an SPM is beneficial. It is plausible
that the mechanism for these beneficial effects in this model is through the actions of SPMs
on neutrophils and macrophages to promote phagocytic ability and increase bacterial
clearance [64,65].

Along these lines, peritoneal macrophages were reported to have reduced NF-κB
expression in LxA4-treated CLP mice [38], and Mar1 reduced NF-kB activity in peripheral
blood monocytes [86]. In vitro studies showed that RvD2 reduced TLR4 expression in
macrophages stimulated with LPS [87]. Both these reports suggest that a possible mecha-
nism for the reduced inflammatory response seen after SPM administration was due to
reduced TLR4-NF-κB signaling in macrophages.

In human periodontitis, macrophages appeared to reduce phagocytic ability, which
was restored by RvE1 administration [88]. Similarly, MCTR1 and MCTR2 increased
phagocytosis of bacteria in human macrophages [23]. In further work, MCTR3, PCTR3
and RCTR3 all enhanced human macrophage phagocytosis of E. coli and IL-10 secre-
tion [24]. These actions were mediated by tumor necrosis factor receptor-associated factor-3
(TRAF-3). In germ-free mice, LxA4 production was reported to be a key regulator of the
anti-inflammatory cytokine IL-10 production, which was essential for mouse hyporespon-
siveness to ischemia-reperfusion injury [89]. In bacterial sepsis however, overproduction
of IL-10 is immunosuppressive, implicated as a cause of monocyte hyporesponsiveness to
stimulation, and is deleterious in septic patients [90–92]. Interestingly, use of RvD2 and
LxA4 in in vivo models of sepsis did not cause significant increase in systemic IL-10 [38,84].
So, use of SPMs in sepsis is generally regarded not to be immunosuppressive. The reason
for the discrepancy in its effects on IL-10 are unclear but may be caused by the overall reduc-
tion in bacteria load, which then reduces the amount of total inflammatory response. To the
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best of our knowledge, there are no studies in vivo which report that there was an increase
in monocyte/macrophage production of inflammatory mediators. The overwhelming body
of evidence shows that macrophages are stimulated by SPMs as part of host defense to
clear the invading pathogen without an increase in inflammatory mediator release.

7. SPM Action on T and B-Cells

Apart from their action on the innate immune system, there is evidence that SPMs
also act to reduce cellular activity in the adaptive immune system. Specifically, there is
evidence that RvE1 causes apoptosis of stimulated T-cells, while Protectin D1 decreases
T-cell migration [93,94]. Additionally, RvD1, RvD2 and Mar1 decrease differentiation of
naïve CD4 cells into Th1 and Th17 cells (inflammatory T-cells) and potentiate the produc-
tion of T-regulatory (Treg; anti-inflammatory) cells [95]. These Treg cells were shown to
down-regulate the adaptive immune system [96]. RvE1 was also reported to decrease Th17
and dendritic cell activation [97]. LxA4 reduced CD4 and CD8 T-cell migration into the
central nervous system (CNS) of a mouse model of multiple sclerosis [98]. Furthermore,
LxA4 reduced production of IL-17, TNFα and IFN-γ from T-cells taken from patients with
relapse-remitting multiple sclerosis [98]. Similarly, Mar1 increased the ratio of Treg/Th1 in
an ex vivo study using naïve CD4 T-cells obtained from patients with rheumatoid arthri-
tis [99]. In a study of T-cells taken from congestive heart failure patients, Chiurchiu and
coworkers reported that RvD1 and RvD2 did not affect proinflammatory cytokine release
and that the lack of response was due to a reduction in the expression of the GPCR32 RvD1
receptor [100]. These studies strongly suggest that SPMs can down-regulate the T-cell
adaptive immune system and provide benefit to a number of inflammatory diseases.

In Mycobacterium tuberculosis, an infection which is a slow, chronic disease with long
latent infective periods, results with LxA4 are contrary to that obtained with SPMs in other
bacterial infection models. In these studies, 5-LOX-deficient mice, with low LxA4, cleared
infection efficiently and had increased survival [101]. Wild-type mice had significantly
greater bacterial load compared to the 5-LOX-deficient mice after more than 21 days, sug-
gesting that possible down-regulation of T-cell adaptive immunity by LxA4 is detrimental
for host defense in this model. Furthermore, patients with symptomatic tuberculosis had
greater levels of RvD1 and RvD2 than that of uninfected controls, seemingly supporting
the hypothesis that there may be a failure to resolve infection.

SPMs also act on antibody-mediated immunity. RvD1 differentiated human B-cells
into an antibody-secreting phenotype without affecting B-cell proliferation [102]. This
resulted in greater IgG and IgM production. On the other hand, RvD1 decreased B-cell
production of IgE, which is the major mediator in allergic disorders such as asthma and
urticaria [103]. In a separate study, RvD1 decreased B-cell production of IgE in asthmatic
patients, but this effect was not evident in patients who were taking corticosteroids [104].
On the other hand, LxA4 decreased antibody (IgG, IgM) production and reduced expansion
of human memory B-cells [105]. These results suggest an SPM-specific action on B-cells.

Therefore, there is enough evidence to suggest that SPMs have the overall effect of
downregulating T-cell activity of the adaptive immune system of host defense. On the
other hand, SPMs appear to upregulate B-cell-mediated IgG production while inhibiting
IgE production, providing evidence that SPMs have differing effects on the two different
arms of adaptive immunity.

8. Quorum Sensing and Bacterial Virulence

Bacterial virulence is regulated by a complex signaling network called quorum sens-
ing (QS) [106,107]. When the population density of many species of bacteria reaches a
particular threshold, the QS network is activated. The most studied QS signaling path-
way is in the gram-negative bacteria P. aeruginosa where there are 4 major interconnected
signaling pathways [106]. Signaling molecules for these pathways are acyl homoserine
lactones: N-(3-oxododeconoyl)-L-homoserine lactone (3-OC12-HSL) for the las pathway, N-
butanoyl-L-homoserine lactone (BHL) for the rhl pathway, 2-heptyl-3-hydroxy-4-quinolone
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for the Pseudomonas Quinolone Signal (PQS) pathway, and 2-(2-hydroxyphenyl)-thiazole-
4-carbaldehyde for the Integrated Quorum Sensing (IQS) pathway. The P. aeruginosa
bacteria secrete these molecules, which then act on their cognate receptors to trigger co-
ordinated expression of genes that regulate virulence [106,107]. In terms of hierarchy,
the 3-OC12-HSL-Las pathway sits upstream of all the other pathways. Gram-positive
bacteria utilize oligopeptides instead of acyl homoserine lactones. Another QS molecule
is termed autoinducer-2 (AI-2), which is a boron-furan derivative and released by both
gram-negative and gram-positive bacteria. The genes regulated by these pathways include
but are not limited to the secretion of exotoxins, expression of antibiotic resistance genes
(ARGs), elastase expression, and biofilm formation (Figure 2).
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Figure 2. Bacteria such as Pseudomonas aeruginosa activate a quorum sensing signaling pathway when their population
density reaches a particular threshold. In LasI/LasR pathway, LasI signaling increases production of quorum sensing
inducer, N-3-oxododecanoyl-homoserine lactone (3—OC12-HSL). 3—OC12-HSL binds to its cognate receptor LasR, and
then increases expression of virulence genes. This promotes release of exotoxins and proteases, and increases antibiotic
resistance as well as biofilm formation, all of which augments virulence. LxA4 binds to and inhibits LasR receptor, which
reduces Pseudomonas aeruginosa virulence.

The increased release of exotoxin damages adjacent cells/tissues. Biofilm consists pri-
marily of exopolysaccharides, nucleic acids, and proteins. Biofilms essentially encapsulate
the bacteria, shielding it from host leukocytes and antibiotics. With the ever-increasing
use of antibiotics, antibiotic resistance is a major problem with bacterial infections, and
targeting the quorum sensing pathways may be an alternative [108,109].

Interestingly, molecules involved with QS signaling not only interact with bacteria
but also interact with host cells. For instance, 3—OC12-HSL release from bacteria activates
neutrophils, macrophages, fibroblasts, mast cells and B-lymphocytes [110]. The general
outcome of these interactions is variable and has not been fully elucidated, where there
are reports of it being proinflammatory, while there are other reports of it being immuno-
suppressive. It is speculated that the immunosuppressive effect may lead to an inability
to clear pathogen and prolong infection. The variability in outcomes is thought to be
concentration dependent. Overall, the activation of the QS mechanism is deleterious, as it
either reduces the ability of the host to clear pathogen or overstimulates host response to
cause tissue injury.

Taken together, the quorum sensing mechanism of virulence with its interaction with
host defense makes it an attractive target for antimicrobials. Unlike traditional antibiotics,
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an anti-QS agent would attenuate virulence without significant growth inhibition or killing.
So, one could envision that such an inhibitor could be used to lower virulence and allow
host’s innate immunity to clear the pathogen. Such an inhibitor could also be used in
conjunction with an antibiotic to increase the antibiotic’s efficacy without the problem of
antibiotic resistance.

Interaction of SPMs and QS signaling: Recently there were reports that LxA4 can
directly bind to and inhibit the LasR receptor in P. aeruginosa to reduce production of
the exotoxin pyocyanin [67]. In further studies, LxA4 alone was directly able to reduce
P. aeruginosa biofilm formation and increase ciprofloxacin efficacy to kill bacteria within
the biofilm [111]. The mechanism of this action appeared to be a direct inhibition of
P. aeruginosa virulence gene expression. These reports provide early evidence that an SPM
can directly decrease bacterial virulence. These actions, which work directly on bacteria,
support the notion that SPMs can work in tandem with the host, promoting host defense
mechanisms and acting directly on bacteria to decrease their virulence. Such a mechanism
would lower the burden of the host defense to clear the invading pathogen.

9. Concluding Remarks

There is strong evidence that SPMs upregulate early host defense mechanisms to clear
invading pathogens. These mechanisms include increased neutrophil phagocytosis as well
as monocyte/macrophage recruitment and phagocytosis (Figure 3). In addition, there is
evidence that certain SPMs have a direct action in reducing bacterial virulence. These ac-
tions are distinct from certain proresolution actions, such as reducing neutrophil migration
and decreasing proinflammatory T-cell activity, both of which serve to attenuate tissue
injury, but also suppress host defense. Therefore, reports support the hypothesis that SPMs
activate host defense to help fight bacterial infection. Tissue and cellular mechanisms of
how SPMs regulate this increase in host defense remain to be fully elucidated. Furthermore,
the question of whether SPMs can be beneficial later in chronic infections where there may
be T-cell (adaptive immune system) involvement is not yet answered.
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