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Abstract: Low dielectric loss and low-cost recycled borosilicate (BRS) glass-reinforced polytetrafluo-
roethylene (PTFE) composites were fabricated for microwave substrate applications. The composites
were prepared through a dry powder processing technique by dispersing different micron sizes
(25 µm, 45 µm, 63 µm, 90 µm, and 106 µm) of the recycled BRS filler in the PTFE matrix. The effect of
the filler sizes on the composites’ thermal, mechanical, and dielectric properties was studied. The
dielectric properties of the composites were characterised in the frequency range of 1–12 GHz using
an open-ended coaxial probe (OCP) connected to a vector network analyser (VNA). XRD patterns
confirmed the phase formation of PTFE and recycled BRS glass. The scanning electron microscope
also showed good filler dispersion at larger filler particle sizes. In addition, the composites’ co-
efficient of thermal expansion and tensile strength decreased from 12.93 MPa and 64.86 ppm/◦C
to 7.12 MPa and 55.77 ppm/◦C when the filler size is reduced from 106 µm to 25 µm. However,
moisture absorption and density of the composites increased from 0.01% and 2.17 g/cm3 to 0.04%
and 2.21 g/cm3. The decrement in filler size from 106 µm to 25 µm also increased the mean dielectric
constant and loss tangent of the composites from 2.07 and 0.0010 to 2.18 and 0.0011, respectively,
while it reduced the mean signal transmission speed from 2.088 × 108 m/s to 2.031 × 108 m/s. The
presented results showed that PTFE/recycled BRS composite exhibited comparable characteristics
with commercial high-frequency laminates.

Keywords: recycled borosilicate; PTFE; sintering; permittivity; high-frequency; substrates

1. Introduction

The last decade has seen rapid and unprecedented developments in information
technology driven by military and consumer markets [1–3]. This change creates demands
for high-speed, light and low-cost microwave substrate. A microwave substrate that meets
specific criteria supports microwave circuits [4–6]. Microwave substrates are dielectric
materials with low permittivity and a low loss tangent at microwave frequencies [5]. The
substrate materials should have the following properties: low permittivity and loss tangent
for rapid signal propagation, low coefficient of thermal expansion (CTE) for dimensional
stability, high thermal conductivity for transporting the heat generated away from the
microwave circuit and good mechanical strength for material rigidity [7].

Polymers are employed for substrate applications due to their excellent electrical prop-
erties. Polytetrafluoroethylene (PTFE) is the most widely used among polymers because
of its low permittivity, dielectric loss, moisture absorption and chemical inertness [8–10].
However, it has a high CTE (~109 ppm/◦C) and melting point (~327 ◦C) that hinder its
utilisation [11]. It also lacks rigidity for practical substrate applications. These limitations
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can be overcome by adding inorganic and rigid fillers such as glass with lower CTE and
moderate dielectric properties. That is possible because the properties of polymers depend
on their microstructure and composition [12]. The high melting point of PTFE can also
be circumvented by employing a processing technique, such as the powder processing
method, that does not require heat treatment to mix PTFE-glass composites [13].

Recently, recycled glass fillers have attracted considerable attention for microwave
applications due to their rigidity and moderate dielectric properties [14]. Recycled glass
is cheaper and reduces environmental pollution. In this work, the preparation and char-
acterisation of recycled borosilicate glass filled PTFE substrate is reported. Borosilicate
(BRS) is an industrial glass with a thermal conductivity ranging from 1–1.3 W/mK. It has a
low CTE of 3.2 ppm/◦C–4.0 ppm/◦C and tensile strength of about 22 MPa–32 MPa. The
glass is also an excellent electrical insulator with a dielectric constant and loss factor of
4.65–6.00 and 0.01–0.017 [15,16]. These excellent properties of BRS glass make it a perfect
filler when recycled for PTFE-based substrate applications. To the best of our knowledge,
no systematic study of the effect of the recycled BRS filler size on PTFE/recycled BRS com-
posites has been reported. Therefore, this work investigated the dielectric, thermal, and
mechanical properties of PTFE/recycled BRS. In addition, signal propagation speed across
the composites with different filler sizes was calculated and analysed. The PTFE/recycled
BRS composite was also compared with commercial high-frequency laminates.

2. Materials and Methods
2.1. Materials

The PTFE of type MF90C with an average particle size of 50–110 µm was obtained
from Fujian Sannong New Materials Co., Ltd., Sanming, China. At the same time, BRS glass
was acquired from Top Globe Sdn. Bhd. Selangor, Malaysia, in the form of waste moulds.

Glass Powder Preparation
The BRS glass moulds were initially cleaned, washed, and dried at room temperature

for 24 h. After that, the moulds were crushed with a hammer into glass pebbles. A Plunger
was further used to grind the glass pebbles into coarse glass powder. In addition, the
coarse glass powder was transferred to a grinding mill jar with a powder-to-ball ratio of
20:1, which was then milled. The milling was conducted at room temperature for 24 h at
45 rpm using the U.S. Stoneware Jar Mills (U.S. Stoneware, East Palestine, OH, USA). After
the milling stage, the recycled BRS powder was sieved to 25 µm, 45 µm, 63 µm, 90 µm,
and 106 µm particle sizes. The range of these representative filler particle sizes is given in
Table 1.

Table 1. Particle size distribution.

Representative Particle Size (µm) Range of Particle Size (µm)

25 X1 ≤ 25
45 25 < X2 ≤ 45
63 45 < X2 ≤ 63
90 63 < X2 ≤ 90
106 90 < X2 ≤ 106

2.2. Preparation of PTFE/Recycled BRS Composites

The PTFE/recycled BRS composites were prepared by mixing 25 µm, 45 µm, 63 µm,
90 µm, and 106 µm of the recycled BRS filler with PTFE through a dry powder processing
technique. The mixing was conducted via a Wing dry mixer for 10 min, and filler content
in each composite was fixed at 5 wt.%. Then, the compositions were pressed into preforms
using a hydraulic press at a pressure of 10 MPa for 5 min. The compacted composites were
mechanically weak due to air voids. Hence, sintering is required for the removal of the
voids. The samples were sintered from room temperature to 380 ◦C with a temperature
rising time of 3 ◦C/min and held for 1 h to allow for particles fusion, coalescence and void
elimination in the composites. The cooling rate was set at 1 ◦C/min from 380 ◦C to room
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temperature to complete the sintering cycle. A Drying Oven (Jiangsu Sunkoo Machine
Tech Co., Ltd., Changzhou, China) was utilised for the sintering.

2.3. Characterisations
2.3.1. Phase, Morphology and Composition

In this work, XRD was employed to analyse the phase formation of recycled BRS
powder and PTFE/recycled BRS composites. The XRD data were collected using an auto-
mated Philips X’pert system (Model PW3040/60 MPD) with Cu–Kα radiation operating at
a voltage of 40.0 kV and a current of 40.0 mA with a wavelength of 1.5405 Å. The 2-theta
range of 10◦–70◦ with a scanning speed of 2.0 ◦/min was used to record the diffraction
patterns. All data were exposed to the Rietveld analysis on X’Pert Highscore Plus v3.0
software (PANalytical B.V., Almelo, The Netherlands). The samples were classified by
comparing their diffraction peaks with the Inorganic Crystal Structure Database (ICSD).

The shape, arrangement and dispersion of the recycled BRS particles in the composites
were investigated using LEO 1455 Variable Pressure Scanning Electron Microscope (VPSEM,
Leo Electron Microscopy Group, Oberkochen, Germany). The elemental composition of
the samples was obtained via an Oxford Inca energy dispersive X-ray micro-analyser (EDX,
Oxford Instruments, Buckinghamshire, England) attached to the Leo 1455 VPSEM. Five
spots on each sample were examined with the EDX for accurate determination of the
elemental compositions of the composites qualitatively.

2.3.2. Moisture Absorption

The presence of moisture within a material increases its dielectric properties [17].
This change degrades the performance of the materials. Thus, determining the moisture
absorption of materials is essential to identify suitable environmental operating conditions.
PTFE/recycled BRS composites were cut into 25.4 mm by 76.2 mm following the ASTM
D570 standard. The samples were then immersed in distilled water at 25 ◦C for 24 h.
The percentage of moisture absorption for the composites was calculated according to
Equation (1) [18].

MA (%) =
w f−wi

wi
× 100 (1)

where w f and wi are the respective wet and dry weights of the samples.

2.3.3. Density

The density of the PTFE/recycled BRS composites was measured at room temperature
using the Archimedes principle. An electronic densitometer (Alfa Mirage Co., Osaka,
Japan) was utilised for the measurement. Distilled water was then used as the reference
liquid. Hence, the density of the sample was calculated using the following equation [19].

ρc =
Wair

Wair −Wdistilled water
× ρdistilled water (2)

where ρc is the density of the composite, ρdistilled water is the density of distilled water, and
wair and wdistilled water are the weights of the sample in air and distilled water, respectively.

2.3.4. Tensile Strength

The dimensions of PTFE/recycled BRS composites were cut according to the ASTM
D638 to determine the tensile strength of the composites [20]. The tensile strength test was
conducted at room temperature using a Shimadzu AGS-X 100 kN computerised universal
testing machine (UTM, Shimadzu, Kyoto, Japan). The UTM stretched the samples at a
5 mm/min stroke rate with a 10 kN load cell.
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2.3.5. Coefficient of Thermal Expansion (CTE)

The CTE of the composites was measured in line with ASTM E228-17 [21]. A push-rod
dilatometer, Linseis L75 Platinum (Linseis, Selb, Germany), was used. The measurement
was done at room temperature, and the heating rate was set at 10 ◦C/min.

2.3.6. Complex Permittivity

The complex permittivity of PTFE/recycled BRS composites was characterised using
the open-ended coaxial probe (OCP) technique in the 1–12 GHz frequency range [22]. The
probe was connected to an Agilent N5227A vector network analyser (Agilent Technologies,
Santa Clara, CA, USA), as shown in Figure 1. A one-port reflection calibration technique
was used. The one-port calibration technique consists of air, a shorting block and distilled
water at 25 ◦C. After complete calibration, the probe was placed flat on the surface of the
samples for characterisation to avoid air gaps between the sample and the open probe
that may affect measurement accuracy. A standard (unfilled PTFE) material was first
characterised to confirm the accuracy of the calibration. In addition, the dimensions of the
composites were 6 cm × 3.6 cm × 0.7 cm.
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Figure 1. OCP measurement set-up.

The following equation gives the complex permittivity:

ε∗ = ε′ − jε′′ (3)

where ε∗ is the complex permittivity, ε′ is the dielectric constant denoting energy storage,
and ε′′ is the loss factor, representing energy loss. The loss tangent, being the ratio of loss
factor and dielectric constant, is therefore evaluated as follows [23]:

tanδ =
ε′′

ε′
(4)

2.3.7. Signal Propagation Speed

A fast signal transmission with minor delay is required to transmit high data. Gener-
ally, electromagnetic waves are attenuated when passing through a denser medium. Thus,
investigating the influence of filler size on the signal propagation speed is critical to the
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design of microwave circuits for efficient data transmission. The signal transmission speed
can be calculated using the following equation [24].

Vs =
c√
ε′µ′

(5)

where Vs is the signal transmission speed, c is the speed of light in vacuum, ε′ is the
dielectric constant, and µ′ is the permeability of the material.

3. Results and Discussion
3.1. Phase, Morphology and Composition

The X-ray diffraction patterns of 63 µm recycled BRS powder and PTFE/recycled
composites are shown in Figure 2. In the 63 µm recycled BRS XRD profile, a broad peak at
2θ = 15◦ − 30◦ is observed, confirming the amorphous nature of the recycled BRS glass.
This pattern is consistent with the work presented [25], which affirms that no impurities
were introduced during the glass powder preparation. The same figure depicts the XRD
pattern of PTFE. The diffractogram of the PTFE displays a sharp peak and five low-intensity
peaks positioned at 2θ = 18.05◦, 31.53◦, 36.60◦ 37.13◦, 41.18◦, and 49.07◦. These peaks relate
to the (100), (110), (200), (107), (108), and (210) planes and are matched with the ICSD
index of PTFE (ICSD 00-047-2217) [26,27]. Furthermore, the intensity of the peak located
at 2θ = 18.05◦ can be seen to decrease slightly as different sizes of recycled BRS filler are
introduced to the PTFE matrix. In addition, no unwanted peaks in the pattern of the
composites indicate that chemical interaction did not occur between the PTFE matrix and
recycled BRS particulate.
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Figure 2. XRD patterns of PTFE, recycled BRS powder and PTFE/recycled BRS composites.

The scanning electron microscope (SEM) images of pure PTFE, 63 µm recycled BRS
powder, and PTFE/recycled BRS composites are illustrated in Figure 3. It can be observed
that the BRS particles are of arbitrary geometry. The recycled BRS particulates are also more
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dispersed in the PTFE matrix at larger filler sizes, indicating a good connection between the
PTFE matrix and recycled BRS filler. It is reported that effective dispersion of recycled BRS
particulate in the PTFE promotes a homogeneous structure that enhances the properties of
the composites [28,29].
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PTFE/recycled BRS composites at (106 µm BRS).

EDX analysis was conducted to determine the elemental composition of PTFE, 63 µm
recycled BRS and PTFE/recycled BRS composites qualitatively. In Figure 4, the spectra
show that PTFE comprises mainly C at 0.1 keV and F at 0.5 keV. In addition, the same figure
reveals that the 63 µm recycled BRS powder consists of B, O, Na, Al and Si, validating the
purity of recycled BRS glass [30]. Further analysis shows that PTFE and recycled BRS glass
elements were all present in the PTFE/recycled BRS composites except Na and Al at 25 µm
and 106 µm recycled BRS filler loadings. This incidence happens when the concentration
level of the respective element falls below the detection limit [31]. Thus, the findings attest
to the suitability of the dry powder-processing technique for composite fabrication.
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3.2. Moisture Absorption

Moisture absorption significantly affects composite’s dielectric properties because
water has a high dielectric constant and loss. It is reported that moisture absorption of
<0.1% is ideal for electronic packaging applications [6,8,32]. Figure 5 shows the variation in
the moisture absorption of PTFE/recycled BRS composites. It can be seen that the moisture
absorption increases from 0.011% to 0.040% when the recycled BRS filler size is reduced
from 106 µm to 25 µm. It is worth noting that the composite records moisture absorption
lower than the ideal value recommended. The increase in moisture absorption is attributed
to the higher surface area of the smaller-sized recycled BRS particles [8]. Furthermore, the
deterioration of moisture absorption is related to the enhanced porosity and density in the
composites [33].

3.3. Density

The effect of recycled BRS filler size on the density of the PTFE matrix is shown in
Figure 6. The 106 µm, 90 µm, 63 µm, 45 µm, 25 µm, recycled BRS composites had density
values of 2.17, 2.18, 2.19, 2.20, and 2.21 g/cm3, respectively. Thus, decreasing recycled BRS
particle size led to the increase in the density of the composites. A similar result has been
reported by Jiang and Yuan [8]. The enhanced density is related to introducing a denser
recycled BRS filler than the PTFE matrix [34]. In addition, smaller-sized particles possess
more particles per unit volume than larger-sized particles. Therefore, the smaller-sized
filler particles occupy less volume, leading to the increased density of the composites. The
increase in the density is also due to the higher moisture absorbed by the composites [6,35].
This variation significantly affects the PTFE matrix’s CTE, tensile strength and dielectric
properties [11].
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3.4. Tensile Strength

The change of tensile strength as a function of recycled BRS particle size is presented
in Figure 7. The 106 µm, 90 µm, 63 µm, 45 µm and 25 µm recycled BRS composites had
respective tensile strength values of 12.93, 12.93, 12.92, 9.18 and 7.12 MPa. It could be
seen that the reduction in particle size corresponded with a decrease in tensile strength
consistent with the studies reported [36,37]. Although, the differences in tensile strength at
106 µm, 90 µm and 63 µm BRS sizes are smaller than at 45 µm and 25 µm filler sizes. This
reduction in tensile strength is due to poor adhesion between the recycled BRS filler and
PTFE matrix [36]. In addition, the smaller-sized particles with a higher surface area tend to
absorb more water, which reduced the tensile strength of the PTFE matrix [38,39].
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3.5. Coefficient of Thermal Expansion (CTE)

The variation in CTE with recycled BRS particle size is shown in Figure 8. The
composites showed a respective CTE of 64.8, 62.33, 60.45, 55.08 and 55.77 ppm/◦C at 106
µm, 90 µm, 63 µm, 45 µm and 25 µm filler sizes. It is, therefore, evident that the decrease
in filler size matched the drop in the CTE of the composites [8,36]. The variation is first
attributed to the mismatch in the CTE of the PTFE matrix (∼109 ppm/◦C) and the recycled
BRS filler (~4 ppm/◦C [40,41]. In addition, smaller-sized filler particles have a larger surface
area and higher density. Thus, the matrix volume decreases with smaller-sized particles,
restricting the matrix expansion, which further reduces the CTE of the composites [12].
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3.6. Complex Permittivity

The influence of recycled BRS filler size reduction on the dielectric constant and loss
factor of PTFE/recycled BRS composites was studied. The variation of ε′ and ε′′ in the
1–12 GHz range is presented in Figures 9 and 10, while the calculated tanδ is shown in
Figure 11. It can be seen that the ε′ and ε′′ slightly decreased with the frequency [42–44].
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In addition, the ε′′ had a similar pattern for all composites, which is attributed to the
calibration consistent with the loss factor result presented in [45]. The higher values of
the ε′ and ε′′ at lower frequencies are due to the significant influence of charge relaxation
and interfacial polarisation [46]. Generally, as frequency increases, the composite’s over-
all polarisation lags the alternating electric field. Thus, each polarisation process stops
contributing, decreasing its dielectric constant and loss factor [47].
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Further analysis showed that the ε′ and ε′′ of PTFE/recycled BRS composites in-
creased with the reduction in recycled BRS filler size (Table 2), in agreement with previous
work [12,36]. This behaviour is attributed to the higher densification and stronger inter-
facial polarisation [3]. Composites reinforced with smaller grain-sized particles tend to
possess a more significant interfacial area, leading to extra interfacial polarisation, which
increases the dielectric properties [12,48]. Moreover, at the same filler content, the number
of particulates in the smaller-sized filler is higher than that in the bigger-sized filler. This
occurrence leads to a denser composite, which increases the ε′ and ε′′ of the composite [12].
At 1 GHz, the values ε′ and tanδ increased from 2.07 and 0.0010 to 2.18 and 0.0011 with
a decreament of filler size from 106 µm to 25 µm. Additionally, the values of ε′ and tanδ
varied from 2.06 and 0.0010 to 2.17 and 0.0011 at 12 GHz.

Table 2. Mean complex permittivity and loss tangent of PTFE/recycled BRS composites at different
filler sizes.

Recycled BRS Size (µm) ε
′

ε
′′ tanδ

25 2.18 0.0026 0.0011
45 2.14 0.0024 0.0011
63 2.11 0.0022 0.0011
90 2.08 0.0021 0.0010

106 2.07 0.0020 0.0010

3.7. Signal Transmission Speed

The variation of signal transmission speed across the PTFE/recycled BRS composites
at different recycled BRS sizes and frequencies is depicted in Figure 12. It can be seen that
transmission speed decreases with filler size reduction. The higher transmission speed is as-
sociated with lower relative permittivity at larger filler sizes. At 1 GHz, PTFE/recycled BRS
composites had Vs of 2.032 × 108 m/s, 2.046 × 108 m/s, 2.062 × 108 m/s, 2.075 × 108 m/s
and 2.086 × 108 m/s at 25 µm, 45 µm, 63 µm, 90 µm and 106 µm of recycled BRS filler
sizes, respectively. The Vs increased to 2.034 × 108 m/s, 2.050 × 108 m/s, 2.065 × 108m/s,
2.080 × 108 m/s and 2.092 × 108 m/s at 12 GHz for the same filler sizes.
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The comparison of the PTFE/recycled BRS composite at a filler size of 63 µm with
commercial high-frequency laminates is presented in Table 3. The laminates are PTFE-
based materials produced by [49,50]. It can be seen that the PTFE/recycled BRS composite
shows a lower dielectric constant, loss tangent, moisture absorption and CTE than the
laminates. The highest tensile strength is achieved by the TLX-8 laminate, followed by the
PTFE/recycled BRS composite. This result proves that recycled BRS glass can reinforce
PTFE to produce a low-cost substrate for microwave applications.

Table 3. Comparison between PTFE/recycled BRS composite and commercial high-frequency laminates.

Name
ε
′ tanδ Tensile

Strength (MPa) CTE (ppm/◦C) Moisture
Absorption (%) Reference

At 10 GHz

PTFE/recycled
BRS composite 2.11 ± 0.05 0.0011 ±

0.00005 12.92 ± 0.005 60.45 ± 0.01 0.02 ± 0.00001 This study

AD250C 2.50 0.0013 6.00 196.00 0.04 [49]
AD255C 2.60 0.0013 8.1 196.00 0.03 [49]

TLX-8 2.55 0.0017 245 215.00 0.02 [50]

4. Conclusions

The PTFE/recycled BRS composites were fabricated through the dry powder pro-
cessing technique by varying the recycled BRS filler size. XRD profiles of the composites
exhibited no unwanted peaks. The scanning electron microscope showed better dispersion
of the filler at a larger recycled BRS size. EDX analysis indicated that no foreign element
was present in the composites. The complex permittivity of PTFE/recycled BRS composites
showed an increasing trend with recycled BRS filler size reduction. The moisture absorp-
tion and density of the composites also increased for the same reason. However, the tensile
strength, CTE, and signal transmission speed decreased with recycled BRS filler size reduc-
tion. At 10 GHz, the 63 µm recycled BRS composite showed suitable dielectric properties
(ε′ = 2.11 and tanδ = 0.0011), CTE of 60.45 ppm/◦C, low moisture absorption of 0.02% and
favourable tensile strength of 12.92 MPa, ideal for microwave substrate applications.
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