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Although a well-regulated inflammatory response is a vital defense mechanism against viral

infection, too much inflammation can be detrimental. Excessive inflammatory responses,

which are characterized by elevated levels of a broad array of pro-inflammatory cytokines and

chemokines, have been observed in a wide variety of viral diseases associated with serious mor-

bidity and mortality. Examples of this include acute lung injury caused by infections with

respiratory syncytial virus (RSV), influenza A virus (IAV), or severe acute respiratory syn-

drome coronavirus (SARS-CoV). Excessive inflammatory responses induced by viral infec-

tions are not restricted to the lung but can be systemic, as reported for Ebola virus (EBOV)

disease and severe dengue [1–5]. The reasons leading to an unbalanced inflammatory response

in certain viral infections are not well understood and are most likely multifactorial. Here, we

explore the role of toll-like receptor 4 (TLR4) in the induction of damaging inflammatory

responses during acute viral infections.

What is TLR4 and what are its ligands?

The innate immune system recognizes pathogen-associated molecular patterns (PAMPs) of

viral or bacterial intruders via pattern recognition receptors (PRRs). This includes the family

of TLRs that consists of related, transmembrane proteins that play a central role in the initia-

tion of inflammatory responses, including the secretion of cytokines and chemokines.

TLR4, which is mainly expressed on cells of the immune system—including monocytes,

macrophages and dendritic cells—has long been recognized as a PRR that senses lipopolysac-

charide (LPS), a component of the outer membrane of gram-negative bacteria. Activation of

TLR4 by LPS, its best studied ligand, is a multistep process. The initial step involves the LPS

binding protein (LBP) which extracts LPS from bacterial membranes and LPS-containing vesi-

cles to transfer it to the TLR4 coreceptor cluster of differentiation 14 (CD14). CD14 exists in

two forms, soluble and membrane-bound. Both forms are able to interact with LPS-loaded

LBP. CD14 breaks down LPS aggregates and transfers monomeric LPS into a hydrophobic

pocket on myeloid differentiation factor 2 (MD-2) that is part of the MD-2/TLR4 complex.

The high-affinity binding of LPS leads to dimerization and activation of the MD-2/TLR4 com-

plex [6, 7]. Activation of TLR4 results in the recruitment of the intracellular adaptor protein,

myeloid differentiation primary response 88 (MyD88), and/or toll/interleukin-1 receptor

(TIR)-domain-containing adapter-inducing interferon-β (TRIF), ultimately resulting in the

expression and secretion of pro-inflammatory mediators [6, 7].

TLR4 has also been shown to be a sensor for damage-associated molecular patterns

(DAMPs). These include a wide variety of molecules released from injured or dying tissues as

well as molecules actively released in response to cellular stress from intact cells [6, 8]. In
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addition to bacterial PAMPs and cellular DAMPs, TLR4 also recognizes PAMPs from other

pathogens including fungi, parasites, and viruses [9]. How the TLR4 complex is activated by

DAMPs and non-LPS PAMPs, which vary widely in their structure—some with no structural

similarities to LPS [8, 10]—remains to be determined. Resolving the structure of these com-

plexes is a critical part toward dissecting their mechanisms of activation.

How do viruses activate TLR4?

There is a growing list of viruses that induce an inflammatory response during acute infection

through TLR4 activation. Known TLR4-activating viral proteins include the RSV fusion pro-

tein (F), the EBOV glycoprotein, the vesicular stomatitis virus glycoprotein (VSV G), and the

dengue virus (DENV) nonstructural protein 1 (NS1).

There are a number of commonalities between these viral TLR4 activators. For example,

these proteins are all membrane-associated. VSV G, RSV F, and EBOV glycoprotein are classi-

cal viral glycoproteins that are exposed on the surface of viral particles and mediate fusion

with host cell membranes through the hydrophobic fusion peptide. The fusion domain is only

exposed after considerable conformational changes that occur at the plasma membrane (RSV

F) or in the endosome (VSV G, EBOV glycoprotein). [11]. DENV NS1, although seemingly

dissimilar to these surface glycoproteins, exists in multiple forms, including a secreted, mem-

brane-bound form [12, 13]. The hydrophobic fusion peptide in RSV F has been suggested to

bind into the deep hydrophobic pocket of MD-2, similarly to LPS, to mediate TLR4 activation

[14]. TLR4 is stimulated by membrane-bound EBOV glycoprotein and a secreted, cleaved

form (shed glycoprotein), both of which retain the hydrophobic fusion domain, but not by a

different secreted version of EBOV glycoprotein—soluble glycoprotein—which lacks the

fusion peptide [15, 16]. And although DENV NS1 lacks a fusion peptide, it contains exposed

hydrophobic domains that mediate membrane interaction and could play a role in TLR4

activation [13]. TLR4 antagonists which suppress LPS-induced TLR4 signaling through com-

petitive interaction with MD-2, such as LPS from the bacterium Rhodobacter sphaeroides
(LPS-RS) and Eritoran, also suppress RSV F-, EBOV glycoprotein-, and DENV NS1-mediated

TLR4 activation [12, 14, 17–20], suggesting similar mechanisms of action. However, it remains

to be determined how these large glycoproteins interact with the TLR4 receptor complex and

in what way the hydrophobic regions would be accessible for interaction with MD-2 to poten-

tially activate TLR4 signaling.

VSV G, RSV F, EBOV glycoprotein, and DENV NS1 are all glycosylated. Although it is pos-

sible that the glycosylation of these proteins is merely a coincidence because many membrane-

bound proteins are glycosylated, this raises the question of whether glycosylation is a general

feature that is required for viral TLR4 activation. Indeed, LPS glycan structures play an essen-

tial role in regulating different steps in TLR4 activation. This includes increasing the stability

of the LPS-MD-2/TLR4 complex via direct interaction of LPS core saccharides with TLR4

[21–23]. As for the viral TLR4 activators, glycosylation of EBOV glycoprotein is required for

TLR4 activation [16, 24], but it is not known whether this is also the case for the other viral

glycoproteins.

Unlike the viruses mentioned above, IAV does not activate TLR4 by a specific viral protein

but rather induces TLR4 activation by host DAMPs, including high-mobility group box 1 pro-

tein (HMGB1) and oxidized phospholipids, which accumulate in response to infection [25,

26]. HMGB1, which is also a glycoprotein, activates TLR4 through MD-2 binding [8, 27].

Whereas host DAMPs might play a central role in acute lung injury and are detected in the

lungs of patients with severe IAV or SARS-CoV infections [26], the role of DAMP-mediated

TLR4 activation in other viral infections remains largely unexplored.
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Is TLR4 activation during acute viral infections beneficial or

harmful?

Treatment with TLR4 antagonists has consistently resulted in reduced cytokine and chemo-

kine production and mitigated disease symptoms in small animal models of IAV, EBOV, and

DENV infections [12, 19, 25, 28, 29], clearly identifying a role for TLR4 activation in the patho-

genesis of these viral diseases. Lethal infection of mice with EBOV and IAV was prevented by

treatment with TLR4 antagonists, highlighting the therapeutic potential of these compounds

[19, 25, 28, 29]. The picture becomes more complicated, however, when TLR4 knockout mice

were used. Mice lacking TLR4 had either similar survival rates or even more severe disease

than wild-type mice infected with DENV, EBOV, SARS-CoV, or RSV [19, 20, 30, 31]. Infec-

tion of TLR4 knockout mice with IAV resulted in a variety of outcomes [32], possibly due to

variations in the genetic background of the mouse strains and the use of different experimental

systems, including the analyzed time points. Altogether, data from TLR4 knockout mice sug-

gest that protective immune responses against these viruses might require some degree of

TLR4 activation (Fig 1).

The role of TLR4 activation in EBOV disease is particularly noteworthy. In contrast to the

highly pathogenic EBOV, Reston virus (RESTV), a member of the Ebolavirus genus that is

believed to be nonpathogenic for humans, lacks the ability to significantly stimulate TLR4,

providing further evidence that TLR4 activation contributes to EBOV pathogenicity [17].

When nonhuman primates were infected with EBOV stocks of equal titers, the stock with a

higher particle-to-plaque−forming unit (PFU) ratio was associated with increased disease

severity [33]. A possible explanation for this observation could be that glycoprotein exposed

on the surface of noninfectious EBOV particles activates TLR4, thereby enhancing the damag-

ing inflammatory response. Finally, shed glycoprotein was detected at high levels in EBOV-

infected guinea pigs, particularly shortly before death [34]. Shed glycoprotein is sufficient to

stimulate cytokine responses in the absence of infection [16], suggesting that noninfected

TLR4-expressing cells stimulated by shed glycoprotein might contribute to the complex

inflammatory response in EBOV disease [15].

TLR4 activation: What are the benefits for the viruses?

Given the high mutation rate of RNA viruses that enables them to escape from challenging

host responses, the question arises whether the activation of TLR4 is beneficial for a productive

viral infection. One potential benefit to activating TLR4 during viral infection might be to

induce specific host factors that promote viral replication or repress those with antiviral activ-

ity. There is evidence for this as TLR4 activation during EBOV infection increases the expres-

sion of suppressor of cytokine signaling 3 (SOCS3), which has been shown to enhance viral

particle release [17, 35]. Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), a cell survival

factor that prevents premature apoptotic cell death, is activated during infection with IAV,

RSV, DENV, and SARS-CoV [36], and PI3K activation can be mediated by TLR4 [37].

TLR4-induced innate immunity could further skew adaptive immune responses in a manner

that favors viral replication. This is speculative, however, and additional research is needed to

understand the effects of TLR4 activation on viral propagation.

Conclusion

In conclusion, activation of TLR4 seems to play a nuanced role during viral infection.

Although over-stimulation of TLR4 can lead to an excessive inflammatory response that is

damaging to the host, a certain amount of TLR4 activation may be beneficial to the host by
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Fig 1. TLR4 in viral pathogenesis. (A) Viral proteins known to activate TLR4 are membrane-bound or membrane-associated, contain hydrophobic domains, and are

glycosylated. Although it remains to be determined how these viral proteins interact with the MD-2/TLR4 complex, data from known TLR4 activators suggest that the

hydrophobic domains of these viral proteins might bind in the hydrophobic pocket of MD-2. Glycans on the viral protein could be involved in stabilizing the MD-2/

TLR4 complex to enhance TLR4 signaling. Compared to the well-described interaction of TLR4 complexes with relatively small bacterial LPSs, the mechanism by

which these complexes recognize large viral glycoproteins to trigger downstream signaling remains largely unexplored. (B) Viral proteins and host DAMPs, which

accumulate in response to cellular stress during viral infection, have been linked to TLR4 activation during virus infection. Both uncontrolled activation of TLR4 and

TLR4 knockout are associated with severe disease, whereas reducing the TLR4-mediated inflammatory response using TLR4 inhibitors mitigates disease symptoms,

offering potential treatment options for various severe viral infections. DAMP, damage-associated molecular pattern; LPS, lipopolysaccharide; MD-2, myeloid

differentiation factor 2; TLR4, toll-like receptor 4.

https://doi.org/10.1371/journal.ppat.1007390.g001
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helping to establish a protective immune response. Studies with well-known TLR4 inhibitors

convincingly show that dampening the excessive inflammatory response mitigates disease and

promotes survival, highlighting the therapeutic potential of TLR4 inhibitors in viral infections.

More work is needed to dissect the mechanisms by which large viral glycoproteins activate

TLR4. Several questions of particular interest remain: are glycan structures or hydrophobic

domains on viral TLR4 activators required for activation? Could lipid modifications contribute

to MD-2/TLR4 activation? What are the factors leading to uncontrolled cytokine release versus

a balanced TLR4 activation conferring protective immune responses? Considering the devas-

tating inflammation induced by these viruses, determining how and why these viruses activate

TLR4 may be critical not only for understanding why these pathogens cause severe disease but

also for the development of effective antiviral therapies.
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