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Multi-omic data integration enables discovery of
hidden biological regularities
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Rapid growth in size and complexity of biological data sets has led to the 'Big Data to
Knowledge' challenge. We develop advanced data integration methods for multi-level analysis
of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show
that pairwise integration of primary omics data reveals regularities that tie cellular processes
together in Escherichia coli: the number of protein molecules made per mRNA transcript
and the number of ribosomes required per translated protein molecule. Second, we show
that genome-scale models, based on genomic and bibliomic data, enable quantitative
synchronization of disparate data types. Integrating omics data with models enabled the
discovery of two novel regularities: condition invariant in vivo turnover rates of enzymes
and the correlation of protein structural motifs and translational pausing. These regularities
can be formally represented in a computable format allowing for coherent interpretation and
prediction of fitness and selection that underlies cellular physiology.
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rogress of the biological sciences in the era of big data

will depend on how we address the following question:

‘How do we connect multiple disparate data types! to
obtain a meaningful understanding of the biological functions
of an organism?? Owing to large-scale improvements in omics
technologies, we can now quantitatively track changes in
biological processes in unprecedented detail>*. Although
such measurements span a diverse range of cellular activities,
developing an understanding of how these data types
quantitatively relate to one another and to the phenotypic
characteristics of the organism remains elusive. This issue is
central to the so-called Big Data to Knowledge (BD2K) grand
challenge, which aims to integrate multiple disparate data types
into a biologically meaningful, multi-level structure!-2.

Interpretation of disparate data requires understanding
how the primary measurements of different omics data are
quantitatively coupled to one another®. We approach this task
by identifying regularities (relationships between biological
data types that remain relatively constant across conditions)
between pairwise omics data types. Although some regularities
can readily be discovered through direct pairwise omics data
comparisons, we find that other regularities emerge only through
more intricate analysis leveraged by mechanistically based
network reconstructions®. Such reconstructions can be used as
a context for poly-omic data integration and analysis®’, and,
when combined with constraint-based modelling approaches®?,
provide important links between omics data and phenotypic
characteristics of the organism.

As we will show, this approach leads to a comprehensive
synchronization of poly-omic data with computed growth
states. The approach directly addresses the BD2K grand
challenge and is made conceptually accessible by tracing
the ‘information flow’ through the familiar ‘central dogma’,
to establish relationships between measurements and cell

physiology (Fig. 1).

Results

Pairwise ratios of data types are highly correlated. First, we
examine the information flow from transcription to translation,
to protein production, by identifying correlations across ]primary
omics data types, such as RNAseq!?, ribosome profiling''~!3 and
proteomics'*, collected for Escherichia coli batch growth on
glucose, fumarate, pyruvate and acetate (Fig. 1, ‘primary data
box’). We found relatively poor correlations of messenger RNA to
protein across conditions (r*<0.4), consistent with previous
studies'>!6,  Stronger correlations (2>0.8) emerge when
analysing the ratio of protein per mRNA (ppy) on a per-gene
basis (the difference between peptide abundance and relative
mRNA read counts per gene for multiple growth conditions;
Supplementary Fig. la). Computing the median coefficient of
variation shows that changes in ppy; across conditions are
relatively invariant. In addition, we find the number of
ribosomes required (ribosome occupancy of mRNA) per
protein translated is also relatively invariant across all four
conditions (r>>0.7; Supplementary Fig. 1b).

Translation rate is linked to protein secondary structure.
Second, we examined pairwise relationships between other omics
data types, such as ribosome profiling, proteomics and fluxomics,
by integrating these data types into next-generation genome-scale
models (Fig. 1, ‘integration with genome-scale models of
metabolism (GEMs) box’). GEMs are based on the annotated
sequence and analysis of the bibliome for functionally annotated
gene products®. The most recent generations of genome-scale
models incorporate protein structural information!”!8 and allow
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for the computation of the synthesis of the entire proteome of a
cell in addition to the balanced use of its metabolic network!®.
These models can integrate multiple layers of biological
organization to balance the use of all cellular components, to
achieve a cellular state. It can thus extend our understanding of
how information flows from translation to protein folding and
catalysis, and its role in producing whole-cell functions.

We examined how information flows during protein
translation, which includes protein folding. Recent studies
indicate a possible link between translation speed and
proper folding!>?°. Analysis of translational pausing has
typically been approached from a sequence-based viewpoint?’.
Here we approach this analysis from a different perspective, by
correlating the occurrence of translational pausing on a transcript
to the location of nearby protein secondary (2°) structure
motifs (Fig. 2). The establishment of this correlation is based
on the following: (1) ribosome profiling'!~!3, which provides
ample information on the queuing of ribosomes along mRNA
transcripts; and (2) a recent network reconstruction that contains
comprehensive protein structural information linked to the
translated protein at the proteome scale!®,

Several striking regularities in translational pausing and protein
structure are consistently observed across multiple growth
conditions in E. coli, which suggest the co-translational folding
of intermediate secondary structure motifs inside the ribosome
exit tunnel (Fig. 2a). We find that pause sites are enriched
(p-value<0.01 using a hypergeometric test) downstream of
specific secondary structure motifs, such as o-helices and
B-sheets (Fig. 2b and Supplementary Fig. 2), yet are not
significantly enriched at the termini of domains (Supplementary
Fig. 3 and also see Supplementary Note 1). On average, pausing
becomes most substantial six to eight amino acids downstream of
a-helices and B-sheets, which, in the majority of cases, fall either
on disordered regions of the protein or on helical residues. Such
instances consistently account for >35-40% of pause sites across
different conditions (Fig. 2c and Supplementary Fig. 4). These
findings strongly corroborate a growing theory that partially
folded intermediate protein structures begin to immediately fold
inside the ribosome exit tunnel, following polypeptide-chain
synthesis. Several previous studies have shown that partially
folded protein structures, such as small domains, can be
detected within the exit tunnel?!~23, More recently, Nilsson
et al** demonstrated the co-translational folding of a small zinc
finger-like domain deep within the ribosome exit tunnel using
arrest-peptide-mediated force measurements in conjunction with
cryo-electron tomography.

Do sequence-specific motifs drive co-translational pausing to
ensure proper protein folding? We find that Shine-Dalgarno
(SD)-like sequences account for 20-22% of ribosome density at
pause sites (Fig. 2c and see ‘Identification of SD-like codons’ in
Methods), which is consistent with recent studies?, and four
times less frequent than what is found previous studies?’.
Of the pausing instances linked to SD-like sequences, we find
that, on average, nearly half of these pausing regions also fall in
the nearby vicinity (five to ten codons) of helices or sheets.
The link between pausing, SD-like sequence and protein
secondary structure becomes clear when comparing the average
occurrence of SD-like sequences genome-wide (9%) with their
occurrence directly downstream of o-helices (35%) and B-sheets
(18%, Fig. 2d). Together, these sequence and structure motifs
account for the majority of pause sites (60%) or nearly half
of the total ribosome occupancy (Supplementary Fig. 4). These
findings suggest that co-translational pausing occurs for distinct
secondary structural elements and supports the potential role of
sequence-specific factors to drive pausing for ensuring proper
protein folding (Fig. 2e).
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Figure 1 | A multi-scale multi-omics framework detects significant biological regularities in E. coli. Tracing the central dogma of biology (left column),
we can link specific data types (middle column) to explain each of these biological processes. In this work, novel biological regularities that relate these
processes are discovered through: (i) primary omics data (top box, right column) and (ii) integration with GEMs (bottom box, right column).

Genome-wide estimation of enzyme turnover rates. How does
information flow between an individual enzyme’s catalytic
activity and the activity of an entire network? To evaluate the
effective turnover rate of enzymes, reaction flux per enzyme can
be directly computed using experimental values for both flux
(the rate of reactions) and enzyme abundance?® on a small scale
(mainly for central carbon metabolism). To assess enzyme
turnover on a genome scale, we computed the ratio of an
enzyme’s abundance (measured from proteomics data) and its
corresponding flux derived from network-based analyses using
the iOL1650-ME model (Supplementary Note 2 and Fig. 3).
As the iOL1650-ME model directly relates enzyme synthesis
and metabolic flux, we were able to develop a method, which
uses the model to extrapolate the most probable flux state
from proteomics. These ratios quantitatively couple
experimentally derived flux estimates and protein abundances
to make a quantitative connection between data types.
Estimates of enzyme turnover rates (k.g), which represent
coupling coefficients between the fluxome and the proteome
(Supplementary Note 3), were analysed across four nutrient
conditions, to understand the effect that carbon uptake has on
metabolic enzyme turnover rates. We find that these parameters
show considerable regularity in relating flux to protein
abundance, which suggests that in vivo turnover rate for most
enzymes does not strongly depend on growth in diverse batch
culture settings (Supplementary Note 4). For high-flux metabolic
reactions, the estimated turnover rates were consistent across all

four conditions (a total of 284 turnover rate values; Fig. 4a),
with high correlation between any two conditions (Fig. 4b
and Supplementary Fig. 5). The computed turnover rates were
averaged across experimental conditions to give the largest set of
flux-per-enzyme parameters estimated computationally to date
under in vivo conditions. It is important to note that these
estimated turnover rates do not have a direct relationship with
fundamental enzyme kinetic parameters obtained in vitro but can
be viewed as an in vivo data-driven estimate of the enzyme
turnover rate.

Although these correlations provide information about
relationships between biological components and, in some cases,
take on predictive value (Fig. 5a), understanding their collective
influence on cell physiology is harder to decipher. This issue
can be addressed using a genome-scale model that assesses
cost-benefit tradeoffs from a cell-centric perspective®?”. Genome-
scale models (i{OL1650-ME) compute the value of cellular
components relative to the function of all other cellular
components. To this end, the turnover rate values provide the
minimum ‘capital expenditure’ for protein synthesis required to
achieve a unit of flux through a given reaction. Thus, as a group,
the calculated turnover rates provide coupling between proteome
allocation and achievement of a physiological state.

The knowledge of the biological regularities identified in this
work enables the parameterization of coupling constraints used in
a genome-scale model of metabolism and gene expression
metabolism and gene expression (ME). A parameterized model
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Figure 2 | Regularities in translational pausing and structural motifs. (a) Cartoon depiction of co-translational folding intermediates, such as secondary
structure motifs, inside the ribosome exit tunnel. (b) Analysis of ribosome profiling and translational pausing in conjunction with protein structure properties in
E. coli grown under MOPS Rich and MOPS Minimal media, taken from Li et. al.™. Pausing is enriched at positions downstream of protein secondary structures
(top: B-sheets, bottom: a-helices, p-value < 6.67 x 10~ 3). These correlations are consistent across conditions (for example, minimal and rich nutrient
conditions). (¢) Coverage of specific secondary structure elements and sequence elements that account for increased ribosome occupancy. Condition 1 refers
to minimal media and condition 2 refers to rich media. (d) Protein structure motifs that exhibit pausing have increased propensity for SD-like sequences
compared with those which do not exhibit pausing or the global background existence, 35% SD-like codons for a-helices, 18% SD-like codons for -sheets,
compared with 9% global average. (e) A cartoon depiction of the relationship between structure, translation and sequence.

allows for prediction of responses to environmental perturba-
tions. We tested the predictive capacity of a model containing
parameter values derived from multiple conditions described
above, to compute optimal cellular composition under new
environmental conditions where proteomics data was not
available. In simulations with our parametrized model, we
perturbed a reference growth state through the addition of
nutrients to the medium: batch growth on glucose was
supplemented with adenine, glycine, tryptophan or threonine.
From these predicted phenotypic states, we identified enzymes
that were predicted to be differentially used in the supplemented

condition (Fig. 5b,c). To validate these predictions, we collected
omics data sets under these four perturbed conditions, to
compare gene expression changes with the computated responses.

When validating our predictions using experimentally
measured differential gene expression, we find our prediction
accuracies of differential gene expression range between 56 and
100% (Table 1), and are significantly enriched for experimentally
differential genes, with p-values ranging from 0.04 to 4 x 10 ~°
using a hypergeometric test (Fig. 5b). Therefore, using the
parameterized model, we are able to improve the prediction of
gene regulation that accompanies changes in growth
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Figure 3 | Iterative workflow for generating turnover rate values from different nutrient conditions. (a) An iterative procedure uses a model to find a
flux state, which most closely matches experimental proteomic data, and uses it to obtain an estimated parameter set. (b) The iterative workflow is run
using proteomic data from four different experimental conditions. To eliminate bias from the initial parameters used in the iterative workflow, the starting
parameter vectors are sampled from a uniform distribution. (¢) For each condition, a consensus parameter set is aggregated. (d) Parameters are compared
between conditions to obtain a universal set of condition-invariant parameters.

environment. For example, a nutrient supplementation will often
cause non-intuitive shifts in what precursors the cell uses to
synthesize amino acid molecules. The parameterized ME model
correctly identifies the production/non-production of r-serine
from supplemented r-threonine and glycine (Fig. 5c and
Supplementary Note 5).

Discussion
The unprecedented growth in the type, size and complexity of
biological data sets over the past couple of decades has led to a
pressing grand challenge in biology referred to as BD2K. In this
study, we address this critical need through the development of
advanced data integration methods to enable multi-level analysis
of genomic, transcriptomic, ribosomal profiling, proteomic and
fluxomic data across multiple experimental conditions. We can
show that pairwise integration of primary omics data reveal
unknown biological regularities that quantitatively tie key cellular
processes together, and that genome-scale models enable the
quantitative synchronization of disparate omics data types,
leading to the discovery of additional system-based novel
regularities. For example, when directly compared, RNA and
protein values have long been known to be poorly correlated!®28.
However, the integration of ribosome profiling and structural
data demonstrates how the secondary structures in proteins
correlate with sites of translational pausing, supporting the theory
of co-translational folding and the rhythm of translation®>*
(Supplementary Note 1). The variation in translation observed
from multiple omics types sheds light on how the protein-per-
RNA ratio is correlated for each gene across conditions, but
poorly correlated across genes>!.

By designing algorithms to integrate omic data with genome-
scale networks, the ability to predict differential gene expression

(Fig. 5¢) emerges. On the most basic level, a genome-scale model
of metabolism informs the user of all possible metabolic reactions
and their respective stoichiometries®. The previous unpara-
meterized ME model of E. coli' added an additional
reconstruction of gene and protein expression networks, and
their associated metabolic costs. Here, we integrate omics data
directly by using a parameterization algorithm to improve
estimates of expression costs. We can demonstrate the
increased accuracy of the parameterized ME model compared
with the previous unparameterized ME model and M-model
(Table 1 and Supplementary Fig. 6).

Taken together, we have shown that fundamental contextua-
lization of multi-omic data leads to (i) insights into underlying
biological mechanisms during protein translation and (i)
predictive computations based on cellular-econometric cost-
benefit ratios associated with cellular functions. Thus, both
multi-omic data analysis and genome-scale models will play an
important role in establishing big data analysis frameworks to
explain and predict cellular physiology.

Methods

Ribosome profiling. To compute the ribosome per protein ratios, E. coli MG1655
cells were grown in glucose (5g1~1), pyruate (sodium pyruvate 3.3g1 1),
fumarate (disodium fumarate 2.8 g1~ 1y and acetate (sodium acetate, 3.5 gl™ 1.
Ribosome profiling data sets were generated and analysed according to the
following procedure, also detailed in Latif et al.!3. Chloramphenicol (100 ugl~!)
was added 2 min before harvest, cells were harvested at mid-log (ODggo ~0.4) by
centrifugation at 5,000 g for 3 min. Ice-cold lysis buffer (25 mM Tris pH 8.0, 25 mM
NH,Cl, 10mM MgOAc, 0.8% Triton X-100, 100 Uml ~ ! RNase-free DNase I,
0.3 U pl~! Superase-In, 1.55 mM chloramphenicol and 17 uM 5'-guanylyl
imidodiphosphate) was added and the cells were resuspended quickly, followed by
flash freezing in liquid nitrogen. Repeated freeze-thaw cycles were used to lyse cells
followed by addition of sodium deoxycholate to a concentration of 0.3%. Lysate
was then clarified by centrifugation. RNA (25 AU) was digested using 6,000 U of
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Figure 4 | Effective enzyme turnover rates (k.¢) as regularities emerging
from coupling quantitative in vivo proteomic data with genome scale
modelling. (a) Venn diagram of calculated turnover rates shows all four
conditions share 90% of the same estimates (Pearson’s correlations
below). (b) Pairwise comparisons across four conditions for calculated
turnover rate parameters demonstrate 94% are within one order of
magnitude. The upper inset show the parameter estimation for the 10%
most variable components of the proteome between the four conditions
examined. The lower inset show a histogram of the distances of every point
from the diagonal line. The grey box contains the 94% of the values that
deviate from one another within an order of magnitude. A more detailed
version is found in Supplementary Fig. 6.

MNase for 2h at 25°C and quenched by adding 2.5 pl of 500 mM EGTA.
Monosomes were recovered using Sephacryl 400 Microspin columns, followed by
removal of ribosomal RNA using a Ribo-Zero-rRNA Removal Kit (Epicentre). The
3'-ends of the RNA fragments were desphosphorylated using T4 Polynucleotide
Kinase for 30 min at 37 °C. The NEBNext Small RNA Library Prep Set for Illumina
protocol was carried out till the 5'-adapter ligation step. Transfer RNAs were
removed using hybridization to custom DNA oligo probes, followed by RNAse H
treatment. The NEBNext protocol was then completed and sequencing was carried
out on a Illumina MiSeq.

As the MiSeq did not provide sufficient read depth for the in-house ribosome
profiling data sets to confidently determine pause locations, ribosome profiling
data was obtained from Li et. al.!! for MOPS Rich and glucose MOPS minimal

media (GEO Accession: GSE53767). Ribosome densities were derived using a
similar protocol to Li et. al.'l. Adag)ters were trimmed using cutadapt®? version 1.8.
Reads were mapped using bowtie®® version 1.0.0 to E. coli MG1655 (NC000913),
allowing for a maximum of one mismatch. Reads mapping to tRNA, ribosomal
RNA and other non-coding RNA locations were discarded. There has been
considerable discourse about the location of the A- and P-site relative to the ends of
the reads, and not to bias our analysis based on the location we chose to assign
reads to the 3’-end, which has been shown to be better conserved and aligned in
prokaryotic ribosome profiling data sets*3°. Ribosome density across each gene
was then dropoff corrected by fitting to an exponential function as was done

in Li et. alll.

Genome-wide secondary structure annotations. The GEM-PRO reconstruction
for E. coli §01366 (refs 17,36) was used to provide structure-based annotations for
the most representative protein structures found in the publicly available PDB
database?’. Protein data bank (PDB) files were parsed using STRIDE?® and
Biopython®”, to determine the location of secondary and tertiary structural
elements on a codon-specific basis. This resulted in high-confidence secondary and
tertiary structure annotations for 623 non-transport (or membrane-bound) genes
in E. coli.

Tertiary structure and protein domain annotations. Starting from the protein
structures linked to metabolic genes in the GEM-PRO model, we annotated tertiary
domains for each protein using the SCOP knowledgebase?® and FATCAT*!
alignment tools. As a result of this analysis, the fraction of the protein aligning to
an annotated tertiary domain was recorded and stored as an additional data type in
the GEM-PRO reconstruction. The starting and ending amino acid of every
domain within a protein were quality controlled and checked by aligning the PDB
sequence with the amino acid sequence (FASTA) from E. coli MG1655 to fix offsets
between the PDB residue numbering scheme and the actual amino acid sequence
numbers. Hypergeometric enrichment testing was performed, to determine codons
upstream and/or downstream from the start and end of any tertiary domain
annotation that is enriched for pause sites.

Identification of SD-like codons. Similar to those defined in Li et. al.?, we
considered the following SD-like codons: 5'-‘AGG’,'GGA’,'GAG’,'GGG’,'GGT’,
‘GTG’-3'. Nucleotide sequences from E. coli MG1655 (Genbank accession:
NCO000913 (ref. 42)), were read in-frame to identify SD-like codon positions.
Hypergeometric enrichment testing was used to determine downstream codons
enriched for pause sites.

Ribosome density and pause site accounting. The ribosome density
(Supplementary Figs 2 and 3) at each codon was summed across all three
nucleotides and divided by the mean of the gene, to get the normalized density. In
an effort to increase the signal in an inherently noisy data type, pause sites were
defined as codons, which had a normalized density of over 5, instead of on a per
nucleotide basis as was done in Li et. al.?’.

Hypergeometric enrichment testing was used to determine enrichment for
pause sites at codon positions downstream from the ends of pause sites. P-values
were calculated based on the formula for the survival function (1 — cumulative
distribution function) shown below:

p-value(x) =1 — E%

i=0

where N refers to the total number of codons in the genes tested, m refers to the
number of secondary structures, k refers to the total number of pause sites and x
refers to the number of pause sites that fell on a specific codon position
downstream of the secondary structure we are testing.

Codons downstream from o-helices, -sheets and turn secondary structural
elements, as well as SD-like sequences, were considered to be significantly enriched
for pausing, if the hypergeometric enrichment tests indicated that the p-values
<0.01. To calculate the number of pause sites accounted for by sequence and/or
structural elements, pause sites that did not align with secondary structure or
SD-like sequences were labelled ‘unaccounted’. The same procedure was used for
determining the proportion of pause sites accounted for by structural features and
SD-like sequence features.

Computational method for predicting k.¢ parameters. As noted above, ME
simulations require several parameters, one of which is the effective catalytic rate of
enzymes ke, which in turn affects the proteomic and ribosomal cost of running
each reaction. Although using solvent accessible surface area (SASA) as a first
approximation results in a correct overall prediction of 80% of the cell proteome by
mass, improving these parameters can greatly affect the predictive power of the
model for specific genes. We make use of the most extensive quantitative proteomic
data in E. coli to date, which accounts for 55% of all open reading frames and 95%
of the proteome!®. Because of the difficulty in simultaneously predicting effective
catalytic rates and reaction flux values, we developed an iterative workflow for
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Figure 5 | Predicting the results of perturbation from a parameterized homeostatic state. (a) Using a cross-validation approach, protein abundance is
predicted by mRNA levels using information (ppp) obtained from other conditions (r*>0.75). Condition-specific mMRNA and protein levels show little
correlation (inset). (b) Accuracy of predicting differential expression is significantly enhanced using kes; parameters. (c) Predictions of differential gene
expression using enhanced kes; parameters after media supplementation. The predictions were validated using expression profiling and gave predictive
accuracies range between 56 and 100%. In all cases, predictions of differentially expressed genes are significantly enriched for those which have been

experimentally confirmed (p<0.05 using a hypergeometric distribution).

updating the model parameters. This workflow is described below and each section
corresponds to a panel in Fig. 3.

Part A iterative simulation procedure. These ME simulations had the overall
goal of minimizing the difference between the simulated proteome and the
measured proteome for each experimental condition. The growth rate u was set t
o the experimentally determined values (Supplementary Data 1). To improve
solution times with the SoPlex linear programming solver3 with our formulation,

we collapsed linear pathways into single reactions using cobrapy*4, which were
detected by identifying metabolites present in exactly two reactions.

To reconcile experimentally measured protein concentrations with the
simulations, we want to solve a linear program, which will minimize the Manhattan
distance between the expressed and measured protein production at the fixed
growth rate. The Manhattan distance was used instead of the Euclidian distance,
because it can be computed in the context of a linear program, whereas a Euclidian
distance minimization requires a quadratic objective, which the SoPlex solver
can not handle. To construct this problem, we added the following additional
constraints to the ME linear program in terms of the corresponding measured
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Table 1 | Predicted expression changes confirmed experimentally.

kess parameters from set A ke¢s parameters from set A+B

Correct Incorrect Accuracy p Correct Incorrect Accuracy p
L-Tryptophan 6 (0) 3 66.7% 0.031 7 (0) 0 100.0% 0.0Mm
L-Threonine 30 (5 15 66.7% 0.119 15 (5) 5 75.0% 0.044
Adenine 12 (4) 35 25.5% 0.663 1 (4) 7 61.1% 4%x10°
Glycine 15 (0) 20 42.9% 0.391 5 (0) 4 55.6% 0.024

The ME model predicted differential expression for the following nutrient supplementations to growth of E. coli on M9 minimal media with p-glucose. Two separate sets of ke were used, one using only
the 28 parameters in set A and the other also adding in the 284 modelling-derived parameters in set B. The predictions were evaluated using the set of differentially expressed genes determined from
mRNA sequencing for each nutrient supplementation. Two small modifications were made to the model for adenine, which initially had an accuracy of only 26.2% due to the genes used for adenine
degradation in the model, which are not expressed and may not be functional (for details, see Supplementary Fig. 7). The numbers provided in the correct column are the number of genes, which are
predicted to be differentially expressed and also are differentially expressed in the same direction in the RNA sequencing data. The number in parenthesis refers to the number of correctly predicted
differentially expressed genes which are still expressed under both conditions but varied in their predicted quantitative values. The incorrect column contains the number of genes predicted to be

differentially expressed which were not in the model. These numbers are used to predict the percent accuracy and the p-value for a hypergeometric enrichment of differentially expressed genes in the

predicted set.

protein amounts y; for each predicted gene translation flux variable
x; (unmeasured proteins had no applied constraints).

xi >0

Xit+Siyi 2 Yi

Xi—S_i < Yi

This allowed us to minimize the error term ), (s4; +s_;), which is equivalent to
minimizing Y~ |x; — y;| and gives the closest flux state to the experimental data,
while satisfying the ME constraints when solving the linear program. If these
parameters resulted in an infeasible model, which could not simulate growth at g,
the simulation was halted. Otherwise, using the predicted fluxes predicted by this
simulation and the experimentally measured proteomics data, we calculated the kg
for each reaction enzyme, which we used in the next iteration of this workflow.
This simulation loop was run a total of three times, to allow the loops to converge
to a set of kg values.

Part B sampling and simulation. The iterative simulation procedure described
above might give a flux state, which is dependent on the original set of kg para-
meters used in the first round. Therefore, the k. were randomly initialized within
two orders of magnitude of the value computed from SASA. The iterative sampling
procedure was repeated repeated 300 times for each experimental condition and each
time a new random kg parameter set was generated in the manner described.

Part C result aggregation and filtering. For each experimental condition, the
loop was started 300 times. However, as some parameter sets were unable to
simulate growth at y, some subset of those simulations failed before reaching three
iterations. It was run successfully through 3 loops 148 times for glucose, 186 times
for pyruvate, 97 times for fumarate and 83 times for acetate. Between these
successful runs, there was a slight variation in reactions used because of the
different starting kg parameters. Therefore, only reactions that were active for 90%
of the successful runs were considered. These parameters were averaged to give a
consensus set of kg parameters for each condition.

Part D cross-condition parameter comparison. The intersection of these k.g
parameters under each condition was determined between all four conditions

(Fig. 4a). The 284 parameters for reaction/catalyst pairs, which were in all
conditions, were averaged to get a consensus set of k. parameters, which were used
for ME computations. In addition, the pairs in common between each of the con-
ditions were compared to give Pearson’s correlations, shown in the table in Fig. 4a.

Predicting differential gene expression with iOL1650-ME. Simulations were
performed using the same procedure as in the {OL1650-ME manuscript'® for batch
growth on Dp-glucose with both kg parameter sets A and A + B. For each
supplementation simulation, the uptake reaction for that particular metabolite was
set to be unbounded. In the case of the adenine supplementation, the reactions
HXAND, XAND and URIC were blocked (Supplementary Fig. 7). Genes that
changed by more than a factor of 16 (a log, change of more than 4) were predicted to
be differentially expressed. This gives a stringent criterion, which identifies genes that
are predicted to change by a significant-enough magnitude to manifest
experimentally (by comparison, a log, change of 2 is often used with microrray gene
expression data to filter out changes in expression, which, although statistically
significant, are not of a high-enough magnitude to really be considered relevant).
Predictions of gene differential expression were considered correct if cufflinks
obtained a false discovery rate of <0.05 for that gene in the mRNA sequencing data

8

and the gene expression changed in the same direction (either both increase or both
decrease) in both the predictions and mRNA sequencing data. Hypergeometric
enrichment p-values were calculated using the scipy statistics package using the
survival function + % X probability mass function of the distribution.

Data availability. RNA sequencing data generated in this study is available from
the NCBI Gene Expression Omnibus (GEO) under accession numbers GSE59759
and GSE59760. Measured growth rates are available in Supplementary Data 1 and
estimated k.g parameters in units of per second are available as Supplementary
Data 2. All other relevant data are available from the authors upon request.
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