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Abstract 

Background:  Lung cancer is the leading cause of cancer death worldwide. Prognostic prediction plays a vital role in 
the decision-making process for postoperative non-small cell lung cancer (NSCLC) patients. However, the high imbal-
ance ratio of prognostic data limits the development of effective prognostic prediction models.

Methods:  In this study, we present a novel approach, namely ensemble learning with active sampling (ELAS), to 
tackle the imbalanced data problem in NSCLC prognostic prediction. ELAS first applies an active sampling mechanism 
to query the most informative samples to update the base classifier to give it a new perspective. This training process 
is repeated until no enough samples are queried. Next, an internal validation set is employed to evaluate the base 
classifiers, and the ones with the best performances are integrated as the ensemble model. Besides, we set up multi-
ple initial training data seeds and internal validation sets to ensure the stability and generalization of the model.

Results:  We verified the effectiveness of the ELAS on a real clinical dataset containing 1848 postoperative NSCLC 
patients. Experimental results showed that the ELAS achieved the best averaged 0.736 AUROC value and 0.453 AUPRC 
value for 6 prognostic tasks and obtained significant improvements in comparison with the SVM, AdaBoost, Bagging, 
SMOTE and TomekLinks.

Conclusions:  We conclude that the ELAS can effectively alleviate the imbalanced data problem in NSCLC prognostic 
prediction and demonstrates good potential for future postoperative NSCLC prognostic prediction.
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Background
Lung cancer is a type of cancer that begins in the lungs 
and may spread to lymph nodes or other organs in the 
body. It is the most diagnosed cancer and the leading 
cause of cancer death globally [1]. The two main types 

of lung cancer are small-cell lung cancer (SCLC) and 
non-small cell lung cancer (NSCLC). NSCLC is the most 
common type and accounts for about 85% of all lung can-
cer cases. The prognosis of NSCLC patients is poor and 
only 23.3% of cases can survive for more than 5 years [2].

In the era of precision medicine, more and more treat-
ment options have become available. Besides the char-
acteristics of cancer, cancer stage, treatment history, 
etc., prognosis is also of importance on the choice of 
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complicated multidisciplinary treatment [3]. At present, 
surgery remains the only potentially curative modality for 
resectable NSCLC patients. However, cancer may recur 
at any time after surgery and seriously threaten the sur-
vival of postoperative patients [4]. Thus, it is critical to 
predict the prognosis of postoperative patients accurately 
to optimize the clinical decisions, such as adjuvant treat-
ment selection and personalized follow-up plan, so that 
patients can receive proper management to improve the 
quality of life and even prolong the survival time [5, 6].

To accurately assess the prognosis of patients, research-
ers have adopted multiple machine learning algorithms 
to develop prognostic models by exploiting various data 
like clinical, imaging, and genomic data [7]. Although 
these models are capable of mining nontrivial knowledge 
from historical data [8–12], the imbalanced data problem 
is still a bottleneck of building a robust prognostic pre-
diction model, especially for patients who relapsed or 
died shortly after surgeries, which causes the algorithms 
to bias the majority-class cases and affects the predictive 
performance [13]. Therefore, we need an effective strat-
egy to counteract this problem.

In this paper, we propose a novel approach, i.e., ensem-
ble learning with active sampling (ELAS), to alleviate the 
problem caused by imbalanced data. Active sampling has 
shown great potential to deal with the imbalanced data 
problem [14–17]. ELAS develops the first base classi-
fier using a balanced initial training data seed, and then 
applies the active sampling mechanism to query samples 
to update the base classifier. Next, the base classifiers 
that achieve good performances on an internal valida-
tion set are integrated as the ensemble model. To evalu-
ate the proposed method, extensive experiments were 
conducted on a clinical dataset consisting of 1848 post-
operative NSCLC patients collected from a Chinese Can-
cer Hospital. Experimental results indicate that the ELAS 
outperforms several benchmark models, which shows the 
ability to alleviate the imbalanced data problem in post-
operative NSCLC prognostic prediction.

Methods
Prognostic prediction for postoperative NSCLC patients 
is a typical imbalanced learning problem, especially for 
short-term prognosis prediction. Therefore, directly apply-
ing the traditional machine learning algorithms may lead 
to poor performance [13]. In this study, we propose the 
ELAS to alleviate the problem. Figure 1 illustrates the pro-
cess of ELAS. The ELAS mainly consists of three parts, i.e., 
data initialization, active sampling, and model ensemble. 
We will elaborate on the details of the ELAS as follows.

Data initialization
For training set Dtrain = {x1, x2, . . . , xNtrain} where x is the 
patient sample and Ntrain is the sample size of the training 
set. Before active sampling, we first randomly select 20% 
of the samples from the Dtrain as the internal validation 
set DinternalVal . Note that the DinternalVal is designed for 
the selection of the base classifiers in the ELAS model, 
which is different from the traditional validation set Dval 
for hyperparameter selection or early stopping. And the 
remaining 80% of samples in Dtrain are regarded as the 
training data pool DtrainPool with sample size NtrainPool . 
When obtaining the DtrainPool , we randomly select 
Nseed/2 samples with no replacement from the major-
ity class and minority class of DtrainPool respectively as a 
balanced initial training data seed DtrainSeed to train the 
first base classifier, where Nseed is the sample size of the 
DtrainSeed . And the DtrainPool is updated by removing the 
samples in the DtrainSeed.

Active sampling
Using the balanced DtrainSeed , we train the first base clas-
sifier c1 with any reasonable supervised machine learning 
algorithms. When the first base classifier c1 is trained, we 
employ it to predict the risks of samples in the DtrainPool 
and select the Nbatch most informative samples from 
DtrainPool using any reasonable query strategies. In this 
study, we employ the ranked batch-mode sampling 
(RBMS) described in the literature [18] as the query strat-
egy. In comparison with the traditional active learning 
query strategies like uncertainty sampling, RBMS uses 
Eq. (1) to assign the final scores for a batch of samples not 
only considering the informativeness of each sample but 
also the similarity between the samples and the already 
selected ones.

Note that the α parameter is responsible for weighting 
the impact of similarity score Ssimilarity and uncertainty 
score Suncertainty in the sample’s final score Sfinal . Using 
Eq.  (2), α leads the query strategy to prioritize diver-
sity on the initial iterations where the NtrainData is much 
smaller than the NtrainPool while, with the increase of the 
queried samples, shift the priority to samples in which 
the classifier is uncertain about. NtrainData is equal to 
Nseed at the first active sampling iteration.

(1)Sfinal = α × 1.0− Ssimilarity + (1.0− α)× Suncertainty

(2)α =
NtrainData

NtrainPool+NtrainData
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Fig. 1  The process of the ELAS
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To determine the uncertainty of the sample, the RBMS 
uses the least confident uncertainty score. Let yjxi be the 
probability of a sample xi belonging to class j predicted by 
the classifier, then the uncertainty score can be calculated 
by Eq. (3).

Moreover, RBMS employs Eq.  (4) to find the similar-
ity score, where xi is the current sample, Destimated is the 
dataset including samples in DtrainData and the selected 
samples in this query round. ∅ is the similarity function 
to measure the distance between the xi and the sample in 
Destimated . We used the Euclidean distance as the similar-
ity function in this study.

Based on the RBMS, we can avoid the sub-optimal 
sample selection caused by traditional active learning 
query strategies when selecting Nbatch informative sam-
ples. The queried Nbatch patient samples are added into 
DtrainSeed as the new training data DtrainData and removed 
from DtrainPool . So far, the first active sampling process 
is done, and we obtain the first classifier c1 , new training 
data DtrainData , and training data pool DtrainPool . Based 
on the new DtrainData and DtrainPool , we can start the next 
round of active sampling process until not enough sam-
ples in DtrainPool can be sampled into DtrainData for base 
classifier development. During each active sampling 
iteration, one base classifier is trained and used to query 
new samples for the next base classifier. All the trained 
base classifiers during this process are stored in the base 
classifier list L waiting for the final base classifier selec-
tion. In this study, we do not use the stop criteria to early 
terminate the training process [19–21], because the dis-
crimination ability of the base classifier does not always 
improve with the addition of queried samples when using 
the real clinical data.

(3)Suncertainty = 1.0−max
j

y
j
xi

(4)Ssimilarity = max
xj∈Destimated

∅
(

xi, xj
)

Model ensemble
After the active sampling, we can obtain a base classifier 
list L with NtrainPool−Nseed

Nbatch
+ 1 base classifiers, where 

NtrainPool is the sample size of the DtrainPool before train-
ing data seed sampling. Among these base classifiers, we 
select top K base classifiers with the best prediction per-
formances on the internal validation set DinternalVal for 
the ensemble model.

However, the DinternalVal only accounts for 20% of the 
Dtrain , which may lead the selected base classifiers to 
overfit this DinternalVal and deteriorate the generalization 
ability of the ensemble model. Thus, we apply a strati-
fied fivefold cross-validation mechanism to generate the 
DinternalVal . Each fold is regarded as one DinternalVal for 
base classifier evaluation, and the remaining 4 folds are 
combined as the DtrainPool for base classifier training. 
Using this strategy, each sample in the Dtrain will be used 
to evaluate and select base classifiers, and we can obtain 
5 base classifier lists where each list corresponds to a 
DtrainPool to avoid overfitting to one specific DtrainPool.

Moreover, we also notice that the different initial 
training data seed DtrainSeed will lead to the different 
first base classifier and the following active sampling 
results and then the different subsequent base classifi-
ers. To obtain more stable and robust prognostic pre-
diction performance, we initialize DtrainSeed Tseed times 
with different random seeds and repeat the whole 
active sampling process separately to obtain Tseed base 
classifier lists during each DinternalVal fold. Thus, when 
using fivefold cross-validation for multiple DinternalVal 
generations and Tseed times DtrainSeed initializations, we 
can obtain a total of 5× Tseed base classifier lists. We 
select the top K base classifiers from each L based on 
their performances on corresponding internal valida-
tion sets. The ELAS will average the 5× Tseed × K  base 
classifiers’ outputs as the final ensemble result. The 
details of the whole training process of the ELAS are 
given in Algorithm I.
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C ∈ {0.1, 1, 10} for SVM, C ∈ {1, 10, 100} for L2-LR, 
max _depth ∈ {None, 5, 10} and min _sample_leaf ∈

{1, 3, 5} for CART. To release the problem of massive pos-
sible value sets of the hyper-parameters, we selected 
radial basis function kernel for SVM, Gini impurity for 
CART, and Nseed ∈ {50, 100} , 10 for Nbatch , 3 for Tseed , 20 
for K  . Note that we should keep the Nseed/2 no more 
than the sample size of minority class because we want 
the DtrainSeed to be a balanced dataset. Besides, we should 

Experimental setup
To develop the ELAS model, we selected support vector 
machine (SVM) [22], logistic regression with L2 regulari-
zation (L2-LR) [23], and classification and regression 
trees (CART) [24], to train the base classifiers. We ran-
domly divided 80% of samples as the training set and the 
remaining 20% as the test set. To tune the hyper-parame-
ters, fivefold cross-validation was employed on the train-
ing set, and a grid search strategy was applied for the 
base classifiers on the hyper-parameter spaces: 
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also keep the K no more than NtrainPool−Nseed
Nbatch

+ 1 to ensure 
that the top K base classifiers can be selected from.

In this study, we conducted extensive experiments to 
explore the effectiveness of the proposed ELAS approach. 
First, we compared the ELAS with the base classifier 
algorithms, i.e., SVM, L2-LR, and CART, to explore 
whether the ELAS can improve the performance of prog-
nostic prediction. And then, as the ELAS is an ensemble 

method, we also selected two famous ensemble methods, 
i.e., AdaBoost [25] and Bagging [26, 27], as the bench-
marks. Moreover, we also applied two resampling meth-
ods to deal with imbalanced data, namely SMOTE [28] 
and TomekLinks [29], to explore which strategy is better. 
To evaluate the ELAS and benchmarks’ performances, 
we employed the area under the receiver operating char-
acteristic curve (AUROC) and the area under the preci-
sion–recall curve (AUPRC) as the metrics. To eliminate 
the bias caused by the test set partition, the whole data 
set segmentation, model development, and evaluation 
process was repeated 10 times with different random 
seeds so that we can obtain the averaged AUROC value 
and AUPRC value with their standard deviations (SD) for 
each prognostic task. The paired student t-test was per-
formed to determine whether the AUROC and AUPRC 
values of ELAS are statistically significantly different 
from the values of the benchmark algorithms and a p 
value less than 0.05 was considered significant.

Table 1  The statistics of the 1-year, 3-year, and 5-year patient 
prognoses

Outcomes Number of patients

1-year 3-year 5-year

Recurrence, n (%) 102 (7.6%) 296 (29.1%) 377 (51.9%)

No recurrence, n (%) 1,246 (92.4%) 720 (70.9%) 350 (48.1%)

Death, n (%) 62 (4.6%) 220 (21.8%) 307 (43.7%)

No death, n (%) 1,288 (95.4%) 787 (78.2%) 395 (56.3%)

Table 2  The AUROC values of the base classifier algorithms and the ELAS

The bold means the best results for corresponding tasks

Task Base classifier algorithms ELAS

SVM L2-LR CART​ SVM-ELAS L2-LR-ELAS CART-ELAS

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

1-year recurrence 0.649 0.063 0.660 0.072 0.603 0.072 0.702 0.079 0.674 0.071 0.668 0.056

1-year death 0.653 0.057 0.754 0.043 0.65 0.072 0.760 0.042 0.740 0.057 0.740 0.059

3-year recurrence 0.713 0.041 0.697 0.027 0.637 0.031 0.728 0.033 0.709 0.029 0.706 0.036

3-year death 0.702 0.044 0.711 0.040 0.663 0.041 0.733 0.035 0.720 0.037 0.737 0.040

5-year recurrence 0.751 0.053 0.730 0.061 0.668 0.045 0.748 0.055 0.735 0.063 0.724 0.051

5-year death 0.739 0.033 0.718 0.028 0.631 0.044 0.742 0.029 0.729 0.026 0.694 0.040

All tasks 0.701 0.063 0.711 0.056 0.642 0.057 0.736 0.052 0.718 0.055 0.711 0.054

Table 3  The AUPRC values of the base classifier algorithms and the ELAS

The bold means the best results for corresponding tasks

Task Base classifier algorithms ELAS

SVM L2-LR CART​ SVM-ELAS L2-LR-ELAS CART-ELAS

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

1-year recurrence 0.145 0.028 0.178 0.070 0.118 0.046 0.153 0.052 0.173 0.074 0.156 0.055

1-year death 0.123 0.042 0.137 0.042 0.109 0.029 0.129 0.039 0.133 0.040 0.136 0.041

3-year recurrence 0.518 0.054 0.497 0.041 0.406 0.033 0.527 0.050 0.509 0.047 0.486 0.044

3-year death 0.437 0.054 0.413 0.048 0.352 0.061 0.459 0.047 0.421 0.047 0.448 0.068

5-year recurrence 0.760 0.057 0.742 0.065 0.648 0.054 0.758 0.055 0.745 0.064 0.724 0.046

5-year death 0.694 0.045 0.680 0.036 0.532 0.035 0.695 0.040 0.690 0.034 0.634 0.052

All tasks 0.446 0.250 0.441 0.234 0.361 0.203 0.453 0.247 0.445 0.239 0.431 0.227
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Table 4  The paired student t-test results between the base classifier algorithms and the ELAS

The bold means the p-value is less than 0.05, which means the results between different models have statistically significant differences

Metric Comparison 1-year tasks 3-year tasks 5-year tasks All tasks

AUROC SVM versus SVM-ELAS < 0.01 < 0.01 0.411 < 0.01
L2-LR versus L2-LR-ELAS 0.487 < 0.01 < 0.01 < 0.01
CART versus CART-ELAS < 0.01 < 0.01 < 0.01 < 0.01

AUPRC SVM versus SVM-ELAS 0.165 < 0.01 0.378 < 0.01
L2-LR versus L2-LR-ELAS 0.093 < 0.01 0.011 0.015
CART versus CART-ELAS < 0.01 < 0.01 < 0.01 < 0.01
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Results
Data
We reviewed 1848 NSCLC patients who had undergone 
curative surgery from 2006 to 2015 in the Department of 
Thoracic Surgery II of Peking University Cancer Hospital. 
The collected data covered patient demographic infor-
mation, preoperative exams and treatments, pathologi-
cal information of the primary tumor and lymph nodes, 
and the pathological TNM stage. Clinicians manually 
recorded all the clinical data to ensure its reliability and 
correctness. The details of the clinical data are listed in 
the Additional file 1. Before model development, we pre-
processed the collected clinical data. Specifically, patient 
samples with missing feature values were excluded from 
the dataset. We removed the features with variance lower 
than 1% to ensure that no features have almost the same 
value for all samples. We converted all categorical fea-
tures into a one-hot encoding form and binned the con-
tinuous features into intervals.

To label the patient’s recurrence and death statuses, we 
used the Disease-Free-Survival (DFS) and Overall-Sur-
vival (OS) in the follow-up data. In this study, we selected 
three time periods, i.e., 1-year, 3-year, and 5-year, to 
explore the effectiveness of the proposed method to 
handle the different degrees of imbalance. Within each 
period, we labeled the patients who experienced the 
events (recurrence or death) as positive samples and 
those who did not experience any events as negative sam-
ples. Patients who lost follow-up within the period and 
had not experienced any events were excluded from this 
prognostic task. Table 1 lists the statistics of the 1-year, 
3-year, and 5-year prognoses.
In comparison with the base classifier algorithms
As an ensemble learning method, we first compared 
the ELAS with the base classifier algorithms to explore 
whether the base classifier algorithms can benefit from 
the ELAS. The AUROC and AUPRC values of the base 
classifier algorithms and the ELAS are illustrated in 

Tables 2 and 3. Figures 2 and 3 present the results in the 
bar graph manner. The sensitivity and specificity values 
are listed in the Additional file 2. We also calculated the 
paired student t-test to explore whether there are signifi-
cant differences between the base classifier algorithms 
and the ELAS, and the results are listed in Table 4.

Based on the experimental results above, we find that 
the ELAS achieves significant improvements compared 
with all base classifier algorithms under both AUROC 
and AUPRC metrics when combining all prognostic tasks 
together. Moreover, the more serious the data imbalance, 
the more improvements on AUROC values obtained by 
the ELAS, which indicates the ELAS strategy can bet-
ter tackle the imbalanced problem than the base classi-
fiers. From Fig. 3 we can notice that the AUPRC values 
increase in a step-like manner with the extension of the 
time of the prognostic prediction task, which is because 
the AUPRC is mainly affected by the degree of data 
imbalance. For 1-year prognostic prediction tasks, only 
CART significantly benefited from the ELAS method 
under AUPRC metric, but SVM and L2-LR did not gain 
significant improvements on AUPRC values via using 
ELAS. For 3-year prognostic prediction tasks, all base 
classifier algorithms achieve better performances when 
using ELAS. For 5-year prognostic prediction tasks, both 
L2-LR and CART have significant improvements, but 
SVM does not. By comparing the three ELAS models, we 
notice that the SVM-ELAS achieved the best overall per-
formances with 0.736 AUROC value and 0.453 AUPRC 
value. So, we select the SVM-ELAS as the representative 
model to compare with other benchmarks in the follow-
ing experiments.

In comparison with the benchmark algorithms
Ensemble learning is one of the effective approaches to 
handling the imbalanced data problem [16, 17, 30]. In this 
study, the proposed ELAS also averages the outputs of 
the selected base classifiers as the final predictive result. 

Table 5  The AUROC values of the ensemble algorithms, resampling algorithms, and the ELAS

The bold means the best results for corresponding tasks

Task Ensemble algorithms Resampling algorithms Proposed

SVM-AdaBoost SVM-Bagging SVM-SMOTE SVM-TomekLinks SVM-ELAS

Mean SD Mean SD Mean SD Mean SD Mean SD

1-year recurrence 0.682 0.082 0.673 0.072 0.620 0.073 0.650 0.065 0.702 0.079

1-year death 0.768 0.055 0.726 0.047 0.670 0.058 0.668 0.058 0.760 0.042

3-year recurrence 0.692 0.038 0.723 0.037 0.706 0.031 0.723 0.038 0.728 0.033

3-year death 0.707 0.043 0.721 0.039 0.710 0.030 0.711 0.043 0.733 0.035

5-year recurrence 0.752 0.055 0.752 0.053 0.751 0.053 0.752 0.053 0.748 0.055

5-year death 0.724 0.031 0.739 0.032 0.732 0.031 0.738 0.036 0.742 0.029

All tasks 0.721 0.062 0.722 0.054 0.698 0.065 0.707 0.062 0.736 0.052



Page 9 of 12Hu et al. BMC Medical Informatics and Decision Making          (2022) 22:245 	

Table 6  The AUPRC values of the ensemble algorithms, resampling algorithms, and the ELAS

The bold means the best results for corresponding tasks

Task Ensemble algorithms Resampling algorithms Proposed

SVM-AdaBoost SVM-Bagging SVM-SMOTE SVM-TomekLinks SVM-ELAS

Mean SD Mean SD Mean SD Mean SD Mean SD

1-year recurrence 0.150 0.047 0.153 0.049 0.114 0.033 0.151 0.043 0.153 0.052

1-year death 0.134 0.033 0.125 0.043 0.101 0.034 0.124 0.050 0.129 0.039

3-year recurrence 0.493 0.042 0.524 0.051 0.490 0.046 0.524 0.051 0.527 0.050

3-year death 0.420 0.045 0.454 0.054 0.404 0.048 0.449 0.044 0.459 0.047

5-year recurrence 0.762 0.052 0.765 0.054 0.762 0.057 0.763 0.057 0.758 0.055

5-year death 0.681 0.040 0.693 0.045 0.678 0.048 0.685 0.050 0.695 0.040

All tasks 0.440 0.243 0.452 0.249 0.425 0.257 0.449 0.248 0.453 0.247
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So here, we apply two state-of-the-art ensemble learn-
ing algorithms, i.e., AdaBoost [25] and Bagging [26, 27], 
as the benchmarks to compare with the ELAS. AdaBoost 
is one popular boosting algorithm that fits a sequence of 
weak classifiers on repeatedly reweighted samples and 
follows to weighted sum the outputs of weak classifiers 
as the predictive results. Bagging is another ensemble 
strategy that randomly samples subsets of the training set 
without concern for performance to build base classifiers 
and then averages their outputs as the predictions. Unlike 
them, the ELAS bias towards selecting samples that are 
hard to distinguish to train the base classifier step by step 
and averages the outputs of the base classifiers with the 
best performances as the ensemble predictions.

Besides ensemble learning, resampling techniques 
are also widely used to alleviate the effect of the skewed 
class distribution by rebalancing the sample space for an 
imbalanced dataset [16, 17]. In this subsection, we also 
select two resampling techniques, i.e., SMOTE [28] and 
TomekLinks [29], as the benchmarks to compare with the 
proposed method. SMOTE is an over-sampling method 
that generates new samples from the vector between 
the current sample and one of its k nearest neighbors to 
enrich the minority class. TomekLinks is an under-sam-
pling method that first detects if the two samples of dif-
ferent classes are the nearest neighbors of each other and 
then deletes the one in the majority class to reduce the 
majority class.

Tables  5 and 6 show the AUROC values and AUPRC 
values of the benchmarks and the ELAS, respectively. 
Figures  4 and 5 present the experimental results more 
intuitively. The sensitivity and specificity values of the 
benchmarks and the ELAS are listed in the Additional 
file  3. To further prove the performance improvements 
of the ELAS, the paired student t-test is also conducted 
to compare the performances of the benchmarks and the 
ELAS and listed in Table 7.

Note that the SVM-ELAS achieved the best over-
all performance with 0.736 AUROC value and 0.453 

AUPRC value for all tasks together compared with the 
benchmarks. For 1-year prognostic prediction tasks, 
the SVM-ELAS outperformed the benchmark algo-
rithms on AUROC values significantly except for the 
SVM-AdaBoost. The possible reason is that there is a 
good similarity between the reweighting in AdaBoost 
and active sampling in the ELAS. Specifically, AdaBoost 
gives higher weights to misclassified samples so that sub-
sequent base classifiers can tend to classify them cor-
rectly, while ELAS actively selects the indistinguishable 
samples into the training data and uses these samples 
for all subsequent base classifier developments. So, the 
samples hard to classify are paid extra attention in both 
AdaBoost and ELAS, which may lead the similar pre-
diction performances for the 1-year prognostic predic-
tion tasks. Although SVM-ELAS did not outperform the 
SVM-AdaBoost on 1-year prognostic prediction tasks 
but obtained significant improvements on both metrics 
when combining all tasks. Compared with the resampling 
methods, the SVM-ELAS outperforms the benchmark 
models for 1-year prediction tasks except for AUPRC 
of SVM-TomekLinks on 1-year prediction tasks, which 
indicates the ELAS is a competitive strategy to handle the 
imbalanced data problem compared with SMOTE and 
TomekLinks. For 3-year prognostic tasks, the SVM-ELAS 
achieves significant improvements on both AUROC and 
AUPRC values compared with all benchmarks. But for 
5-year prognostic prediction tasks, the SVM-ELAS did 
not show significant improvements, probably due to the 
data imbalance problem becoming relatively weak.

Discussion
In this study, we proposed the ELAS to tackle the imbal-
anced data problem in NSCLC prognostic prediction. 
Our approach is generalizable for other biomedical data 
analyses with imbalanced prediction targets. The experi-
mental results have demonstrated that the ELAS has 
robust predictive performance, especially for short-term 

Table 7  The paired student t-test results between the benchmark algorithms and the ELAS

The bold means the p-value is less than 0.05, which means the results between different models have statistically significant differences

Metric Comparison 1-year tasks 3-year tasks 5-year tasks All tasks

AUROC SVM-AdaBoost versus SVM-ELAS 0.231 < 0.01 0.041 < 0.01
SVM-Bagging versus SVM-ELAS < 0.01 < 0.01 0.490 < 0.01
SVM-SMOTE versus SVM-ELAS < 0.01 < 0.01 0.104 < 0.01
SVM-TomekLinks versus SVM-ELAS < 0.01 < 0.01 0.454 < 0.01

AUPRC SVM-AdaBoost versus SVM-ELAS 0.428 < 0.01 0.096 < 0.01
SVM-Bagging versus SVM-ELAS 0.396 0.046 0.146 0.337

SVM-SMOTE versus SVM-ELAS < 0.01 < 0.01 0.084 < 0.01
SVM-TomekLinks versus SVM-ELAS 0.334 0.041 0.287 0.088
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prognostic prediction, when compared with the state-of-
the-art techniques.

Although the ELAS achieves comparative perfor-
mances for NSCLC prognostic prediction, there are mul-
tiple directions we would like to further work into for 
more meaningful discoveries.

In the current study, we just employed one kind of 
query strategy described in the literature [18] to select 
the most informative patient samples. However, exploit-
ing multiple query criteria together shows great potential 
to improve the performance for classification problems 
[21, 31]. In the future, we can attempt to use multiple 
query criteria to select the representative samples from 
different perspectives to facilitate the development of the 
base classifier, e.g., using information density to take the 
structure of the data into account [32], combining base 
classifiers from different initial training data set as a com-
mittee to select the samples with the most disagreements 
[32].

Moreover, although we applied multiple internal vali-
dation sets for the base classifier selection to alleviate 
the overfitting problem, this selection strategy makes 
the selected base classifiers easily overfit to the corre-
sponding internal validation set. In the future, we can 
attempt to sample the base classifiers using the distribu-
tion generated from the performances of base classifiers 
or randomly select a subset of top N classifiers to further 
reduce the overfitting problem.

Conclusions
In this study, we proposed the ELAS approach to predict 
the prognosis for postoperative NSCLC patients. Experi-
mental results indicate that the ELAS achieves the best 
overall performance with an averaged 0.736 AUROC 
value and 0.453 AUPRC value in comparison with the 
benchmark models, which indicates it can effectively 
alleviate the imbalanced data problem in NSCLC prog-
nostic prediction.
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