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A fast prediction of blood flow in stenosed arteries with a hybrid framework of

machine learning and immersed boundary-lattice Boltzmannmethod (IB–LBM)

is presented. The integrated framework incorporates the immersed boundary

method for its excellent capability in handling complex boundaries, the multi-

relaxation-time LBM for its efficient modelling for unsteady flows and the deep

neural network (DNN) for its high efficiency in artificial learning. Specifically, the

stenosed artery is modelled by a channel for two-dimensional (2D) cases or a

tube for three-dimensional (3D) cases with a stenosis approximated by a fifth-

order polynomial. An IB–LBM is adopted to obtain the training data for the DNN

which is constructed to generate an approximate model for the fast flow

prediction. In the DNN, the inputs are the characteristic parameters of the

stenosis and fluid node coordinates, and the outputs are the mean velocity and

pressure at each node. To characterise complex stenosis, a convolutional

neural network (CNN) is built to extract the stenosis properties by using the

data generated by the aforementioned polynomial. Both 2D and 3D cases

(including 3D asymmetrical case) are constructed and examined to

demonstrate the effectiveness of the proposed method. Once the DNN

model is trained, the prediction efficiency of blood flow in stenosed arteries

is much higher compared with the direct computational fluid dynamics

simulations. The proposed method has a potential for applications in clinical

diagnosis and treatment where the real-time modelling results are desired.
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Introduction

Coronary artery disease is one of the major health threats in the 21st century, and is

reported as one of the leading causes of death worldwide (World Health Organization,

2014). This disease, where a localised accumulation of plaque in the arteries surrounding

the heart, prevents sufficient blood supply to the heart muscle, can lead to ischemia,
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stroke, heart attacks, and ultimately death. The hemodynamics of

the blood flow has long been thought to play an important role in

the pathogenesis and pathophysiology of atherosclerosis (Saxena

et al., 2019).

The cardiovascular system typically features low Reynolds

number pulsatile flow due to the cyclic pumping motion of the

heart. Computational fluid dynamics (CFD) has proven to be an

effective method to uncover the fluid dynamics of blood flow. For

example, Tu et al. (1992) studied the Newtonian blood flow through

a stenosis by using finite element simulations focusing on the effects

of various degrees of stenosis, stricture length, Reynolds number and

Womersley number. Köhler et al. (2001) compared the results of

blood flow in the realistic model of the human carotid bifurcation

from CFD simulations with that from magnetic resonance imaging

(MRI) measurements finding that CFD is a reliable tool for the flow

prediction. A detailed numerical study of the blood flow through a

localized stenosis in an idealized 2D blood vessel was conducted by

Tian et al. (2013). Abuouf et al. (2020) studied the effects of

guidewire position on the measurements of fractional flow

reserve (FFR) by using CFD. In addition, the fluid-structure

interaction of collapse tubes has been considered as a model of

blood-induced deformation of arteries (see e.g., Tang et al. (2015);

Wang et al. (2021)). However, the high fidelity CFD simulations are

usually time consuming, especially for 3D arterial flows involving

complex geometries, making CFD impractical for the clinical

diagnosis and treatment where the real-time modelling results are

required. To address this challenge, an efficient tool without the

assistance of professional fluid dynamics knowledge is desired,

which is the focus of this paper.

Among several techniques to provide prediction of blood

flow, machine learning (ML) is a promising method which has

drawn considerable attentions recently in the field of CFD. It has

been successfully applied to solve a series of physical problems.

For example, the data-driven machine learning algorithm has

been adopted for turbulent flow modelling to obtain a closure

subgrid scale stress model for the large eddy simulation or

Reynolds-averaged Navier-Stokes equations (Wang et al.,

2018; Zhu et al., 2019; Sun et al., 2022). A convolutional

neural network was introduced by Mao et al. (2018) to

predict the unsteady wave forces on bluff bodies due to the

free-surface wave motion. Bukka et al. (2021) presented a

recurrent neural network to construct a reduced-order model

for the unsteady flow field and fluid-structure interaction. AnML

method based on convolutional neural netwrok (CNN) was

proposed by Jing et al. to predict the unsteady velocity field

around a circular cylinder from the pressure coefficients

measurements (Jin et al., 2018). Sekar et al. (2019) presented a

data-driven approach by using the combination of CNN and

multilayer perceptron for the prediction of laminar flow around

NACA airfoil, which achieves the flow prediction of various

airfoils. ML has also been combined with CFD tools to study fish

swimming (Zhu et al., 2021, 2022). Moreover, ML has been

studied in the field of biomedicine, such as prediction of malaria

(Lee et al., 2020) and patient quality-of-life after prostate

radiation therapy (Yang et al., 2020). An ML based model was

applied to the diagnosis of coronary artery diseases by using the

fraction flow reserve, without providing the detailed information

of the flow field (Coenen et al., 2018). A physics-informed neural

network was introduced by Kissas et al. (2020) to solve

conservation laws in graph topologies to predict arterial blood

pressure from non-invasive unsteady flowMRI data. Husso et al.

(2021) introduced an ML to estimate myocardial blood flows

from tissue impulse response signal in an animal model. A

physical-informed neural netw006Frk was used by Arzani

et al. (2021) to obtain the near-wall hemodynamics and wall

shear stress data from sparse velocity measurements and without

knowledge of the inlet/outlet boundary conditions. These

applications inspire us to create a highly efficient predicting

tool for the accurate and detailed flow dynamics prediction in the

stenosed arteries by using machine learning and CFD, which can

be used not only for diseases diagnosis, but also for the treatment.

The comprehensive details of the flow properties provide more

robust impressions of the disease and therefore better treatment

strategies. Deep neural network (DNN) has shown powerful

capability in various applications (e.g., LeCun et al. (2015);

Ren et al. (2018); Liang et al. (2020)). Compared with the

popular reduced-order method such as proper orthogonal

decomposition (Guibert et al., 2014) and dynamic mode

decomposition (Habibi et al., 2020), a DNN is expected to

provide higher fidelity results due to their powerful training

capability which could be comparable with high-fidelity CFD

simulations. In this work, we explore the powerful capability of

DNN for fast predicting the blood flows in stenosed arteries

following several relevant studies (Coenen et al., 2018; Liang

et al., 2020; Arzani et al., 2021; Husso et al., 2021).

This paper aims at providing accurate and detailed flow

properties in stenosed arteries by using an ML, which can be

used for both the stenosis diagnosis and design of treatment

strategies. To construct the predicting tool based on the ML, an

idealised function, which could be arbitrary options with

stochastic disturbance, is adopted to generate a large number

of stenosis profiles. The learning datasets, the mean flow fields of

the constructed stenosed arteries are obtained by using an

immersed boundary-lattice Boltzmann method (IB-LBM)

(Tian et al., 2011; Wang and Tian, 2018; Xu et al., 2018; Ma

et al., 2020) which incorporates the immersed boundary method

for its excellent capability in handling complex boundaries and

the LBM for its efficient modelling for unsteady flows (Wang

et al., 2022). Finally, a DNN is trained and tested for the fast

prediction of the mean blood flow in stenosed arteries. Inspired

by the CNN-based feature extraction of various airfoils (Sekar

et al., 2019), a CNN is also built to extract the stenosis features,

which is used to represent the complex stenosis as the input of the

DNN. To the best of our knowledge, this is the first attempt to

predict the comprehensive flow properties in stenosed arteries by

using a DNN model with the IB-LBM.
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The rest of this paper is organised as follows: the ML method

and IB-LBM used in this study are presented in Section 2; both

2D and 3D DNNs are trained and tested, with the results and

discussions being presented in Section 3; final conclusions are

given in Section 4.

Hybrid framework of machine
learning and immersed boundary-
lattice Boltzmann method

The present approach includes three main parts, i.e., the

characterisation of the stenosed artery, the IB-LBM solver for

the high-fidelity CFD simulations of the blood flows in

stenosed arteries, and the DNN for predicting the mean

flow fields. Specifically, the stenosis is first characterised

by either the polynomial factors or the CNN extracted

features; then high-fidelity CFD simulations are conducted

by using the IB-LBM solver to obtain datasets, and finally an

approximate DNN is trained by using these datasets.

Characterization of the stenosed artery

Stenosis is usually caused by the accumulation of lipids in

the intima of artery, and it could have different shapes for

various patients and arteries (Varghese et al., 2007a,b; Huang

et al., 2020). Here, a fifth-order polynomial is used to describe

the stenosis, i.e,

y � a1x
5 + a2x

4 + a3x
3 + a4x

2 + a5x + a6, (1)

with y (0) = y(D) = D, y′(0) = y′(D) = 0 and D being the diameter

of the artery at the inlet, as shown in Figure 1. The free

parameters in Eq. 1 are randomly selected to generate a

database for the learning algorithm. Both axis-symmetric and

asymmetric 3D arteries are considered here. The axis-symmetric

artery has a similar stenosis governed by Eq. 1 as shown in

Figure 1, so that the 3D stenosis shares the same characteristic

parameters with its 2D counterpart. The asymmetric arteries will

be described later in. For simplicity, D is used as the length of the

stenosis. Although Eq. 1 is an idealised model, these free

parameters can be arbitrary options with stochastic

disturbance. Therefore, the idealised model does not affect the

effectiveness of the method in patient-specific cases which could

be modelled with more parameters.

To represent the stenosis shape, both the coordinates of the

stenosis and the free parameters in Eq. 1 can be used as the input

of the DNN for the mean flow prediction. However, the large

number of stenosis coordinates will definitely make the DNN

more complex. There are only six factors in Eq. 1, which seems to

be a good representation of the stenosis, and will be discussed

later. As the realistic stenosis could be even more complex, a

CNN (Sekar et al., 2019) is also built to extract the geometric

features of stenosis. Here, the CNN will be trained based on the

dataset generated by using Eq. 1, which can be further extended

for an arbitrarily complex stenosis. The current CNN includes an

input layer, 3 convolutional layers, 5 fully connected layers and

an output layer. Rectified linear unit (ReLU) and the hyperbolic

FIGURE 1
Schematic of the stenosed arteries: (A) 2D asymmetric case, and (B) 3D axis-symmetric case.
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tangent functions are used as the activation functions for the

convolutional and fully connected layers, respectively. The

parameters of the CNN are listed in Table 1. In the 2D CNN,

the inputs are 2D images (an example is shown in Figure 2),

which is generated by filling the pixels crossed by the stenosis as

one with the rest of the pixels as zero, and each image has a

resolution of 214 × 214. Here, only the stenosis section of the

artery is transferred into the image as the rest part of the artery is

uniform. The convolutional layers and the first three fully-

connected layers are used to decode the training images into

16 parameters representing the stenosis features, while the rest

fully connected layers then encode the features to obtain the y-

coordinates of the stenosis. The loss function of the CNN is

defined as

TABLE 1 Details of the 2D CNN.

Layer Size Filter size Pooling filter Output shape

Input 214 × 214 × 1 - - -

Conv1 32 4 × 4 3 × 3 214 × 214 × 32

Conv2 64 4 × 4 3 × 3 71 × 71 × 64

Conv3 128 4 × 4 3 × 3 23 × 23 × 128

Fully Connected × 2 128 - - 128

Fully Connected (extracted features) 16 - - 16

Fully Connected × 2 128 - - 128

Output - - - 201

FIGURE 2
An example of image generation for the input of the 2D CNN.
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yloss � 1
N

Σ ypred − ylabel( )2, (2)

where N is the sample number, and ypred and ylabel are the

predicted and labelled y-coordinates, respectively. Further

details of the CNN can be found in Refs. (Lee and You, 2019;

Sekar et al., 2019; Hasegawa et al., 2020; Bukka et al., 2021).

Immersed boundary-lattice Boltzmann
method solver for the computational fluid
dynamics simulation

The flows in the stenosed artery are solved by using an

IB–LBM (Tian et al., 2011; Wang and Tian, 2018; Xu et al., 2018;

Ma et al., 2020). In this method, the fluid dynamics is solved by

the LBM, and the complex no-slip boundary conditions on the

fluid–structure interface are achieved by an immersed boundary

(IB) method. Without loss of generality, the 2D numerical

method is briefly reviewed in this section, and more details of

this method and its 3D version can be found in Refs. (Tian et al.,

2011; Wang and Tian, 2018; Xu et al., 2018; Ma et al., 2020). The

main reason of choosing IB–LBM is due to its high

computational efficiency and simplicity in handling arbitrarily

complex geometries, which are especially desirable for the large

data requirements in ML and more complex stenosed arteries.

In the multiple relaxation time (MRT)-based IB-LBM, the

evolution equation of the particle distribution function gi along

the i-th direction at position x is expressed as (He and Luo, 1997;

Guo and Zheng, 2008)

gi x + eiΔt, t + Δt( ) � gi x, t( ) −Ωi x, t( ) + ΔtGi, (3)
where i = 0, 1, . . . , 8,Δt is the time step, ei is the lattice speed,Ωi is

the collision operator, and Gi represents the body force effects on

the distribution function. Ωi and Gi are defined as

Ωi � − M−1SM( )ij gj x, t( ) − geq
j x, t( )[ ], (4)

Gi � M−1 I − S

2
( )M[ ]

ij

Fj, (5)

Where M is a 9, ×, 9 transform matrix for the two dimensional

nine-speed (D2Q9) model, and S is a non-negative diagonal

matrix. The details for the determination of S andM can be found

in Ref. (Peng et al., 2006). The lattice speed ei in 2D simulation is

defined as

ei �

0, 0( ), i � 0

cos 0.5π i − 1( )( ), sin 0.5π i − 1( )( )( )ΔxΔt , i � 1, 2, 3, 4

�
2

√
cos 0.5π i − 4.5( )( ), sin 0.5π i − 4.5( )( )( )ΔxΔt , i � 5, 6, 7, 8

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(6)

where Δx is the lattice spacing. The macro density and

momentum are given as follows,

ρ � ∑8
i�0

gi, ρu � ∑8
i�0

giei + 1
2
fΔt. (7)

The local equilibrium distribution function geq
i and the force

term Fi are calculated by

geq
i � ωiρ 1 + ei · u

c2s
+ uu: eiei − c2s I( )

2c4s
[ ] (8)

Fi � ωi
ei − u
c2s

+ ei · u
c4s

ei[ ] · f (9)

where the sound speed cs � Δx/( �
3

√
Δt), f is the force acting on

the fluid, and the weights ωi are given by ω0 = 4/9, ωi = 1/9 for

i = 1, 2, 3, 4 and ωi = 1/36 for i = 5, 6, 7, 8 in 2D domain. The

relaxation time τ (one of the components of $S$) is related to

the kinematic viscosity ] of the fluid according to

] � (τ − 0.5)c2sΔt. The non-equilibrium extrapolation

method is used for the boundary conditions at the out

boundaries of the computational domain (Guo et al., 2002).

For 3D simulations, D3Q19 MRT-LBM is used (Wang and

FIGURE 3
Velocity profile in a 3D cylindrical pipemeasured at a distance
of 5D from the inlet.

FIGURE 4
Architecture of the DNN.
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Tian, 2018). The feedback IB method (Goldstein et al., 1993;

Kim and Peskin, 2007; Tian et al., 2011; Huang and Tian,

2019) is used to handle the no-slip boundaries between the

structure and fluid. The IB method is a type of Cartesian-

mesh-based methods which has excellent capability in

handling complex boundaries (Peskin, 2002; Mittal and

Iaccarino, 2005; Tian et al., 2012; Huang and Tian, 2019).

In this work, the Newtonian fluid flow in 2D and 3D arteries is

considered at a Reynolds number (Re = U0D/], where D being

the diameter of the artery and U0 being the average incoming

velocity) of 100. It should be noted that this Reynolds number

is considered, as it captures the major flow features in arteries,

while the computational cost is low. In addition, the steady

uniform velocity boundary condition is applied at the inlet.

This is different from the realistic arterial flows that are

pulsatile. However, the conclusions obtained can be

extended to cases of higher Reynolds numbers and pulsatile

inlet boundary conditions which would generate more

complicated flow structures such as secondary vortex flows

and turbulence.

The IB-LBM solver and its previous version used here have

been validated in our previous work extensively considering

fluid–structure interaction in steady and unsteady flows

(Wang and Tian, 2018; Xu et al., 2018, 2019; Wang and Tian,

2019; Ma et al., 2020; Huang et al., 2021; Wang, 2021). To further

validate the IB-LBM solver in modelling internal flows (e.g.,

hemodynamics with immersed structures), a Newtonian flow in a

3D cylindrical pipe is conducted. In this problem, a constant inlet

velocity (U0) is applied on the left side of the computational

domain. The fluid domain has a dimension of 10D × 0.6D × 0.6D.

A mesh convergence study is conducted at a Reynolds numbers

of 100 with three mesh spacings of the fluid domain, i.e., Δs = D/

25, D/50 and D/100. The mesh spacing of the cylinder is roughly

half of the fluid mesh spacing. The velocity profiles at a distance

of 5D from the inlet are shown in Figure 3 along with the

analytical solution

u � 2U0 1 − 4r2

D2
( ), (10)

where, r is the distance to the center of the pipe. As shown in

Figure 3, the velocity profiles calculated by the present numerical

method agree well with the exact solutions in Eq. 10. It shows that

the numerical results are in excellent agreement with the

analytical solutions when the mesh is refined to D/50. Note

that the velocity profile is corrected by using D + 0.5Δx in the IB-

LBM simulations, with Δx being the mesh spacing of the fluid

domain containing the structure, as suggested in Refs. (Huang

et al., 2020, 2021).

FIGURE 5
Comparison of the predicted and original y-coordinates of
2D stenosis.

FIGURE 6
Time histories of loss of the DNN in a 2D channel with a stenosis: (A) polynomial factors, and (B) CNN-extracted characteristic parameters.
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FIGURE 7
Comparison of the mean fluid fields for 2D channel flows from DNN prediction and CFD simulation: (A) um by CFD, (B) um by DNN prediction,
(C) vm by CFD, (D) vm by DNN prediction, (E) cp,m by CFD, (F) cp,m by DNN prediction.
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Deep neural network for the flow
prediction

Once the characteristic parameters of the stenosis and the

mean flow fields (calculated over a dimensionless time of 50 after

the initial flow developing periods) are obtained, a DNN is then

constructed to generate an approximate model for the fast

prediction of the mean flow field close to the stenosis,

i.e., from D upstream and 4D downstream of the stenosis.

The architecture of the DNN used for the flow field

prediction is shown in Figure 4. It consists of an input layer,

5 hidden layers (each of them has 128 perceptrons) and an output

layer. Here, the inputs are the stenosis characteristic parameters

(i.e., the free factors of Eq. 1 or the characteristic parameters

extracted by the CNN) and the coordinates of fluid nodes, and

the outputs are the mean flow velocities (um, vm and wm) and

pressure (cp,m) at each fluid node (the output shape is 3 for 2D

and 4 for 3D), while the output in Ref. (Liang et al., 2020) is the

values of the whole flow field and thus the output shape is

significantly larger and varies with the stenosis size. By using such

an architecture, the DNN will have significantly less trainable

parameters due to the smaller output shape and thus may be

more efficient in the training stage. Similarly to the CNN, the

root-mean-square error is defined as the loss function for the

DNN. The ReLU function is adopted as the activation function as

it is less susceptible to vanishing gradients that prevent deep

models from being trained compared with other functions such

as Sigmoid and Tanh. The adaptive moment estimation (Adam)

is used as the optimizer. During the training process, back

propagation method is used to update the trainable

parameters in the NN according to the gradients of the loss

function. All the NNs in this study are created by using the open

source library Tensorflow (Abadi et al., 2015) because of its

simple implementations.

The major procedures of the present approach to predict the

blood flow are as follows:

1) Generate stenosis samples by using Eq. 1, and the stenosis is

then characterised by using the free parameters of Eq. 1;

2) For the stenosis characterised by using CNN-extracted

features, the 2D images are first generated according to the

stenosis coordinates. The network is trained to get a model for

the extraction of the stenosis features by feeding these image

samples to the CNN and training;

3) Conduct high fidelity CFD simulations of the randomly

selected samples to generate a dataset for the DNN;

FIGURE 8
Absolute errors of the mean fluid field: (A) Δum, (B) Δvm, and (C) Δcp,m.
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4) Organise the dataset with the input being fluid node

coordinates and stenosis features, and the output being the

mean flow velocity and pressure.

5) Feed the organised dataset to the DNN and train the network

to obtain the approximate model for the fast prediction of the

blood flow field.

FIGURE 9
Comparison of the mean velocities and pressure along the streamwise direction measured at y = 0.2D and the comparison of streamwise
velocity profile: (A) um along x-axis, (B) vm along x-axis, (C) cp,m along x-axis, and (D) streamwise velocity profile um along y-axis.

FIGURE 10
Histories of loss and mean absolute error of the DNN for 3D (axis-symmetric) flow prediction: (A) loss, and (B) mean absolute error.
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When the clinical patient-specific stenosis data are available, it

can be modelled by more parameters and fed into the CNN instead

of the data generated from the polynomial for the feature extraction.

It means that the current framework by combining the CNN and

DNN can be still effective for the patient-specific geometries.

Another important reason to use CNN for the stenosis feature

extraction is because the arteries are usually constructed by using

MRI which can be directly used as the input of the CNN.

Results and discussions

2D flow prediction in a channel with a
stenosis

By feeding the image dataset generated by using Eq. 1 into the

CNN to characterise the arteries, a trained model can be

obtained. Here, 1,000 samples are used as the training dataset

and 200 samples are used as the validation dataset. The learning

rate is set as 1.0, ×, 10−4. Some validation samples are shown in

Figure 5. It is found that the predicted y-coordinates of the

stenosis agree well with the original data, which confirms that the

CNN is accurate in characterising the stenosis.

Here, 100 CFD simulations are conducted to obtain the training

dataset for the DNN to predict the blood flow, with another

20 simulations as the validation dataset. There are approximately

150,000 data points in each simulation, and 1.5 × 107 data points in

total are used to train the DNN. The initial learning rate is set as

1.0, ×, 10−3, and the learning rate is gradually decreased to around

4.0, ×, 10−5 in order to stabilize the learning process. Two DNNs are

trained by using the polynomial factors and the characteristic

parameters extracted by the CNN, respectively. Figure 6 shows

the time histories of the loss from the two DNNs. It is found that the

DNN using features extracted by the CNN achieves a significantly

smaller loss compared that using the polynomial factors. This

indicates that the CNN has a better ability in representing the

stenosis features. As a general approach, it also can be extended to

arbitrarily complex stenosis with the required dataset such asMRI or

CT images obtained in clinic practices.

The mean flow fields (i.e., um � �u/U, vm � �v/U and

cp,m � �p/(0.5ρU2)) of one validation by using the CNN extracted

features are presented in Figure 7, which shows that the predictions

from the DNN is very close to the high fidelity CFD simulations. The

mean fluid field errors are further shown in Figure 8, which

demonstrates that the error of the predictions is mostly observed

close to the wall due to the drastic changes. The local error is less than

5% of the maximum velocity near the centre, acceptable in such fast

predictions. A more robust comparison of the mean velocities and

pressure measured along the streamwise direction at y = 0.2D are

presented in Figure 9, which shows a good agreement of the predicted

fluid values and those from CFD simulations with acceptable errors.

3D flow prediction in axis-symmetric
artery

To demonstrate the ability of the DNN in considering more

realistic blood flows, the DNNmodel is further trained based on 3D

simulation data to predict the blood flow. A similar DNN

FIGURE 11
Comparison of the mean velocities and pressure with axis-
symmetric stenosis on the plane of z = 0: (A) um by CFD, (B) um by
DNN prediction, (C) vm by CFD, (D) vm by DNN prediction, (E) cp,m
by CFD, (F) cp,m by DNN prediction.
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FIGURE 12
Comparison of themean velocities and pressure along the streamwise directionmeasured on two lines in the 3D axis-symmetric case: (A) um at
z = 0 and y = 0.2D, (B) um at z = 0 and y = 0.8D, (C) vm at z = 0 and y = 0.2D, (D) vm at z = 0 and y = 0.8D, (E) cp,m at z = 0 and y = 0.2D, and (F) cp,m at
z = 0 and y = 0.8D.

Frontiers in Physiology frontiersin.org11

Wang et al. 10.3389/fphys.2022.953702

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.953702


FIGURE 13
An example of 3D asymmetric stenosed artery: (A) 3D view, and (B) x-axis view.

TABLE 2 Details of the 3D CNN.

Layer Size Filter size Pooling filter Output shape

Input 61 × 61 × 61 × 1 - - -

Conv1 32 4 × 4 × 4 3 × 3 × 3 61 × 61 × 61 × 32

Conv2 64 4 × 4 × 4 3 × 3 × 3 71 × 71 × 71 × 64

Conv3 128 4 × 4 × 4 3 × 3 × 3 23 × 23 × 23 × 128

Fully Connected × 2 128 - - 128

Fully Connected (extracted features) 8/16/32 - - 8/16/32

Fully Connected × 2 128 - - 128

Fully Connected - - - 800

Reshaped - - - 400 × 2

FIGURE 14
Histories of loss and mean absolute error in the shape construction of the 3D CNN: (A) loss, and (B) mean absolute error.
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architecture of the 2D case is adopted for the 3D model, except that

the input and output have an extra dimension. By feeding 100 3D

simulation data, around 1.6 × 108 data points, to the DNN, an

approximatemodel is obtained by usingAdams optimizer. Figure 10

shows the time histories of the loss and mean absolute error, it is

found that the training approaches to a small loss after training for

200 epochs, the mean absolute error is also small compared with the

absolute value of dimensionless velocities and pressure (generally in

a range more than 1.0).

Figure 11 shows a direct comparison of the mean flow fields

from DNN prediction and CFD simulation on the plane of z = 0.

It is found that the predicted flow fields are very close to those

from high fidelity CFD simulation. The stenosis effects on the

velocity and pressure change are well captured by the DNN. A

more careful comparison of the dimensionless velocities and

pressure distributions in the streamwise direction measured on

two lines, i.e., line 1 with z = 0 and y = 0.2D, and line 2 with y = 0

and z = 0.8D, is presented in Figure 12. It shows negligible

discrepancies and further confirms the accuracy of the present

machine learning approach.

3D flow prediction in asymmetric artery

The 3D flow in axis-symmetric artery presented in the last

section shows that the present method has good ability to predict

the flow properties in such stenosed arteries. However, the real

stenosed arteries are generally not symmetric, and thus the

simplified axis-symmetric model may not be applicable. Here,

to clarify the ability of the present method in predicting flow

properties in more practical stenosed arteries, we use the

combination of Eq. 1 and a normal distribution function to

describe the radius along the circumferential direction at the

stenosed section. Therefore, the stenosis with complex and

asymmetric shape can be represented. An example is shown

in Figure 13 to illustrate the asymmetric stenosed arteries

generated by this model.

As asymmetric arteries are considered, the established 2D CNN

is not applicable. Here, a 3D CNN is further built to extract the

stenosis features. The input of the 3D CNN is a 3D image with a

dimension of 61 × 61 × 61, i.e., the resolution is 0.02D, which is

generated by filling the pixels crossed by the stenosis as one with the

rest as zero. The coordinates of 400 points evenly distributed on the

stenosis surface are used as the output of the 3D CNN, with the

mean-square-error as the loss function. ReLU and the hyperbolic

tangent functions are used as the activation functions for the

convolutional and fully connected layers, respectively.

800 examples are used as the training data with another 200 as

the validation data. More details of the 3D CNN are shown in

Table 2. Three numbers of the extracted features are tested, i.e., 8,

FIGURE 15
Comparison of the predicted and original coordinates of a 3D
asymmetric stenosis.

FIGURE 16
Histories of loss and mean absolute error of the DNN for asymmetric stenosis: (A) loss, and (B) mean absolute error.

Frontiers in Physiology frontiersin.org13

Wang et al. 10.3389/fphys.2022.953702

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.953702


16 and 32, as an appropriate number of the stenosis feature can well

represent the stenosis and improve the learning efficiency of the

DNN. The histories of loss andmean absolute error versus epoch are

shown in Figure 14. It is clear that all three networks show similar

learning histories and good convergence, and the increase of features

from 8 to 32 does not improve the accuracy. Therefore, 8 features are

adopted for the further DNN training. An example to compare the

predicted (by using 8 features) and original coordinates of 3D

asymmetric stenosis is shown in Figure 15. It shows that the 3D

CNNmodel predicts the coordinates well and thus has the ability to

extract the features from complex stenosed arteries.

After the features of the stenosis are successfully extracted by the

established 3D CNN, the DNN model built in the last section is

adopted for the 3D asymmetric flow prediction. Similarly, 120 CFD

simulations are conducted to obtain the training dataset, with 20 of

them serving as the validation data. The histories of loss and mean

absolute error are shown in Figure 16. It is found that the DNN

converges after around 150 epochs, the mean absolute error (MAE)

is less than 1%, which is much lower than the best value (6.2%)

achieved by Liang et al. (2020) considering flow in human thoracic

aorta. An example of the mean velocities and pressure fields

obtained by the DNN and CFD simulation are shown in

FIGURE 17
Comparison of themean velocities and pressure with asymmetric stenosis on the plane of z=0: (A) um by CFD, (B) um by DNNprediction, (C) vm
by CFD, (D) vm by DNN prediction, (E) wm by CFD, (F) wm by DNN prediction, (G) cp,m by CFD, (H) cp,m by DNN prediction.

TABLE 3 Details of the computation time.

Type Wall-time

CNN-2D training 24 cpu hours

CNN-3D training 912 cpu hours

DNN-2D training 80 cpu hours

DNN-3D axis-symmetric training 500 cpu hours

DNN-3D asymmetric training 960 cpu hours

CFD-2D 0.6 cpu hours per simulation

CFD-3D 50 cpu hours per simulation

DNN-2D prediction 6 s

DNN-3D prediction 65 s
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Figure 17. It is clear that the DNN gives an excellent prediction

compared with the high fidelity CFD simulation in a significantly

less expensive way. Almost all flow details such as the velocities and

pressure change can be accurately captured.

The 2D and 3D stenosed arteries are considered, and the present

results show that the combination of CNN for extracting stenosis

features and the fully connectedDNN for the prediction of bloodflows

workswell in capturing theflowdetails in stenosed arteries. The success

of this combination can be attributed to the versatility of CNN in

extracting features of complex images (Badrinarayanan et al., 2017),

which can be easily extended to arbitrarily complex stenosis once the

required dataset is obtained. The computation time by using full CFD

simulation and the DNN to predict the blood flow is further presented

in Table 3 for comparison. It shows that the blood flow in stenosed

arteries can be obtained in a few seconds for 2D and about 1minute for

3D after the model is trained. The prediction time is in seconds

excluding the time of initializing and file I/O, and it is comparable to

that of other similar methods e.g., Ref. (Liang et al., 2020). In some

medical applications, we only need to reconstruct the wall shear stress

or the pressure drop due to the stenosis, which requires even less

computational time. Therefore, the trained DNN method is

significantly more efficient than the CFD simulation, and may have

a great potential in clinic applications. It should be noted that more

training sets may be required when more factors are included.

Specifically, if the stenosis length is varied, the training set will not

increase and the data size increases linearly. If the inlet velocity is varied,

the training dataset will increase linearly and each data will be the same

size. Therefore, the training dataset will increase linearly when we

include two or more factors. New datasets may be required for cases

with different topologies.

Conclusion

This paper has introduced a fast predictionmethod of blood flow

in stenosed arteries with a hybrid framework ofmachine learning and

IB–LBM which incorporates the immersed boundary method, the

MRT LBM and the DNN, and takes advantages of their strengths.

Several validation cases have been conducted by training and testing a

DNN for the fast flow prediction in stenosed arteries with the CFD

generated data. The results show that the DNN can predict the mean

flow fields accurately with the results being available within about

1 minute, which is improved at least 1,000 times comparedwith direct

numerical simulation. In addition to parametrise the stenosis by using

an analytical polynomial, a 2D and a 3D CNNs are constructed to

extract the stenosis features from 2D and 3D images, respectively. The

results show that the CNN has a good performance in representing

the stenosis and can be straightforwardly extended to arbitrarily

complex stenosis, as demonstrated by the 3D asymmetric stenosis.

Although the stenosis is generated by an analyticalmodel in this work,

the versatility of the CNN makes it applicable to patient-specific

geometries that can be modelled with more parameters.

This work has successfully demonstrated the superiority to

use machine learning and CFD based data for the fast prediction

of mean flow fields in complex stenosed arteries. The future work

will be focused on more realistic problems to include the non-

Newtonian fluid, the pulsatile flow and more complex stenosis to

obtain a more versatile DNN model.
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