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Abstract

Accurate simulation of complex biological processes is an essential component of develop-

ing and validating new technologies and inference approaches. As an effort to help contain

the COVID-19 pandemic, large numbers of SARS-CoV-2 genomes have been sequenced

from most regions in the world. More than 5.5 million viral sequences are publicly available

as of November 2021. Many studies estimate viral genealogies from these sequences, as

these can provide valuable information about the spread of the pandemic across time and

space. Additionally such data are a rich source of information about molecular evolutionary

processes including natural selection, for example allowing the identification of new variants

with transmissibility and immunity evasion advantages. To our knowledge, there is no

framework that is both efficient and flexible enough to simulate the pandemic to approximate

world-scale scenarios and generate viral genealogies of millions of samples. Here, we intro-

duce a new fast simulator VGsim which addresses the problem of simulation genealogies

under epidemiological models. The simulation process is split into two phases. During the

forward run the algorithm generates a chain of population-level events reflecting the dynam-

ics of the pandemic using an hierarchical version of the Gillespie algorithm. During the back-

ward run a coalescent-like approach generates a tree genealogy of samples conditioning on

the population-level events chain generated during the forward run. Our software can model

complex population structure, epistasis and immunity escape.

Author summary

We develop a fast and flexible simulation software package VGsim for modeling epidemi-

ological processes and generating genealogies of large pathogen samples. The software

takes into account host population structure, pathogen evolution, host immunity and

some other epidemiological aspects. The computational efficiency of the package allows to
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simulate genealogies of tens of millions of samples, which is important, e.g., for SARS-

CoV-2 genome studies.

This is a PLOS Computational Biology Software paper.

Introduction

The unprecedented world-wide effort to produce and share viral genomic data for the ongoing

SARS-CoV-2 pandemic allows us to trace the spread and the evolution of the virus in real

time, and has made apparent the need for improved computational methods to study viral evo-

lution [1]. These data yield important insights into the effects of population structure [2–5],

public health measures [6, 7], immunity escape [8, 9], and complex fitness effects [10, 11]. It is

essential that we also have tools to accurately simulate viral evolutionary processes so that the

research community can validate inference methods and develop novel insights into the effects

of such complexities. However, there are no software packages capable of simulating the scale

and apparent complexity of viral evolutionary dynamics during the SARS-CoV-2 pandemic.

Pandemic-scale datasets impose technical problems associated with the scalability and

memory usage of computational methods. There is already substantial progress in building

scalable simulators and data analysis methods for human genome data. The current state-of-

the-art human genome simulator msprime [12] is capable of simulating millions of sequences

with length comparable with human chromosomes. Methods such as the Positional Burrows-

Wheeler Transform (PBWT) [13], its ARG-based extension tree consistent PBWT [14], and

tsinfer [15] can be used to efficiently process and store genomic sequences, but all of these

approaches are designed for actively recombining organisms. Moreover, the primary popula-

tion models underlying these methods are the Kingman coalescent [16], the Wright-Fisher

model [17, 18] and the Li-Stephens model [19]. We recently developed approaches for com-

pressing and accessing viral genealogies that dramatically reduce space and memory require-

ments [20, 21], but there are no viral genealogy simulation methods that can efficiently

produce pandemic-scale datasets.

Coalescent models [22] are powerful tools for studying humans, many other eukaryotes,

and pathogen populations (e.g. [23–25]). Structured coalescent models have been successfully

applied for epidemioloigical inference, in particular to detect and understand barriers to trans-

mission in human populations [26, 27]. However, the assumptions of coalescent frameworks

are often violated in other epidemiological settings. First, the effective population size is usually

modeled either as piece-wise constant or as exponential growth. However, the coalescent with

exponential growth and birth-death models do not result in equivalent genealogies [28]. Sec-

ond, it’s not simple to use coalescent models to describe the effects of selection. If we consider

the pandemic on a longer time period, basic birth-death models (e.g. [29]) are not an appropri-

ate choice, since the reproductive rate usually decreases with time as collective immunity

builds up or as the susceptible population is exhausted. These limitations are often addressed

in epidemiology using compartmental models, such as SI, SIS and SIR [30], or their stochastic

realisations, which are also birth-death processes. Backward in time genealogical models con-

ditioned on epidemiological process have also been used to simulate pathogen genealogies, for

example in PhyDyn [31] and TiPS [32].
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Simulating realistic selection in backward-time models is a well-known challenging prob-

lem. A common workaround is to assume a single deterministic frequency trajectory or to

generate a stochastic frequency trajectory in forward time, and then to simulate the ancestry of

the samples around the selected site in a coalescent framework (e.g., [33, 34]). However, more

complex models of selection, including e.g., gene-gene interactions, or epistasis, are often

beyond the scope of such coalescent models. Nonetheless, epistasis is thought to be an impor-

tant component of viral evolutionary processes [35, 36], and incorporating the effects of such

complex evolutionary dynamics is essential for accurate simulations of evolution.

We introduce a novel simulation method that can rapidly generate pandemic-scale viral

genealogies. Our approach is a forward-backward algorithm where we generate a series of sto-

chastic events forward in time, then traverse backwards through this event series to generate

the realized viral genealogy for a sample taken from the full population. Our framework

includes the accumulation of immunity within host populations and of viral mutations that

affect the fitness of descendant lineages. Our method is extremely fast, and can produce a phy-

logeny with 50 million total samples in just 88.5 seconds. The genealogies output from our

simulation are compatible with phastSim [37], making it possible to generate realistic

genome data for the simulated samples. This framework empowers efficient and realistic simu-

lation of pandemic-scale viral datasets.

Design and implementation

Our epidemiological model is a compartmental model [38] (see S1 File—section 1 for a brief

introduction to compartmental models), and the realisations of the stochastic processes are

drawn using the Gillespie algorithm [39]. The different compartments in our model are

defined based on several interacting real-world complexities: (1) host population structure

with corresponding population-specific viral frequencies and contact rates, (2) separate host

infectious groups resulting from different viral haplotypes, and (3) different host susceptibility

groups.

We break the simulation into two phases. In the first one (the forward pass), we generate a

population-level epidemiological process which is represented as the series of events (Fig 1)

resulting from the “reactions” (Table 1). These events then influence the properties of the viral

genealogy, which is sampled in the second phase (the backward pass). The specific viral geneal-

ogy is sampled conditioned of the population-level epidemiological process using a coalescent

framework.

Table 2 lists all the features which determine the simulation. In the beginning, the user

should specify the number U of mutable sites (see section Fitness landscape),the number T of

susceptibility types (section Epidemiological model), and the number K of populations (sec-

tion Population model).

Fitness landscape

Because this simulation framework focuses on generating the viral genealogy, and not

genomes, we track only mutations at genome sites that have a large positive effect on viral fit-

ness. That is, these mutations enhance the transmissibility of the virus or lead to immunity

escape. We expect this will typically be a relatively small number of mutations relative to the

size of the viral genome, simplifying the problem. To efficiently model neutral genetic varia-

tion we suggest using phastSim [37] on a tree generated by our algorithm; the output pro-

duced by our method can be directly imported into phastSim for downstream processing.

To define the intended model of selection on new mutations, the user specifies the number

U of mutable sites and their specific fitness effects (i.e., their effect on the birth rate). The
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Fig 1. The scheme of the nested family Gillespie algorithm used to generate an event in the forward run. The corresponding reactions are listed in

Table 1. Black squares correspond to the consecutive steps, where the subfamilies are chosen with the weights given by their propensities. The

propensities for each step are cached and updated only if they change due to an event. For migration propensities, the rejection approach is used instead

(S1 File—section 3).

https://doi.org/10.1371/journal.pcbi.1010409.g001
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mutations are modelled as single nucleotide substitutions, so each site has four possible vari-

ants (A, T, C and G). Mutations lead to the appearance of different haplotypes with different

transmission and immunological properties. Up to H = 4U different haplotypes can appear in

the simulation. Each haplotype h can be assigned its own specific U mutation rates mu(h) and

Table 1. The list of reactions and corresponding epidemiological events simulated by the Gillespie algorithm in

our model, and the number of reactions in each category in function of the number of mutable sites U, number of

susceptible individuals T, and the number of populations K.

Reaction Description Number of

reactions

Ss
i ; Ish ! Ish; Ish Transmission of haplotype h to an individual of susceptibility type i in

population s
4UTK

Ish ! Ss
iðhÞ Recovery or sampling of an individual infected with haplotype h in population

s. Susceptibility type i(h) is determined by the haplotype.

2 � 4UK

Ish ! Isl , h 6¼ l Mutation of haplotype h into haplotype l in population s as a result of a single

nucleotide substitution.

4U3U

Ss
i ! Ss

j , i 6¼ j Susceptibility transition of an individual with susceptibility type i to

susceptibility type j (e.g. vaccination or loss of immunity) in population s.
T(T −1)

Sr
i ; Ish ! Irh; Ish, r
6¼ s

Migration is a transmission of haplotype h from population s to an individual

of susceptibility type i in population r.
4UTK(K − 1)

https://doi.org/10.1371/journal.pcbi.1010409.t001

Table 2. List of features which determine the simulation scenario. All the rates are normalized by the number of individuals in a particular group (i.e. the number of

individuals infected with a particular haplotype or individuals of a certain susceptibility type). The rates are measured in terms of events per time unit.

Model Feature Description Value

Epidemiological model: every parameter

can be set individually for each haplotype.

Transmission rate The expected number of new infections per time unit caused by an

individual infected with haplotype h if all the population were completely

susceptible.

λh 2 (0;1)

Recovery rate Rate at which an infectious individual becomes recovered after being

infected with haplotype h.

ρh 2 (0;1)

Sampling rate Rate at which an infectious individual is sampled after being infected with

haplotype h.

zh 2 [0;1)

Mutation rate Rate at which a genetic site u mutates. Can be set independently for each

mutable site in function of haplotype h.

mu(h) 2 (0;1)

Substitution probabilities The probabilities of particular nucleotide substitution at haplotype h
given that the mutation occurred at the site u.

½pu
h1
; pu

h2
; pu

h3
�

0 � pu
hi
� 1

pu
h1
þ pu

h2
þ pu

h3
¼ 1

Susceptibility The multiplier which allows to change the relative susceptibility to

haplotype h of an individual with susceptibility type i.
σih 2 [0;1)

Susceptibility transition

rate

The rate at which susceptible individuals move from one susceptibility

type to another without being infected.

This allows to model the loss of immunity with time or vaccination

efforts.

[0;1]

Population model Population size Total number of individuals in population s. Ns
2 ð0;1Þ

Contact density The multiplicative modifier of transmission rate corresponding to the

relative number of contacts in population s. It is used to describe

differences in social behaviour of the host population (e.g. population

density, NPIs).

δs 2 [0;1)

Non-pharmaceutical

interventions (NPI)

Conditions to impose and lift NPI in population k (determined by the

proportion of infectious individuals in the population) and the contact

density during the NPI.

Sampling effort This modifier increases or decreases the sampling rate in population s. cs 2 [0;1]

Migration probability The probability that an individual from population s is temporarily

visiting population r.
μsr 2 [0; 1]

https://doi.org/10.1371/journal.pcbi.1010409.t002
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3U substitution probabilities pu
h1

, pu
h2

, pu
h3

, one for each site u and for each of the 3 possible new

nucleotides at site u. Transmission, recovery, and sampling rates, as well as mutation rates, sus-

ceptibility, and triggered susceptibility types can be defined individually for every haplotype.

Of particular interest, gene-gene, or epistatic, interactions can be flexibly modelled using this

approach.

We refer to sequences carrying particular sets of variants as “haplotypes”, because two iden-

tical sequences can appear as a results of different mutation events, so they might not belong to

the same clade in the final tree.

Epidemiological model

To model the host immunity process, we use a generalised SI-model. The compartments

within each population represent different types of susceptible individuals or infectious

individuals.

Different susceptible compartments in the same host population are used to model different

types of immunity. These can correspond for example to host individuals that have recovered

from previous exposure to different viral haplotypes. Susceptible compartments can also be

used to represent different vaccination statuses. For each susceptible compartment Si, and for

each viral haplotype h we consider a susceptibility coefficient σih which multiplicatively

changes the transmission (birth) rate of the corresponding haplotype. In particular, σih = 0 cor-

responds to absolute resistance, similar to the R-compartment in SIR-model, but specific to

individuals who have immunity type i and are exposed to haplotype h. 0< σih< 1 would cor-

respond to partial immunity, while σih> 1 corresponds to increased susceptibility.

Different infectious compartments within a host population correspond to individuals

infected by a haplotype and can potentially infect susceptible hosts. As we mentioned in the

section Fitness landscape, the transmission rate λh, recovery rate ρh and mutation rates can be

set independently for each haplotype h. After recovery, a host individual that was infected with

haplotype h, and therefore was in compartment Ish for some population s, is moved to the cor-

responding susceptibility (immunity) compartment Ss
iðhÞ. Different haplotypes might however

lead to the same types of immunity.

NB: The evolution of individual immunity is modeled as Markovian—it is determined only

by the latest infection, and does not have memory about previous infections. Whether this

assumption provides an accurate approximation of the immunity dynamics within the host

population is an important consideration and may depend on the specific pathogen biology.

Different haplotypes can lead to the same immunity. Some immunity types can be specific, e.
g., to vaccination immunity without being associated with any haplotypes at all.

The rate of transmission of viral lineages within a population also depends on how fre-

quently two host individuals come in contact with each other. To flexibly accommodate such

differences, each population s is assigned a contact density δs parameter. This parameter can

be used to simulate differences in the local population density, social behaviours etc. In the

abscence of migration, the rate for an individual from susceptibility class Ss
i (the susceptible

compartment i within population s) to be infected with haplotype h by another individual

within population s is

jSs
i jsihlhjI

s
hjd

s
=Ns;

where jSs
i j is the number of individuals in Ss

i , I
s
h is the class of individuals infected with haplo-

type h in population s, λh is the baseline transmission rate of individuals infected with haplo-

type h, and Ns is the total population size of deme s. If there is migration, the equation should

be modified by taking into account the probability that two interacting individuals are in the
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same population (not necessarily in their home population). We give more details on accomo-

dating migration in the section Migration and S1 File—section 2.

Direct transitions between susceptible compartments are possible, for which users can spec-

ify a transition matrix for susceptible compartments. A transition between susceptible com-

partment can be used for example to model a vaccination event, or the loss of immunity with

time.

Population model

Demes. The population model is based on an island (demic) model. Each population is

described at each point in time by its total size Ns, number jIshj of infectious individuals with

each viral haplotype h, number jSs
i j of susceptible host individuals for each susceptibility type i,

relative contact density δs, and a population-specific non-pharmaceutical interventions strat-

egy and effectiveness. All individuals within each deme have the same contact patterns.

Non-pharmaceutical interventions. Several governments have imposed non-pharmaceu-

tical intervention (NPI) measures such as lockdowns, mandatory mask wearing in public or

social disctancing, during the COVID-19 pandemic as an effort to control the spread of

SARS-CoV-2. Understanding the effects of non-pharmaceutical interventions is a crucial con-

cern for designing effective public health strategies. We implement these measures as follows.

When the total number of simultaneously infectious individuals in population s surpasses a

certain user-defined population-specific percentage (e.g. 1%) of the population size Ns, the

non-pharmaceutical interventions are imposed and the contact density δs is changed to a new

(typically lower) population-specific value. When the percentage of the infectious individuals

drops below a user-specified value (e.g. 0.1%) the measures are lifted and the contact density

in population s reverts to its initial value δs.
Migration. Migration is described by a matrix μsr which defines the probabilities at which

an individual from source population s can be found in target population r. In our model, new

infections occur due to contact between infectious individuals from one population and sus-

ceptible individuals from the second population when they contact within the same popula-

tion. This can be due to the travel of a susceptible individual to a source population, where it

contracts an infection, after which it returns back to the home population (q = r in Eq 1); or, to

the travel of an infectious individual into a target population where it transmits the infection

to a susceptible individual (q = s in Eq 1); or, to the travel of both infectious and susceptible

individuals to a third population. The derivation of each term is explained in S1 File—section

2 (see S1 File—equation S.1). This model corresponds to short-term travel such as tourist or

business trips, where an individual returns soon back to the home population. The proposed

process is different from the traditional migration modelling in population genetics, when an

individual moves permanently to a new population.

More in detail, transmissions occur when a susceptible individual with immunity i from

population s meets an infected individual with haplotype h from population r while both of

them are being in population q. The rate of such a transmission is

M0ðr; i; s; h; qÞ ¼ lhsihmrqmsqd
q jSr

i jjI
s
hj

Nq
:

The total rate of transmission between compartments Sr
i and Ish is then

X

q

M0ðr; i; s; h; qÞ ¼ jSr
i jjI

s
hj
X

q

lhsihmrqmsqd
q

Nq
; ð1Þ
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where μss = 1 − ∑q6¼s μsq is the probability that an individual originally from population s is cur-

rently not in a different population. If r = s, this equation describes within-population trans-

mission. Notice that the sum in the last equation does not depend on the actual counts of

individuals in the compartments, and hence it can be precomputed in advance. r, s and q are

not necessarily different, in particular for r = s we obtain the within-population transmission

rate between Sr
i and Ish.

Since it is computationally demanding to keep track of how each migration rate between

each pair of compartments is affected by each simulated event, instead we keep track of cumu-

lative upper bounds on such migration rates (see S1 File—section 3 for details). In the case a

potential migration event is sampled according to these upper bounds, we then proceed to cal-

culate the precise migration rates and only sample a specific migration event according to its

own exact rate. This is efficient when cross-population transmissions (migrations) are rare

compared to within-population transmissions. This algorithmic implementation might per-

form suboptimally if population structure is extremely weak.

Sampling

Sampling is modelled using a continuous sampling scheme. In this scheme every individual

infected with haplotype h in population s is sampled at rate cszh, the product of the haplotype-

specific sampling rate zh and the population modifier cs. Sampled individuals then instantly

recover and are moved to susceptible group Ss
iðhÞ, effectively increasing the recovery rate ρh for

Ish by cszh. Alternatively, one can think about this sampling scheme as setting the recovery

rate for Ish to ρh + cszh and sampling an individual in Ish upon its recovery with probability

cszh/(ρh + cszh). More details can be found in S1 File—section 7.

Algorithm

The simulation process is split into two parts, forward and backward. In the forward run, a

chain of events (including sampled cases) describing the dynamics of the epidemiological pro-

cess at the population level is generated with the Gillespie algorithm [39]. In the backward run,

our method simulates the genealogy of the samples in a coalescent-like manner while condi-

tioning on the events generated during the forward run.

Forward run. The forward run generates a chain of events which reflects the dynamics of

the pandemic. Our implementation of the Gillespie algorithm is based on three algorithmic

ideas: logarithmic direct method [39] (the events, or “reactions”, are organised in nested fami-

lies, Fig 1), rejection-based approach [40] for migrations (see S1 File—section 3 for details),

and organising propensity dependencies to avoid updating those propensities which are not

affected by events [41]. Details are given in S1 File—section 4.

Backward run. The backward run randomly builds a genealogical tree of the samples

while conditioning on this chain of events generated in the forward run.

All of the ancestral lineages of the samples generated in the forward run belong to one of

the infectious compartment corresponding to a haplotype h in a specific population s. Lineages

are exchangeable within each compartment. Conditional on any event generated in the for-

ward run, it is straightforward to calculate the probability that the event affected zero, one or

two sample ancestral lineages in the backward run (see S1 File—section 5 for details).

Implementation details. VGsim provides a convenient Python user interface. Perfor-

mance-critical parts are implemented in C++ via Cython [42]. The dependencies are kept to a

minimum: NumPy [43] and mc_lib —a small wrapper of the NumPy C API for generation

of pseudorandom numbers in Cython [44].
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Results

Correctness of the software implementation

To assess the correctness of our implementation, we compared simulated epidemiological tra-

jectories and distributions of coalescent times produced by VGsim with those produced by

MASTER [45]. In all cases, the results are consistent, and described in detail in S1 File—

section 8.

Forward run performance

To test the scalability of the population model, we performed simulations with K = 2, 5, 10, 20,

50 and 100 total host populations with 2 � 109/K individuals in each and generated 10 million

events (see Fig 1) in each run (see Table 3). There are 16 haplotypes resulting from two segre-

gating sites with mutation rates 0.01 in each of them (this is unrealistically high, but it ensures

that all the haplotypes appear in the simulation), and three susceptibility group with the first

group corresponding to the absence of immunity, the second group corresponding to partial

immunity and the last one corresponding to resistance to all strains. The transmission rate is λ
= 2.5 for all haplotypes except one, and λ = 4.0 for this last haplotype. The recovery rate is ρ =

0.9, the sampling rate is z = 0.1 (so, the effective reproductive number is 2.5 which approxi-

mately correspond to SARS-CoV-2 [46] if the time unit is interpreted as one week). All the

migration probabilities were set to μ = M/(K − 1), where M is the cumulative migration rate

from a population. The runtime of the forward algorithm does not depend only on the cumu-

lative migration rate M, but also on the percentage of potential migrations rejected by the algo-

rithm (see section Migration for details), which appears to grow with M. However, the effect

on runtime is relatively modest (in contrast to the naive algorithm which is quadratic in the

number of populations, see Table 1) indicating that this approach scales well to pandemic-

scale simulations.

Backward run and overall performance

Our implementation of the backward run algorithm relies on an efficient and compact tree

representation, a Prüfer-like code [47]. Each node is associated with an index in an array, and

the corresponding entry in the array is the index of the parent node. The time needed to

Table 3. Run time to generate 10 million events. The second number is the percentage of discarded events (due to migration acceptance/rejection). There are 16 = 42 hap-

lotypes and 3 susceptible compartments. The sampling rate is set to z = 0.1, recovery rate is ρ = 0.9, transmission rate is λ = 2.5. The tests were run on a server node with

Intel Xeon Gold 6152 2.1–3.7 GHz processor and 1536GB of memory.

Cumulative migration probability M Number of demes K
2 5 10 20 50 100

0.001 28.7s 30.0s 31.9s 35.1s 47.2s 69.3s

0.09% 0.12% 0.11% 0.11% 0.11% 0.12%

0.002 29.2s 30.4s 32.3s 35.3s 47.0s 70.1s

0.17% 0.21% 0.16% 0.2% 0.21% 0.2%

0.005 29.4s 30.7s 32.5s 35.6s 48.1s 70.4s

0.33% 0.51% 0.25% 0.46% 0.52% 0.43%

0.01 29.4s 30.6s 32.9s 35.5s 48.0s 70.9s

0.75% 1.16% 0.85% 0.78% 0.93% 0.95%

0.1 30.3s 31.9s 33.8s 37.0s 50.3s 73.0s

2.04% 6.56% 6.15% 6.94% 5.98% 5.08%

https://doi.org/10.1371/journal.pcbi.1010409.t003
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generate a tree mainly depends on two factors: the total number of events generated in the for-

ward run, and the total number of samples in a tree. We report the execution time of the back-

ward run in Table 4. The combined approach is sufficiently fast that it can be used to generate

many replicate simulations as is often required to validate empirical methods and to train

model parameters. Table 4 also shows the forward time, the total number of generated events

and the total number of infected individuals over the simulation for various sampling rate

(where the sampling rate z = 0.01 is 1 in 100 cases is sampled, z = 0.1 corresponds to 1 in 10

cases is sampled, and z = 1.0 means that every case is sampled), and various sample sizes. The

simulation assumes the absence of immunity after infection (SIS-model), which allows to run

the simulation sufficiently long to collect enough samples (instead, with an SIR-model suscep-

tible individuals can be exhausted before the desired number of samples is simulated).

To showcase the limit of applicability of our simulator, we also show in Table 4 the compu-

tational demand for the simulation of an unrealistically large (for now) genealogy of 150 mil-

lion samples (with 1 in 100 cases sampled), for which we almost reached the memory limit

available on our supercomputer node (1536GB) [48]. The total number of infections in the

population is more than 15 billion cases, with the total number of events being more than 30

billions. The forward run time was approximately 9.5 hours and the backward run time was

13.5 minutes.

Table 4. Run time in seconds to generate a random genealogy for a sample of a certain size for different sampling rates. The execution time is shown split into the

time demand for the forward run and the one for the backward run only. We simulated 16 = 42 haplotypes and no host immunity. The recovery rate is ρ = 1.0 − z, with z

the sampling rate, while the transmission rate is λ = 2.5 for all 16 haplotypes. The tests were run on a server node with an Intel Xeon Gold 6152 2.1–3.7 GHz processor and

1536GB of memory.

Sampling

rate

Sample size (number of tree leaves)

105 106 5 � 106 107 5 � 107 1.5 � 108

0.01 Forward time 27.84s 290.86s (4min

50.86s)

1275.53s (21min

15.53s)

2487.73s (41min

27.73s)

11295.01s (3h 8m

15.01s)

34558.86s (9h 35m

58.86s)

Backward time 0.85s 7.44s 26.93s 50.27s 217.51s (3min

37.51s)

813.25s (13min

33.25s)

Memory 1.67MB 10.87GB 49.54GB 94.64GB 442.69GB 1.34TB

Total number of

generated events

34,038,092 286,381,088 1,120,365,070 2,121,897,004 9,878,131,708 30,152,423,891

Total number of

infections

24,040,769 185,954,943 619,559,504 1,119,957,985 4,994,200,627 15,121,211,248

0.1 Forward time 2.18s 29.89s 154.15s (2min

34.15s)

296.43s (4min

56.43s)

1283.01s (21min

23.01s)

3470.47s (57min

50.47s)

Backward time 0.1s 0.96s 4.68s 8.99s 34.2s 90.29s (1min 30.29s)

Memory 1.68MB 1.68MB 5.51GB 12.5GB 53.27GB 143.32GB

Total number of

generated events

3,491,562 34,125,248 155,922,768 285,874,161 1,120,657,092 3,122,658,422

Total number of

infections

2,489,943 24,101,573 105,814,516 185,656,462 619,705,716 1,619,831,406

1.0 Forward time 0.23s 2.2s 13.63s 30.32s 154.99s (2min

34.99s)

405.39s (6min 45.39s)

Backward time 0.01s 0.15s 0.92s 2.08s 11.35s 32.48s

Memory 1.67MB 1.68MB 1.66MB 1.67MB 5.54GB 20.9GB

Total number of

generated events

350,517 3,492,789 17,271,140 34,113,125 155,899,482 401,912,500

Total number of

infections

250,290 2,490,805 12,261,217 24,093,104 105,799,613 251,613,148

https://doi.org/10.1371/journal.pcbi.1010409.t004
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Comparison with other simulators

There are many epidemiological simulators which are capable of producing viral genealogies.

Agent-based simulators (e.g. nosoi [49], FAVITES [50]) allow to create very detailed mod-

els, because every agent’s parameters can be set individually. The trade-off is they are computa-

tionally demanding, so only relatively small scenarios can be modelled. Other simulators (e.g.

MASTER [45] and TiPS [32]) implement Gillespie algorithm for compartmental models, but

they currently lack a simple user interface, instead requiring users to specify the full set of reac-

tion equations, and they might be not specifically optimised for epidemiological purposes. On

the other hand, both MASTER and TiPS implement approximate methods (tau-leaping and

hybrid approaches), which decrease the time of forward simulation by orders of magnitude

and hence might outperform our simulator depending on simulation scenario. VGsim is opti-

mised to scale for large epidemics and genealogies, though approximate approaches are not

available in the current implementation. It also has a simple and flexible user interface which

helps merge together several complexities (epidemiology, evolution, population structure and

cross-immunity). The detailed discussion of different simulating frameworks and detailed

comparisons with them can be found in S1 File—section 9.

Simulating realistic nucleotide mutations

Our simulation framework generates a phylogenetic tree, and if the user specifies a scenario

with strongly selected mutations, these are included in the output; we, however, do not include

a method for simulating many neutral variants. To facilitate studies that require full viral

genome sequences we have made the output of our approach compatible with that of phast-
Sim [37]. Briefly, a user can easily load the output of our software into phastSim, and

phastSim will generate neutral mutations, while leaving previously determined selected

mutations unaffected.

Availability and future directions

VGsim is freely available from https://github.com/Genomics-HSE/VGsim under GPL-3.0

License. It is tested for Python 3.7 and later under Ubuntu and macOS. The documentation

and tutorials are published at https://vg-sim.readthedocs.io/.

The future development of VGsim will include the following updates. We will consider

improving performance by adding the τ-leaping algorithm and optimizing memory usage to

handle larger numbers of genetic sites. We will also extend the available models by adding

super-spreading events, life-cycle compartments, and new sampling schemes. We will also add

recombination events, though they seem to be relatively rare [51] and so far are not a major

driver of SARS-CoV-2 genetic diversity and evolution.

VGsim is particularly useful for simulating large datasets, in particular, in those cases when

agent-based simulators become inefficient (see S1 File—section 9 for more detailed discus-

sion). It is primarily optimised for the studies of world-wide pandemic scenarios, and it is

motivated by the features of the ongoing SARS-CoV-2 pandemic. We plan for the future to

add more features which would generalise its applicability to different pathogens (e.g. with

complex life-cycle). Further possible optimisations of our algorithm will also be investigated.

Our implementation allows simulations of scenarios with a few loci with strong phenotypic

effects. However, we cannot simulate the effect of many loci with mild fitness effects. While

mild and widespread fitness effects can be simulated by phastSim, they are simulated in a typi-

cal phylogenetic way (using a substitution codon matrix with specifiable nonsynonymous/syn-

onymous ratios) and so their impact on the tree shape and epidemiological dynamics are

neglected.
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Conclusion

We developed a fast simulator VGsim which can be used to produce genealogies of millions of

samples from world-scale pandemic scenarios. Our method models many major aspects of epi-

demiological dynamics: viral molecular evolution, host population structure, host immunity,

vaccinations and NPIs. We expect that VGsim will be a useful tool in method validation and

in simulation-based statistical inference.

The performance of our simulator should meet the performance requirements of most

studies. The flexible Python API, combination of epidemiological (including cross-immunity),

population and evolutionary models make it a timely tool for the modern and future research.

Supporting information

S1 File. Supporting information. Supporting information file with the introduction to epide-

miological compartmental models, details of the migration model, presentation of the simula-

tion procedure and algorithms, example of the software Python API, details on the

implemented sampling strategy, validation of the software implementation and detailed dis-

cussion of other epidemiological simulators.

(PDF)
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