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1. Introduction

A pioneer of political economy Adam Smith said “Consumption is the sole end
and purpose of all production; [...]”" In fact, one of the fundamental questions in
the decision theory is how an individual (or a household) should allocate her/his
consumption over time and how much of an asset is it optimal to hold. The con-
sumption behavior (to save or to consume) depends on various factors, but for the
main part on the individual’s wealth and on the asset price processes. There is a
variety of models investigating the problem of optimal consumption/investment
under different assumptions about the wealth and asset price processes, confer for
example Refs.[>*° and references therein.

Basically, the considered individual has a choice between consuming her/his
wealth or investing in an asset in order to maximize the expected consumption
under a finite or infinite time horizon. Of course, the future cash flows should be
transferred to the present through discounting. Usually, in order to simplify the
calculations, the discount rate will be chosen as a deterministic constant, making
the discount rate to the preference rate of the considered individual.
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But what happens if the individual’s consumption will be discounted by a stochas-
tic process? The problem of stochastic discounting under a Brownian motion as a
surplus process has been considered in Ref.’) There, it was possible to find explicit
expressions for the value function and the optimal strategy if the discounting
function was given by a geometric Brownian motion. In this special case, it turned
out that the stochastic discounting did not change the optimal strategy significantly
compared to the case with a constant preference rate. In the case, the discount rate
was given by an Ornstein-Uhlenbeck process and restricted consumption rates
it was shown that the value function was a viscosity solution to the problem; but
neither the value function nor the optimal strategy had been found.

In the present paper, we assume that the wealth process of the considered indi-
vidual before consumption is given by a linear function of time and the short rate
process is given by an Ornstein—-Uhlenbeck process. We target to find the optimal
unrestricted consumption strategy, such that the expected discounted consumption
is maximized. Of course, the assumption of a deterministic wealth process is not
very realistic, but it allows to get a first idea of the influence of a stochastic interest
rate on the consumption behavior. A detailed discussion of the advantages and
disadvantages of a stochastic interest rate by consumption maximization problems
would be very space-consuming and goes beyond the scope of this where we
considered a similar problem with bounded consumption rates. However, there it
was impossible to find an explicit expression for the value function or the optimal
strategy due to some special properties of Ornstein-Uhlenbeck processes.

The remainder of the paper is organized as follows. In Section 2, we formulate the
conjecture that the optimal strategy is of barrier type and state in the verification the-
orem that the value function is a classical solution to the Hamilton-Jacobi-Bellman
(HJB) equation corresponding to the problem. In Section 3, we analyze the compo-
nents of the value functions and prove the assumptions made in Section 2 to hold
true. The results are illustrated by an example.

2. The model and the value function

Consider an individual or household with an income given by a deterministic linear
function of time

Xt =X+ ut,
wn > 0. Denote further by {r;} an Ornstein-Uhlenbeck process

- N
rs=re “+b(l—e %)+ 6e‘“3/ e™dw,, |
0

where {W,} is a standard Brownian motion, a, 5 > 0, and let U] = fos r, du with
ro = r. Our target is to maximize the expected discounted consumption over all
admissible strategies C, if the interest rate is given by {r;}. A strategy C is called
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admissible if C is non-decreasing, adapted to the filtration {F;} generated by {r,}
and Xt =X, —C, > Oforallt > 0.

Here, we assume that the long-term mean b of the process {r.} fulfils: b > 2”—:2 and
define

b:=?)—a— and o= g

2a? V2a
The return function corresponding to a strategy C and the value function are defined
by

o
Ve(r,x)=E [/ e dC|Xy = x, 1 = r] , (nx)eRxR,,
0

Vr,x) = supVC(r, x), (rhx)eRxR,.
C

Note, that also lump sum payments are possible. The HJB equation corresponding
to the problem is

52

max{,qu—{—a(ZJ—r)V,—i—TVW—rV,1—Vx} =0. (1)

For the sake of convenience, we define an operator acting on sufficiently smooth
functions

. ~2
L(f)(r,x) = pfe(r,x) +ab—r) fr(r,x) + %frr(”» x) —rf(rx). (2)

Intuitively, it is clear that when starting with a negative initial discount rate, one
should forego consumption, because the discounting factor e~% will increase at least
until {r;} becomes positive. On the other hand, if ry > 0 then due to b > 0it could
happen that —U_ will remain negative and will keep decreasing in time. In this case,
it would make sense to start consuming on the maximal rate immediately.

We conjecture that the optimal strategy would be of barrier type, i.e., it is optimal
to consume if the short rate process exceeds some special value and to do nothing
otherwise.

Let r* € R be arbitrary but fixed and define

Ti=inf{t>0: rn=r" rn=r<r"} and o:=inf{t>0: rn=r" rn=r>r*
and
G(r,x) == E[(x + ut + G(F 0))e Y] forr < r*,
0
F(r,x):=x+E |:,u/ e % ds + G(r¥, 0)eU5i| forr > r*.
0
Note that we distinguish between 7 and o just for the convenience of notation.

Obviously, G,(r,x) = E[e"U] and F.(r,x) = 1. Then, it is clear G(r*, x) =
F(r*, x) and G,(r*, x) = E.(r*, x).
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Assumption. Assume now, r* is chosen in such a way that the functions G and F
given above solve the HJB equation (1) on (—o0, r*] and on [r*, 00) respectively
and fulfil G, (r*, x) = E,(r*, x) for all x € R, . Then, we can formulate the following
verification theorem.

Proposition 2.1. Let
m = sup(s € [0,¢] : 7 > ) withn, = —00 if (s € [0,¢] : 1, > 1"} = 0.

The optimal strategy is to immediately consume any capital bigger than zero ifr > r*,
i.e., the optimal accumulated consumption up to time t is given by Cf = I, >¢(x +
uny). The value function V (r, x) is continuously differentiable with respect to r and
to x, twice continuously differentiable with respect to r on R\{r*} x Ry and fulfils
V(r,x) = v(r, x) with

o(r.x) = G(r,x) :(r,x) € (—oo,r"] x Ry

"\ F(rx) i (rx) € (rF, 00) x Ry
Proof. For the convenience of reading, we postpone the proof to the end of the
paper. (]

Remark 2.1. At first glance, the formal representation of the optimal strategy
may appear confusing. Assume ry = r < r* (the case ry > r* goes analogously). In
Figure 1, one sees two realizations of the process {r;}: gray and black, up to time
t = 2. The first hitting times of the optimal level 7* are denoted by 7, and 7}, respec-
tively. Note that i = 0 for t < T, in the case of the gray realization or for t < 7} in
the case of the black realization. In the periods where r; < r*, the accumulated opti-
mal strategy remains constant. As soon as the process reaches r*, the saved capital
is paid out at once. Thus, if ; = t then we have paid out x + ut up to time t. For
instance, in the gray realization it holds 77, = 2 meaning C; = x + 2. However, in
the black realization 7, = 1.9 implies C; = C} 4 = x + 1.9.

Figure 1. Realizations of r;.
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3. Analysis of the value function

In the previous section, we assumed the existence of a barrier r* such that the cor-
responding return function

G(r,x) :(r,x) € (=00, r*] x Ry
F(r,x) :(r,x) e (r*,o0) x Ry

v(r,x) = {

solves the HJB equation (1) and fulfils G(r*, x) = F(r*, x), G,(r*, x) = E.(r*, x)
and G, (r*, x) = E.(r*, x).

In the present section, we prove that the assumptions made in the previous sec-
tion hold true. The section is structured as follows: at first, we investigate the proper-
ties of G and F for a given but unknown r*, then letting the barrier * be a variable,
we derive a method for finding the optimal and unique optimal barrier. Thus, we
start by considering

Y1 (r) := E[e ], re (—oo, '],
Y (r) == E[re V7], r € (—oo, r],
¢1(r) == E[e %], re [r*, 00), 3)

¢ (r) =E |:fg e dsi| , relrf,oo).
0

Due to the properties of {r;}, the hitting times 7 and ¢ are finite a.s. Note that
U/ = = + bt + 2W;. Thus, using the change of measure techniques, compare for
instance Ref. [7, p. 216], with % = exp(%Wr + %r) one obtains

r=r* b a r—r* 5 &%
Vi) = Ble%) = ¢ FE[e Y] = e Bole 5]

=e EQ[e_bf] .

Under the measure Q, the process {r;} has the long-term mean b = b— g—; In order
to calculate E[e~U"], we have to consider the Laplace transform of 7. A parabolic
cylinder function is defined as

D_,(y) = e_y2/42—”/2ﬁ

k—1 (v+2j)y* k=1 (v4+2j+1)y*
« 1+ 2121 nj=o Z)(215)1)/ _ )’\/E(l + Zliil Hj:() %)

r) T'(v/2)

confer for example Borodin and Salminen [1, p. 639]. By D, (y) we denote in the
following the parabolic cylinder function D_, (y) multiplied by ¢”/%. In Ref. [1,
pp. 542], one also finds the following formula

(r=b)? ~
e v Dya( =) _ Dya( =)

*

e(rthj)z be/a( - r*_b) - Eb/a( - ro_b) ’

g

EQ[e—hr] —
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implying
i [efbr] _ ibb/“+1( — %b) ) [ef(h+a)r]£1~)h/“+1( — r*a_b)
dr as Do =51 as Dya( =51

so that we can calculate E[e~Y7] explicitly. Nevertheless, an explicit representation
will not help us to obtain the properties of the value function.

Remark 3.1. The functions defined in (3) fulfil the following boundary conditions.
e For r = r*, it holds T = ¢ = 0, yielding ¥, (+*) = 1, ¥ (r*) = 0, 1 (+*) = 1,
and ¢, (r*) = 0.
o Llete > |rf,r< —g,andt¢:={t >0: r, = —g, ro = r}. Then,

Y1 (r) = Ele U 1y (—e) > Ele" “|ro = rlyn (=) .

Since T® — oo asr — —oo, we obtain lim,_, _, ¥ (r) = oo. In the same way,
one can show that lim,_, _, ¥, (r) = oo.
¢ Due to the representation

$1(r) == Eqle™™],
one obtains lim,_, o, ¢ (r) = lim,_, oc ¢, () = 0.

Similar to Shreve et al.[¥!, we formulate the following lemma.

Lemma 3.1. The functions v, and ¢; solve differential equation

ab—r)f(r) + %zf”(r) —rf(r)=0, (4)
the function ¢, solves
1+a(1;—r)f'(r)+&72f"(r) —rf(n=0, (5)
and v, solves
1//1(r)+a(5—r)f/(r)+%Zf”(r) —rf(r)=0. (6)

Under the boundary conditions
Yn(r) =1, lim 4 (r) = oo,
Pa(") =0, lim () = o0,
Hir) =1, lim ¢1(r) =0,
$2() =0, lim ¢:(r) =0.

Proof. We prove the statement for v, the proof for ¢; follows with the same
techniques.
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* Let f bea solution to Equation

~2
%f”(r) +a(b—nf(r)=bf(r)

on (—oo, r*] with boundary conditions f(r*) =1 and lim,,_ f(r) = 0.
Such a solution exists due to the Picard-Lindel6f theorem. In particular, using
lim,, o f(r) = 0 yields that f'(r) is bounded on (—oo, r*]. Then, by Ito’s
lemma (using that under the measure Q, the process {r;} has the long-term
mean b), denoting by W the new Brownian motion under Q:

TAL ~2
e " fren) = f(r) + / e {a(b — 1) f(r) + %f”(rs) - bf(fs)} ds
0
AL
+5 / e f(ry) AW,
0

=fn+o /T e f(ry) AW, .
0

The integrand in the stochastic integral is bounded for r, € (—o0, *] so
that the expectation of the stochastic integral equals zero, giving f(r) =
EQ[e*b““) f(rza)]. The above differential equation implies that max{ f(r) :
r e (—oo, r*]} < oo. Letting now t — 0o and noting that by Lebesgue’s dom-
inated convergence theorem limit and integration can be interchanged, we
obtain

f(r) =Eqle ] .

It can be easily shown that the function v, (r) = e~ = EQ[e_b’] solves Equa-
tion (4) with the corresponding boundary conditions.

e Let now f(r) solve Equation (5) with the boundary conditions lim,_,», f(r) =
0 and f(r*) = 0. Ito’s formula yields

. oAt . ONt .
e_UQ“f(TQ/\t) = f(r) — / e % ds+ 5[ e f'(r) AW,
0 0

giving f(r) = Ele Ve f(ron) + fOQM e~% ds]. Let now t — oo. Again by
Lebesgue’s dominated convergence theorem, we obtain

f(r) =E|:/Qe_wds} .
0

e Leth(r) := EQ[e*b’Iro = r]. Assume, f solves the equation

~2
h(r) + %f”(r) Yab—nf @) =bf(r)

with the boundary conditions lim,_, _, f(r) = 0 and f(r*) = 0. Due to the
differential equation and to lim,_, f(r) =0, the functions f and f’ are
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bounded. By Itos formula (under the measure Q)

TAL TAL
e_b(f/\t)f(r”\t) = f(r) — / e_bsh(rs) ds+o / e_bsf/(rs) dﬁ/s
0 0

The expectation of the stochastic integral is equal to zero. For the first integral
on the right side of the above equation, one gets due to the Markov property of

{r:}:
TN o0
Eq |:/ e h(r,) dsi| = / Eq [][[ssrAt]e_bsh(rs)] ds
0 0

=/ Eq [Tjs<ernBole1r]] ds

0

= f Eq [Eq [Tiszrnne "1 F]] ds = Eql(r At)e ] .
0

Letting t — oo and using Lebesgue’s dominated convergence theorem yields
the desired result. It is easy to show that the function ¥, (r) = e_%EQ [te t7]
solves Equation (6). O

Remark 3.2. Lemma 3.1 implies that the functions F and G are twice continuously
differentiable with respect to r, once continuously differentiable with respect to x on
(r*, 00) x Ry and on (—o0, r*) x Ry respectively and fulfil there

~2

WE(r, x) + a(b —1)E.(r,x) + E,(r x) —rF(r,x) = ,

~2
UG (r, x) + a(b —1)G,(r, x) + G,,(r x) —rG(r,x) =0.

In particular, F solves the HJB equation on [r*, o0) x Ry if #* > 0. The function G
solves the HJB equation on (—oo, r*] if ¥, (r) < 1 forr < r* and ¢, (r*) = 1.

3.1. The function G

Note further that e=?" 7, r < r*, is finite, so that one has

il - (n)(_l)kebr(k+1):|
n

n=1 k=
e el (1 Dii1y/a (—52)
s e

Db(k+1)/a( — )

S| =

Vo (r) =E[e V7] = e’%EQ[e’hrr] =e 7IEQ |:

=}

‘Q

Thus, for the function G, we find

G(r,x) = (x+ G(r*,0))e

_r=r* o0 n - r—=b
e~ 1 ny, Dosnysa( = 50)
L Zn: >3 (k>( Vg E)

Db(k+1)/u( —
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In order to find an explicit expression for the function F, we have to find ¢, and ¢;.
For ¢, it holds due to [1, pp. 542]

N e Dya(5Y)
i Bole®] =e @ 222
¢ Dyja(75)

To find ¢,, we have to solve differential equation (5) and determine the coeffi-
cients with the help of the corresponding boundary conditionslim,_, o, ¢, (r) = 0 =

2 (7).

¢1(r) =E[e %] =€

3.2. The optimal strategy

In order to obtain a continuously differentiable solution, we have to guarantee that
the first derivatives of F and G coincide on {(r*, x), x € R.}. Obviously, it holds
G(r*, x) = F(r*, x), G, (r*, x) = E.(r*, x). The derivative of F with respect to r does
not depend on x. In order to have a continuously differentiable solution with respect
to r, the derivative G, (r*, x) should not depend on x. Thus, we have three conditions,
yielding a continuously differentiable with respect to x and to r function, solving the
HJB equation on R\{r*} x R;:

* G (r*,x) = W{ (r*) =0,

e E[e Y] > 1forallr < ¥,

o r* > 0.

It holds

d .~ d . Dya(&t
Grelr, ) = Y1) = &% Bole "] = Ee‘u%
bja\
e Dpra( =L s+ D . b=r
=—le - ~b/ (bg*)+ beT ~b/+lb(i)
a  Dya(%5-) ao Dyya(55)
r=r r—r¥ E b=
= —le a EQ[e_br] + b f/aﬂg_f* )EQ[e_(H“”]
a aog Dh/“( o )

= eJizr* E|etr 1 + i—f)ﬁ/aﬂg%) e .
a a0 Dyu(%5F)

D br®
Thus, if %ﬁ_;)) = 7 then ¥ (r*) = 0and v, (r) is strictly decreasing in r, which
bja (5=
implies ¥ (r) > 1, forall r < r*.
In order to show the existence and uniqueness of r* with the properties described

above, we have to consider the function

Since it is impossible, to determine the properties of the functions D directly, we will
derive the properties of H from the differential equation corresponding to D.



148 (&) J.EISENBERG

Lemma 3.2. The function H : R — R, is strictly increasing, surjective and H (0) <
o

F-
Proof. Similar to Shreve et al.l8] it has been shown in Lemma 3.1 that the function
h(r) := E[e "] solves the following equation

%h”(r) + a(b— )k (r) = bh(r) (7)

with boundary conditions h(r*) = 1 and lim,_, _,, h(r) = 0. Due to the properties

of 7, the function h is strictly increasing. For the same reason, h'(r) is strictly
increasing;:

, b Db/aJrl(%)

h (T) = T oy

ao Dh/u( o )

Since b > 0, the function h(r) does not have real zeros. Dividing (7) by h(r) yields

=K (r)E[e”"T7] .

52 h”(r) W(r)
- alb—r)- (8)
2 h(f) h(r)
Note that H(r) = %7 ((r’))
Letting r — —o0 on the left side of the above equation yields lim,_, ]Z, ((:)) =0

because otherwise the left-hand side would become infinite. Thus, we can conclude

" / 2

r—>—00 b r—> oo
On the other hand, we can rewrite the above equation in terms of H and its
derivatives

52 52
7H (r)=b—ab—r)H(r) — TH(V)

which means %ZH”(r) = —a(b—r)H'(r) — 6?H(r)H'(r) + aH (r). According to
this, one has H”(r) > 0 if H'(r) = 0, which implies H'(r) > 0 for r € R due to
lim,_, o H'(r) > 0.

o It holds lim,_, % = 00. Assume first lim,_, o % = —A > —oo for some
A e Ry, ie, lim, % = 0, which contradicts H'(r) > 0. Assume now
lim,_, }]’1((:)) = B < 0o, which gives lim,, ., H'(r) = 0. But Equation (8)

/ 2
yields lim,_, o };1((:)) = 00, giving lim, . H'(r) = hrn,_,oo{hh((:)) — h((:))z} =

0.

Thus, lim,_, _ H(r) = 0,lim,_, _, H(r) = oc. By the intermediate value the-
orem, we can conclude that H(r) attains every value in R .

Inserting r = 0 into Equation (8) and multiplying (8) by 7, yields

G20 H'(0) oahl ) &% W'(0)

o
DT 22 o) T b R - 20 hoy THO-

Since %% > 0, it holds H(0) < . O



STOCHASTIC MODELS (&) 149

Due to the above lemma, there is a unique 7* > 0 such that H(r*) = %, meaning
that G solves the HJB equation on (—o0, r*] x R, and F solves the HJB equation
on [r*, 00) x R,.

Letting G(r*,0) =
It remains to show that

Y () —¢5 ()

5 — guarantees G,(r*,x) = FE(r*, x) forallx € R,.

Lemma 3.3. The constant
Y (r*) — 5 (r*)

A= y
¢1(r*)
is positive and finite.

Proof. Using the same change of measure technique like in the beginning of Section
2, we obtain

$1(r) = E[e™%] = ¢+ Eqle ™).

The stopping time o is increasing in r, implying that ¢, (r) is strictly decreasing in
r,ie., ¢ (r*) < 0.
As for the function ¢,, it holds

o o o
$a(r) =K [/ e dS} =e¢ iR |:/ et U ds} ,
0 0

meaning that e ¢, (r) is strictly increasing in r. Thus, using that ¢, (r*) = 0:
d r
Gr2%)

dr
We can rewrite the function v, like in the proof of Lemma 3.1

Ya(r) =E |:/ ey () ds:| )
0

o = € d (e;d)z(r))‘ >0.

1 r
P (") = —;(ﬁz(r*) +e s ar

r=r*

By the definition of r*, the function v, (r) is strictly decreasing in r, which means
that vy, (r,) is strictly decreasing in r. Since, T and —U/ are strictly decreasing in r,
we can conclude that v, (r) is strictly decreasing, which proves the claim. O

Remark 3.3. Note that the optimal boundary r* does not depend on the drift p.
This roots in & > 0: the “good interest rates” are good independent of the available
income and non-negative income rate. The situation would change if one allows
the income rate to become negative: the “good interest rates” can coincide with the
periods of decreasing income. However, G(r*, 0) (discounted accumulated future
consumption) naturally depends on .

Proof of Proposition 2.1. Let C be an arbitrary admissible strategy. Applying the fun-
damental theorem of calculus yields

t
) (rt,XtC) =0 (s, x) —i—/ Uy (rt,XSC) d.XSC . (9)
0
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In the following, we examine the two terms on the right side of the above equa-
tion. Itos formula requires » to be twice continuously differentiable with respect
to r, which is not fulfilled for r = r* and x > 0. Therefore, we use the extant sec-
ond derivative Meyer-Ito formula [6, p. 221] where we just need v to have an
absolutely continuous derivative with respect to r and v,, to be locally L'. Since
E(r*,x) = G,(r*, x) = 1 for all x € R, it is an easy exercise to verify that v sat-
isfies all above requirements. Then,

~2

t
v(re, x) =v(r,x) + / (15, x) drg + — Urr(rs’ x)ds . (10)
0 0

Before, we consider v, (r;, XC), note that v, does not depend on x and it holds either
vy = loro, = ¥. In particular, one can interchange the derivation order, i.e., v, =
Uy and 0, = 04,,. Like v, the function v, fulfils the conditions of the extant second
derivative Meyer-Ito formula [6, p. 221]:

~2

t
Uy (rt, XSC) = vx(rS, XSC) + f vx,(ry, ) dry + — Dxrr(r)u XSC) dy

s
“‘2

t
= l)x(TS, X) + / v,x(ry, )dl’y + — vrrx(ryv Xsc) dy .

N

Thus, integrating the above equality from 0 to ¢ with respect to dXC and applying
Fubini’s theorem yields

t
/ vx(r,,XSC) dXSC
0
t t ”’2
:/ {vx(rS,Xsc)—i—/ vrx(ry, )dry—l—— v,,x(ry, )dy} dX
0 s

N

t t
— / vx(rS,XSC) dXSC +f {v,(ry,XyC) — v,(r),,x)} dr, (11)
0 0
5_2
+ 7 {Urr(rya Xyc) - Urr(rya x)} d}’
0

Thus, inserting (10) and (11) into (9) yields

2

t t
) (r,,X ) =o(r,x)+ / (rs, )drs + — urr(rs, )ds + / vx(rs, XSC) dXSC
0 0

t . 2
=o(r,x)+ / ;wx(rs, XSC) +a(b— rs)v,(rs, XSC) + %v,r(rs,Xsc) ds
0

t t
+&/ (rs, )dW / z)x(rs,XSC) dc; .
0 0



STOCHASTIC MODELS (&) 151
Via the product rule, using v,(rs, X¢) > 1 and L(v) (r;, X¢) < 0, we obtain

t t
e Yo(r, Xtc) =uo(r,x)+ / e_UsrL(v)(rs, XSC) ds+o / v,(rs, XSC) dW;
0 0

t
— / e_Usyvx(rs, XSC) dC,
0
t r t r
<uo(r,x)+ 5/ e Us vr(rs, XSC) dw, — / e ¥ dc,
0 0

with L defined in (2). Note that for the strategy C* equality holds. Consider the
stochastic integral above. Recap that U] = == + bs + %WS. Further, due to the
properties of the functions G and F the functions e G, and e F, are bounded.
In particular

r—rs

e VG (r, X)) = e Gr(rs,XSC)efi’S*%WS .

The Ito isometry proves the stochastic integral above to be a martingale with zero
expectation. Thus, taking the expectations on the both sides of the above inequality
gives

t
E [e_Utrv(rt, Xtc) +/ eV dCs:| <uo(r,x). (12)

0

Consider now the first term in the expectation above. Since v is increasing in x, one
obtains

E[e %o (r, X1)] < E[e Y0 (r, x + ut)].

From Section 3.1, we know that under the measure Q, it holds if r < r*

r—r*

Yi(r) = e % Bole ] < e,

r— rs—r 1 r—r

Y (r) = IE[/ e_Usylﬁl(rs) ds] < /00 e_bsEQ[e_ e ]ds < 1—96_7;
0 0

analogously for r > r* one obtains ¢, (r) < 1 and ¢,(r) < %. Therefore, we can esti-
mate

o(re, x + pt) = Tppop) F(re, x + ) + Lpp < G (e, X + i)

5(1+e*¥){x+ut+%+A} :

Using the measure Q defined in Section 3.1 and the fact that r, under Q is normally
distributed with mean re~* + b(1 — e~*) and variance ‘2’—: (1 — e~%%), we obtain the
following estimation

E[e %o (r, X°)] <E[e7Y (1 + e*¥)] {x—i— ut + % + A}

< e i BQ[(e¥ + e%)] {x + e + % + 4}

r— —al 52 —2al
< e T (e {x+ut+%+A} '
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Figure 2. Realizations of an OU-process with starting values ro = —5 (the left picture) and ro = 5and
the optimal barrier r* = 2.4936 (dashed line).

4

Figure 3. The value function V(r, x). The black and gray areas describe the strategies “maximal con-
sumption”and “no consumption” correspondingly.

Also, it holds

t [ee]
E [/ e U dCs} < / E[e‘USr] dX; < 00,
0 0

so that we can let t — oo in (12), and obtain by Lebesgue’s dominated convergence

theorem
© r
v(r,x) > E [f e Us dCs:| .
0

Obviously, the strategy C* is an admissible one. O
Dy/ar1 (E5)
Dya(7)
increasing and attains 7 = ﬁ at r* = 2.4936. In the time intervals where the pro-
cess {r;} attains values smaller than r* it is optimal to wait, in the intervals where
r, > r* we pay everything. In Figure 2, one can see realizations of an Ornstein—
Uhlenbeck process (OU-process) with starting values ro = 5 and ry = —5. Using
the results from Section 3.1 and solving differential equations (4) and (5) with
corresponding boundary conditions, we can calculate the value function V (r, x),

illustrated in Figure 3.

Example 3.1. Leta = 1,6 = 2and b = 4. The function H (r) = is strictly
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