
sensors

Article

Modeling an Edge Computing Arithmetic Framework for
IoT Environments

Pedro Juan Roig 1,∗ , Salvador Alcaraz 1 , Katja Gilly 1,∗ , Cristina Bernad 1 and Carlos Juiz 2

����������
�������

Citation: Roig, P.J.; Alcaraz, S.; Gilly,

K.; Bernad, C.; Juiz, C. Modeling an

Edge Computing Arithmetic

Framework for IoT Environments.

Sensors 2022, 22, 1084. https://

doi.org/10.3390/s22031084

Academic Editors: Ricardo S. Alonso,

Javier Prieto and Óscar García

Received: 7 January 2022

Accepted: 26 January 2022

Published: 30 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Engineering Department, Miguel Hernández University, 03202 Elche, Spain;
salcaraz@umh.es (S.A.); cbernad@umh.es (C.B.)

2 Mathematics and Computer Science Department, University of the Balearic Islands,
07022 Palma de Mallorca, Spain; cjuiz@uib.es

* Correspondence: proig@umh.es (P.J.R.); katya@umh.es (K.G.);
Tel.: +34-96-665-8388 (P.J.R.); +34-96-665-8565 (K.G.)

Abstract: IoT environments are forecasted to grow exponentially in the coming years thanks to
the recent advances in both edge computing and artificial intelligence. In this paper, a model of
remote computing scheme is presented, where three layers of computing nodes are put in place
in order to optimize the computing and forwarding tasks. In this sense, a generic layout has been
designed so as to easily achieve communications among the diverse layers by means of simple
arithmetic operations, which may result in saving resources in all nodes involved. Traffic forwarding
is undertaken by means of forwarding tables within network devices, which need to be searched
upon in order to find the proper destination, and that process may be resource-consuming as the
number of entries in such tables grow. However, the arithmetic framework proposed may speed up
the traffic forwarding decisions as relaying on integer divisions and modular arithmetic, which may
result more straightforward. Furthermore, two diverse approaches have been proposed to formally
describe such a design by means of coding with Spin/Promela, or otherwise, by using an algebraic
approach with Algebra of Communicating Processes (ACP), resulting in a explosion state for the
former and a specified and verified model in the latter.

Keywords: edge computing; fog computing; CNN; formal modeling; ACP; Promela; Spin

1. Introduction

The development of IoT (Internet of Things) technologies are sharply rising in recent
times, thanks to the advances in AI (Artificial Intelligence) and its application to MEC
(Multi-Access Edge Computing) environments [1]. This union of both concepts is labelled
as Edge AI [2], which brings about powerful data centres to carry out many complex
computing tasks in servers located around the edge of the network, as opposed to in those
situated up in the cloud premises, thus enhancing performance [3].

The Edge AI paradigm is critical to undertake the processing of all big data generated
for the applications being run by the ever growing amount of IoT devices [4], hence
allowing these to obtain responses with much lower latency and a far smaller amount of
bandwidth compared to those being obtained if cloud servers were used [5].

This way, computational intelligence in IoT deployments is basically located on the
edge devices, those being either end devices or edge servers [6], as usually IoT devices have
constraint resources, which makes them outsource most computing tasks to the edge [7].
Furthermore, some of those tasks might also be offloaded up to the fog servers (provided
there is a fog deployment up and running), or otherwise, up to the cloud servers (which
are supposed to be always on) [8].

Additionally, the remote computing layer where a given server is located, that being
either at the edge layer, at the fog tier or at the cloud facilities, involves having more
computing and storage power as it gets closer to the cloud, which implies having more
analytic power related to AI operations. This way, as end devices are hanging on edge

Sensors 2022, 22, 1084. https://doi.org/10.3390/s22031084 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8391-8946
https://orcid.org/0000-0003-3701-5583
https://orcid.org/0000-0002-8985-0639
https://orcid.org/0000-0001-9537-415X
https://orcid.org/0000-0001-6517-5395
https://doi.org/10.3390/s22031084
https://doi.org/10.3390/s22031084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s22031084
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22031084?type=check_update&version=1

Sensors 2022, 22, 1084 2 of 25

servers, whereas those are connected to fog servers, and these are linked to cloud, it results
in fog servers having more capabilities than edge ones, whereas cloud ones being the most
proficient regarding remote computing capacities [9].

Edge AI may represent a huge advance in many business fields, such as security and
surveillance, real-time video processing, content generation or visual inspection [10]. For
instance, AI-powered low-code and no-code development platforms are on the rise [11],
both consisting in automatic code generation through visual flow charts, even though the
former needs some small amount of hand-written code, whilst the latter does not need
any [12]. It is forecast that by 2024, up to 65% of the overall application development will
use any of both approaches, thus facilitating content generation [13].

Other examples of Edge AI implementations are dedicated to basically any sort of
activity, those being as disjointed as such as smart office automation [14], exoskeleton
manipulation [15], wearable devices [16] or screening for myocardial infarctions [17].

In this paper, a formal model for a generic remote computing deployment scenario
is going us to be exposed and proposed in a coding fashion, by means of a modeling
language called Protocol/Process Meta Language (Promela) [18] and a model checker
named Spin [19], and then, that generic scenario is also going to be presented and exhibited
by means of an abstract process algebra called Algebra of Communicating Processes
(ACP) [20].

The reason for choosing both Formal Description Techniques (FDT) to construct
models is to represent the same system according to two different approaches. With respect
to Spin/Promela, it is a time-based software simulation, which is considered as a timed FDT,
thus allowing us to focus on quantitative characteristics of the system being modeled [21].
With regards to ACP, it does not contain any time implications, so it is branded as a timeless
FDT, thus permitting us to focus on qualitative characteristics of the modeled system [22].

Generally speaking, FDT are mainly focused on studying distributed systems being
run in a non deterministic fashion so as to check for abnormal conditions, leading to
malfunction and degradation in system performance, thus posing a risk to system integrity.
The most popular of those conditions is deadlock, which may be provoked by different
circumstances such as mutual exclusion or circular wait, whereas other conditions may
arise, such as livelock, data race or resource starvation [23].

It is to be noted that this paper presents a theoretical study to build up an arithmetic-
based framework aimed at edge computing wired designs in order to optimize packet
forwarding by just applying integer divisions and modular arithmetic [24], and that ap-
proach will be put into practice by means of a Spin/Promela design and an ACP model
presented in an incremental way. On the other hand, packet forwarding in real scenarios is
usually undertaken by traditional routing and switching, which need to search the next
hop towards the expected destination through looking up into forwarding tables, such as
routing tables for internetwork communications or mac-address tables for intranetwork
communications, the former being at layer 3 and the latter being at layer 2 within the OSI
conceptual model for network communications.

However, the arithmetic framework proposed herein does not need any forwarding
table whatsoever, but it only needs to apply the proper arithmetic operations involving
the source host identifier, namely a, the destination host identifier, namely b, and the value
of parameter k, in a similar way as it happens in a fat tree architecture [25]. Therefore,
the advantage of this framework may be about getting an alternative way to packet
forwarding when dealing with either routing or switching, as this framework avoids the
time spent looking at routing or forwarding tables, and substitute those searches by simple
arithmetic operations.

The model proposed is made up according to a layered approach, where different
scenarios have been proposed by increasing the number of tiers being under consideration,
starting small and growing until the whole model is constructed. The layers involved are
cloud, fog, edge and end devices, even though a lower layer composed by sensors and
actuators might be also added by following the same pattern of action.

Sensors 2022, 22, 1084 3 of 25

In that context, the whole framework depends on a generic parameter k, by means
of applying a hub and spoke topology at all layers, where any item located at a particular
layer acts as a one hub and gets connected to k items located at the directly connected lower
layer, which act as spokes. The same structure gets repeated at all layers, whereas a full
mesh topology is further imposed at fog layer for operability purposes.

Therefore, this structure composed of hierarchical tiers with the aforesaid intercon-
nections makes possible the advantages to the framework proposed due to the optimal
paths offered when applying integer divisions and modular arithmetic. However, the
number of items within each layer must exactly match the necessary figures depending on
parameter k, or otherwise, suboptimal paths may arise as integer divisions and modular
arithmetic would not work out properly. Hence, the strict shape of such a structure may
also be responsible of its drawbacks, provoking that forwarding tables will achieve better
results if some item at any layer is missing.

Regarding performance evaluation in the proposed scenario, it is to be said that, in
theory, working with integer divisions to find out the next hop and dealing with modular
arithmetic to discover the port involved to get there appears to be easier than searching
through the different number of entries making up a forwarding table, which might
theoretically account for faster processing times in routing and switching.

Nonetheless, from a practical point of view, the real gain in performance when dealing
with the traffic forwarding obtained when applying the arithmetic framework proposed as
opposed to searching within the proper forwarding tables actually will depend on the time
being spent in making the appropriate calculations on real gear, as opposed to the time
being used in carrying out the search in the appropriate tables, even though it is to be noted
that the former beats the latter regarding theory calculations because integer divisions are
dealt with faster than searching through a table, so the same result is expected to happen
when putting them into practice.

In both cases, the hardware and software features of the computing assets being used
to undertake either the arithmetic operations or the searches will indicate which one does
it more efficiently, which will depend on how the operations are implemented in the ASIC
hardware and the software complements being in charge of performing those tasks, as this
point may render one approach more efficient than the other.

Regardless, the goals in this paper are to first review the theory behind the arithmetic
framework proposed for edge computing environments, where IoT current trends are
outlined. At that point, the fundamentals of the framework proposed are described, which
is followed by the presentation of a model coded in Promela and executed in Spin in
order to check its feasibility. Afterwards, some models coded in ACP are presented in an
incremental manner so as to study its suitability.

The organization of the remaining of this paper goes as follows: Section 2 presents the
IoT current trends; afterwards, Section 3 introduces the basics of the design considered;
next, Section 4 delivers a model with Spin/Promela; after this, Section 5 proposes a model
with ACP; and finally, Section 6 draws some final conclusions.

2. Iot Current Trends

IoT (Internet of Things) is already a reality at this time and age, where the disruption
due to Covid-19 pandemic worked as a catalyst for digital transformation in all sectors [26].
Actually, the IoT deployments are growing massively, offering new services and scenar-
ios [27]. Furthermore, the introduction of 5G cellular communications will open up new
opportunities related to IoT in virtually any field of application [28].

IoT industry is forecast to grow at a double digit rate in the coming years [29], whilst
the amount of connected devices will rise to 46 billion by the end of 2021, with a market
value of over USD 500 billion [30]. Among all their possible uses, the main IoT trends for
business in 2021 and beyond are the following [31]:

a. AIoT (Artificial Intelligence of Things): AIoT analytics boost functionality of hetero-
geneous IoT devices by combining information and knowledge [32].

Sensors 2022, 22, 1084 4 of 25

b. Edge computing: Edge AI is a key player in computing efficiency as it brings cloud
AI capabilities straight to devices distributed at the edge of the network [33].

c. Customized experience: A great deal of IoT success depends on the degree of
personalized services being offered in order to match client expectations [34].

d. Connectivity: IoT communications may employ a wide range of technologies to
connect to edge servers, such as 5G, WiFi 6, Bluetooth or Zigbee [35].

e. Smart cities: IoT technologies help implement loads of opportunities in all areas of a
city so as to improve the lives of their citizens [36].

f. IoT-based healthcare: Disease diagnostics and health monitoring has been trans-
formed from hospital-centric to patient-centric thanks to IoT devices [37].

g. VANET (Vehicular Ad-Hoc Networks): Autonomous Vehicles (AV) make use of
some sensors and software to check the environmental conditions and drive without
human intervention [38].

h. IIoT (Industrial Internet of Things): Edge computing and IoT allow a fully connected,
automated and intelligent environment to improve efficiency applied to industrial
processes [39].

i. G-IoT (Green IoT): Edge AI deployments lead to higher energy consumption; hence,
the new G-IoT paradigm is aimed at reducing the overall carbon footprint [40].

j. IoT serverless: Serverless edge computing allows the execution of on-demand code
related to IoT applications throughout the edge infrastructure [41].

k. IoFT (Internet of Federated Things): AI training is usually carried out on the cloud
premises (CL), although many IoT applications require to do it right on the edge
servers (FL) [42], leading to a paradigm where devices may extract knowledge
collaboratively to build analytic models whilst keeping privacy [43].

l. Energy efficiency: Energy harvesting techniques may supply power to IoT devices
from a suitable source of ambient energy, such as solar, thermal, wind, vibrations or
radio frequency [44].

Apart from all those hot topics within IoT, it is worth mentioning that the first edge
computing deployments were focused on data collection and application delivery, although
they have now evolved into data processing, which require higher performance and
scalability. Basically, the key point of a good edge computing strategy is to reduce latency
when response times are critical to increase performance and safety, as business success or
fail depending on the insights they may get out of data and how fast they may do it [45].

Some of the key factors when dealing with an edge computing strategy are system
integration platforms, where information and operation technologies converge, ecosystems
and alliances, where open platforms are ever more important, trust and trustworthiness,
where digital trust leverages the digital transformation, hyperconverged infrastructure,
where the use of commodity hardware being customized by software brings computing
systems to a new paradigm, and visionary concepts, such as swarm computing and
decentralized self-organized systems [46].

3. Computational Intelligence and Iot

One of the main features related to IoT devices is the constraint capabilities regarding
processing power, memory, storage, bandwidth and power supply. Those restrictions when
dealing with its own resources lead to move most computing tasks to remote locations.
This way, IoT devices may merely acquire external information from the environment
through some sensors and forward such raw data on to a particular edge device for it to
undertake the appropriate processing, which involves the encapsulation of such data in
the proper way according to the communication protocol being used to get in touch with
the corresponding edge device [47].

On the other hand, when the aforesaid edge device brings processed data back in
response to a former request, it first decapsulates such data so as to extract the relevant
information, and in turn, send them to the appropriate actuator, which may merely act on
the environment according to such information received [48].

Sensors 2022, 22, 1084 5 of 25

From the point of view of networking, sensors and actuators may be seen as endpoints,
whose traffic flows are sent over to the default gateway in the former, or the other way
around in the latter, where such a default gateway may account for a given edge device.
Moreover, it is irrelevant for a sensor which device is going to do the processing up in
the remote computing hierarchy, as long as the related responses come back to the proper
actuator in a reasonable time, hence no matter whether the server dealing with a given
request is located on the edge, on the fog or on the cloud [49].

Regarding the remote computing levels considered in this paper, edge nodes may
be seen as connected to IoT devices, thus being the lower layer to take part in remote
computing. Then, fog nodes may be denoted as the intermediate layer, as they interconnect
edge nodes. In turn, cloud nodes may be described as the upper layer, as they interconnect
fog nodes. In view of that, I may seem clear that fog nodes ought to be more powerful than
edge ones and cloud ones should usually be the highest.

4. Basic Model Proposed

The foundation of the design proposed for a framework of remote computing system is
composed by two processing levels, such as an edge layer, where end devices get connected,
although sometimes IoT devices might also do, and a fog layer, where edge layers are
connected, taking into account that all fogs are interconnected by a full mesh topology,
thus being all just one hop away to the rest of them.

Furthermore, a cloud layer might be also included, that being connected to all fog
nodes forming a hub and spoke topology, even though no cloud level is actually being
incorporated to this fundamental model so as to keep it simple, as cloud might only take
part as a backup entity for processing, storage or offloading, and that might distract from
the relevant traffic flows to go from a source end to destination end. At a later stage, a
cloud layer will be included as an enhancement of such a model.

Regardless, regarding the layout of all available layers involved in the framework
proposed and the interconnections among them, nodes staying in the edge layer communi-
cate with end devices by means of their downlink ports and with fog nodes by means of
their uplink ports, whereas nodes located in the fog layer communicate with edge nodes
by means of their downlink ports and with both the rest of fog nodes along with the cloud
node (only if there is a cloud facility available in the model) by means of their uplinks ports.

The essential part of this design is going to be modeled according to basic arithmetic
operations, where integer division and modular arithmetic play a capital role. In this
sense, the former yields the integer quotient of a regular division, also known as floor
function, that being represented by ba/kc, whereas the latter plays with the set of its possible
remainders, that being denoted by a|k. Furthermore, the integer division in excess, also
known as ceil function, is also used herein, which is described by da/ke.

With that in mind, the design proposed consists of a group of k fog servers being
interconnected, where each of those has a bunch of k edge servers connected to them,
whilst each of them has a group of k end devices with IoT items linked to them. However,
for simplicity purposes, it is going to be defined a basic model where each edge node has
only one end device attached to it, where each of those just has one sensor and one actuator
connected. This way, the end device identifier also indicates its attached sensor and its
attached actuator, which may facilitate to understand how this basic model works by just
applying the arithmetic operations cited above. Therefore, the overall picture described
for the basic model may be appreciated in Figure 1 for a value k = 3, with k fog nodes,
k edge nodes per fog node, 1 end device per edge node, and 1 sensor and 1 actuator per
end device.

In this context, the key point in that basic layout is the value of variable k, such that
there are just k fogs being interconnected according to a full mesh topology, whilst there are
just k edges hanging per each fog. Hence, every fog has a direct link to all other fogs, which
allows for the shortest paths among them. This infrastructure results in three different
types of communication, such as intraedge for end devices connected to the same edge,

Sensors 2022, 22, 1084 6 of 25

intrafog for end devices connected to the same fog, and interfog for end devices connected
to different fogs.

8 Edge
servers

Fog

Edge
devices

Sensors &
actuators

End
devices

8 8

Figure 1. Deployment of a basic model with 3 fog nodes.

However, thanks to this basic model having just one sensor and one actuator per end
device, which is unique for each edge, then intraedge communications are obvious because
there are only one uplink channel from a sensor towards an end device and one downlink
channel from an end device to an actuator, whilst having a unique link from each end
device to its associated edge node, hence all those communications are omitted in the basic
model so as to attain further simplification.

Regardless, considering that sensors and actuators are attached to their respective
end devices, it happens that intraedge communications may always contain 2 links, such
as the one to go from the source end device, where a transmitting sensor is connected, to
the common edge, and the one to go from there to the destination end device, where a
receiving actuator is connected to.

In this sense, this basic model also exhibits intrafog communications, which always
consist of 4 links, such as from source end device to source edge, from there to their
common fog node, from there to destination edge, and from there to destination end device.
Furthermore, this basic model exposes interfog communications as well, which always
require 5 links, such as from source end device to source edge, from there to source fog,
from there to destination fog, from there to destination edge, and from there to destination
end device.

Figure 2 exhibits an instance of the design where k = 4. Nonetheless, no matter
the value of k, the amount of links for each type of communication is represented by the
numbers given above. It is to be noted that different interfog topologies from full mesh
would account for a larger number of links when dealing with interfog communications.

From that picture, it seems clear that fog items have been numerated from 0 to k− 1
clockwise, as well as edge items have been done from 0 to k2 − 1 clockwise, although each
category gets identified independently. It is to be noted that the identifiers of all edges
hanging on the same fog match their outcome when applying the integer division of such
an identifier by k, which at the same time happens to match the fog identifier where they
are all being connected to.

With regards to the port numbers, edge devices account for a unique uplink port,
which is not being cited for simplification purposes. Furthermore, the unique downlink
port on each edge device is not being considered either for the same reason, which also
applies to the sensor and the actuator hanging on each end device. On the contrary,
port numbers for fog devices are indeed cited, such as downlink ports going towards its
connected edges are labeled from 0 to k− 1, all of them being congruent modulo k with

Sensors 2022, 22, 1084 7 of 25

the corresponding edge identifiers, such that this arithmetic operation is used to obtain
the port to the edge destination. Likewise, uplink ports going towards the rest of the fogs
are marked from k to 2k− 2, all those being assigned in an increasing order related to the
ascending order of the other fog identifiers.

F0

F1F2

F3

E0
E1

E2

E3

E4

E5

E6
E7E8

E9

E10

E11

E12

E13

E14

E15

p0 p1
p2
p3

p4

p5

p6

p0

p0

p0

p1
p1

p1

p2

p2

p2

p3

p3

p3

p4p4

p4

p5p5

p5

p6
p6

p6

Figure 2. Full mesh layout for k = 4.

This sort of numerical arrangement to identify both the edges and fogs, as well as their
ports, permit to construct a model to express the behavior of such a system by employing
only arithmetic operations, which may allow to obtain the string of devices and their ports
forming the path between a given source edge towards a given destination edge.

Furthermore, as the basic model only considers one end device per edge, it occurs
that a source edge identifier also accounts for the source end device, whereas a destination
edge identifier also does for the destination end device, because only one end device is
considered per edge. Likewise, as the basic model considers one single sensor and one sole
actuator per end device, it also happens that any edge identifier accounts not only for its
connected end device, but also for the sensor and the actuator hanging on it. Therefore, the
basic model only needs to focus on traffic flows among edges and fogs, whilst considering
the ports involved in the latter.

Focusing on the model, each communication just quotes two parameters in the form
of natural numbers within the range of Zk2 = {0 · · · k2− 1}, such as the source edge (where
the source end device is hanging on, which contains the active sensor, that is, the one
transmitting data) and the destination edge (where the destination end device is connected
to, which includes the active actuator, that is, the one receiving data). With this in mind,
the integer division of those by k may allow to obtain the source fog and the destination
fog, respectively, which is a natural number within the range of Zk = {0 · · · k− 1}. Once
the source and destination fogs have been found out, there is always a link between them
both, as the network topology among fogs is full mesh; hence, no other fogs may be taken
into consideration to attain all devices involved between a source and a destination edge.

With respect to the ports involved, those in the edges are irrelavant in this basic model,
as there is just one per edge. On the contrary, each fog has k downlink ports, thus looking
at its k connected edges, and k− 1 uplink ports, hence going to each one of the other k− 1
fogs. The downlink ports are identified sequentially within the interval {0 · · · k− 1}, where
the edge identifier hanging on each port is congruent modulo k with the port identifier. On
the other hand, the uplink ports are identified according to the interval {k · · · 2(k− 1)},
each one pointing to the rest of the fogs in ascending order.

Sensors 2022, 22, 1084 8 of 25

In this setup for uplink ports between a source fog i and a destination fog j, the source
end p of each link may be calculated through Equation (1), where the destination end q of
such a link may be found out with Equation (2).

Source Port(p) =

{
if i < j −→ k + j− 1

if i > j −→ k + j
(1)

Destination Port(q) =

{
if i < j −→ k + i

if i > j −→ k + i− 1
(2)

Additionally, Equation (1) may be collapsed into just one arithmetic Equation (3),
which aggregates both cases by adding up a specific coefficient whose value is either one if
i < j, or otherwise, it is zero if i > j. Such a coefficient is found out by first calculating the
integer division of j by i + 1 (thus resulting in a value greater than 0 if i < j, or just 0 if i > j,
whilst adding up 1 to the divisor eliminates the risk of dividing by zero), and then applying
the integer division in excess by k (thus resulting in 1 if i < j, or 0 if i > j). Likewise,
Equation (2) may also be collapsed into only one arithmetic Equation (4) following the
same reasoning, but swapping i for j.

Source Port(p) = k + j−

⌊

j
i+1

⌋
k

 (3)

Destination Port(q) = k + i−

⌊

i
j+1

⌋
k

 (4)

As an example, Table 1 exposes the interfog links in a unidirectional way among all
fog nodes for the particular case where k = 4. In this case, as there are 4 fog nodes, the
establishment of full connectivity among them all induces k×(k−1)/2 links, which results in
6 bidirectional channels for k = 4, thus accounting for 6× 2 = 12 unidirectional channels.

Table 1. Mapping of fogs and their uplink ports in case k = 4.

Source
Fog: i

Source
Port: p

Destination
Fog: j

Destination
Port: q

Mapping Array: m
(Index and Its Value)

0 4 1 4 0
0 5 2 4 1
0 6 3 4 2
1 4 0 4 3
1 5 2 5 4
1 6 3 5 5
2 4 0 5 6
2 5 1 5 7
2 6 3 6 8
3 4 0 6 9
3 5 1 6 10
3 6 2 6 11

Considering a generic k value, it is to be noted that each single unidirectional interfog
channel may be represented by a unique combination of a source fog, a destination fog
and the link between them, that being described by both its source end and its destination
end. In this context, all available unidirectional interfog channels may be mapped to an
array in order to facilitate the coding implementation of a Promela model by associating
each of those with an sole identifier. In that case, variable m may be an array of natural
numbers, where obviously its indexes match the corresponding values being stored on
them, and whose target is to identify each one of the aforesaid unique combinations, thus
acting as a mapping array between each given instance of unidirectional interfog channel
to a particular natural number.

Sensors 2022, 22, 1084 9 of 25

In this sense, on the one hand, Equation (5) finds the mapping of the source end
for all unidirectional interfog channels, where each particular instance is associated to a
unique pair composed by a given source fog and one of its uplink ports. On the other hand,
Equation (6) states the mapping of all destination ends for the aforementioned channels,
where each given instance is bounded to a sole pair consisting of a particular destination
fog and one of its uplink ports.

Therefore, the mapping of a given unidimensional interfog channel may be indepen-
dently calculated from the point of view of either the sender end or the receiver end. This
way, Equation (5) finds the index of mapping array m as a function of source fog i and
source port p, whereas Equation (6) does it by means of destination fog j and destination
port q. Hence, the same value of m associated to a particular unidirectional channel is
obtained with either the source fog node and its source uplink port or the destination fog
node and its destination uplink port.

Source Port Mapping(m) = (k− 1)× i + p− k (5)

Destination Port Mapping(m) = ((j− 1)− q + k)|k + (q− k)× k (6)

Taking that all into account, the layout proposed simplifies a great deal all forwarding
operations to be undertaken when moving traffic flows from one edge to another, as integer
divisions and arithmetic modulo k provides all intermediate devices (those being the fog
or fogs being traversed), along with their ports involved.

However, the model may be further expanded in different ways, such as considering
that k end devices are connected to each edge in a hub and spoke fashion, which may
lead to an overall amount of k3 end devices, being numerically identified within the
interval {0 · · · k3 − 1}. That way, there may be k end devices hanging on each edge, where
the integer division between each end device and k results in the edge identifier, whose
downlink ports are congruent modulo k with their connected end devices. Analogously,
there may be k2 end devices having the same fog two hops away, which may be identified
by means of the integer division between an end device and k2, whose downlink ports are
congruent modulo k2 with those end devices.

Furthermore, cloud facilities may be included to work as a backup of the aforemen-
tioned model, where each fog may have links to those facilities. This way, a cloud server
may act as backup for storage or offloading purposes, even though the processing tasks
will be preferably undertaken in the lower levels.

5. Modeling with Spin/Promela

To start with, Promela is the acronym of PROtocol MEta LAnguage, where the first
word may also be substituted with PROcess. It is a high-level specification language, as
it portrays a strong degree of abstraction. Promela’s syntax is C-like, even though the
latter is a programming language, whereas the former is a modeling one whose target is
modeling the interactions among no-deterministic distributed systems [50]. Furthermore,
such model specifications may feed Simple Promela INterpreter (SPIN) model checker
in order to verify the model [51], as well as check specific properties related to Linear
Temporal Logic (LTL) [52].

In this context, the basic model exposed in the previous section is going to be modelled
by means of Promela code, which will further feed Spin model checker so as to verify
the code and obtain some parameters out of such a code. It is to be reminded that the
design of the basic model heavily depends on variable k, as it only takes into account k
fog nodes, k2 edge nodes and the same number of end devices, taking into account all the
interconnection ports among them exposed in the previous chapter.

Sensors 2022, 22, 1084 10 of 25

Additionally, it is to be remarked that the key arithmetic tools in this Promela model
presented herein are integer division and modular arithmetic. Regarding the former, it is the
default kind of division when dealing with byte and integer types in Promela, thus a simple
division applies herein as the type of destination identifier is a byte; hence, calculating
the associated fog node of a destination device is as straightforward as performing a
division of such a destination by k. With respect to the latter, Promela does not have it
implemented, so it has to be defined within the code by adapting the remainder theorem,
hence calculating the downlink port from a fog to an edge towards destination makes use
of that mathematic tool.

Furthermore, interfog communications are implemented through the establishment of
a mapping array of channels which identifies each single unidirectional interfog link, as
stated in the previous section. This way, all those interfog paths are perfectly distinguished,
thus making it possible to clearly spot each of their sending and receiving ends by means
of the aforementioned Equations (5) and (6). On the other hand, those equations require to
find the source and destination ports, where Equation (1) has been employed to find the
former, whereas the latter have been considered as a range of the available values, as each
concrete value is irrelevant in the code proposed. Alternatively, the former might have
been found by means of (3), even though the integer division in excess is not defined in
Promela, so it would have been necessary to first define it.

Regarding the code for the basic model proposed, it is shown in Algorithm 1, where
the first line specifies the value of variable K, which will be a constant value throughout
the whole code snippet, whilst the second line builds up the function mod(a, n) as Promela
does not have any to represent arithmetic modulo n [53]. Then, the third line states an
abstract message type, which bears a source and a destination identifiers, whereas lines
from 4 to 8 declare all message channels involved. Each of those are arrays of a bunch of
channels that can store just 1 message containing its type, along with its source identifier
and its destination identifier.

After that, the declarations for the three kinds of entities taking part in this model
are carried out, such as Devices, Edge and Fog. It is to be said that in every channel, the
nomenclature for sending a message through a channel is identified by channel ! message,
whereas that for receiving a message through a channel is done by channel ? message,
where the former spots the sending end and the latter does the receiving end. It is also to
be noted that i stands for identifying both an entity and the ends of each channel where it is
involved. Besides, the source and destination of each message passing through any remote
computing entity, namely Edge and Fog, are Devices identified as s and d, respectively,
whilst those generating a message portray i as a source, whereas those receiving a message
carry i as destination.

In this sense, each Device entity generates messages where the source is its own
identifier i and the destination is non-deterministic, which depart from itself for being the
source device and go towards its directly connected edge, which in this case plays the role
of source edge, through its channel from Sensor. On the other hand, each device also listens
to receive messages from its channel to Actuator, those coming from its directly connected
edge, which in this case plays the role of destination edge, and going towards itself for
being the destination device.

Moreover, for each Edge entity, if a message is coming from a device through its
channel fromSensor, then it is checked whether the current edge instance is the destination
edge, and if this is the case, the incoming message is sent towards its directly connected
device, which happens to be the destination device, through its channel toActuator, or
otherwise, that message is forwarded on towards its directly connected fog, which occurs
to be the source fog, through channel Edge2Fog. Likewise, if a message is coming from
its directly connected fog, which play the part of destination fog, through its channel
Fog2Edge, then it is sent towards its directly connected device, which play the role of
destination device, through its channel toActuator.

Sensors 2022, 22, 1084 11 of 25

Furthermore, for each Fog entity, if a message is received from an edge through its
channel Edge2Fog, then it checks whether the current fog instance is the destination fog,
and if that is the case, the incoming message is forwarded on towards the appropriate
destination edge through its channel Fog2Edge, or otherwise, such a message is sent
towards the destination fog through channel Fog2Fog, which is directly connected to the
current fog thanks to the full mesh network topology among fog nodes. Likewise, if a
message is received from another fog, which occurs to be the source fog, through its channel
Fog2Fog, it is in turn forwarded towards the appropriate destination edge, which happens
to be the destination edge, through its channel Fog2Edge.

Eventually, all instances of each type are created by means of in the init process by
means of the run function, which starts up a new process for each of those instances, which
will interact with each other in a non-deterministic fashion, resulting in a different outcome
for each time the simulation is run.

At this stage, this basic model coded in Promela is going to be run with Spin several
times by trying incremental values of parameter k so as to study the results produced [54].
In this sense, Table 2 presents the results for a particular execution for each of those values
of k = {2, 3, 4}, presenting the length of the state vector in bytes, the depth reached, the
states stored and the states matched, that meaning the number of different states found
during the simulation time.

Table 2. Outcome of the Spin simulation cited.

K State-Vector (Bytes) Depth Reached States Stored States Matched

2 276 120 1,179,021 ×106 1,220,492 ×106

3 588 236 78,664,413 ×106 1.731726 × 108

4 1020 409 81,474,905 ×106 2.4499248 × 108

The values obtained regarding the number of states is extremely high, as there are
over 107 for k = 2 and over 108 for k = 3 and k = 4. This clearly exhibits an explosion of
states happening with the lowest values of k, which will get much higher if greater values
of k are assigned, thus making the model unmanageable.

It is to be mentioned that the state explosion occurs when the number of states to be
modeled increases with the addition of further aspects to the model, which results in an
rapid increasing number of states to be included, thus leading to a fast growing number of
transitions among those states, hence making the model cumbersome [55].

Therefore, the study of this basic model with Spin/Promela is discouraging due to that
condition, because small values of k already brings results being hard to deal with, which
also obviously puts off any extension of this basic model. In this situation, it is convenient
to leave Spin/Promela modeling aside, which might be considered as a timed FDT, and
adopt an ACP based approach to undertake the models required, which may be seen as a
timeless FDT. This way, the focus will be swapped from quantitative features to qualitative
ones, hence concentrating just on the relationships among entities in a non-deterministic
distributed environment.

Sensors 2022, 22, 1084 12 of 25

Algorithm 1: Basic model coded in Promela.
1 #define K 4
2 #define mod(a,n) ((((a+n) % n) + n) % n)
3 mtype = {MSG}

4 chan fromSensor[K*K] = [1] of {mtype, byte, byte}
5 chan toActuator[K*K] = [1] of {mtype, byte, byte}
6 chan Fog2Edge[K*K] = [1] of {mtype, byte, byte}
7 chan Edge2Fog[K*K] = [1] of {mtype, byte, byte}
8 chan Fog2Fog[K*(K-1)] = [1] of {mtype, byte, byte}

9 proctype Devices (byte i) {
10 byte s, d, n = 0;
11 do
12 :: atomic {n<1 -> select(d : 0 .. (K*(K-1)));
13 fromSensor[i] ! MSG(i,d); n++}
14 :: toActuator[i] ? MSG(s,i)
15 od
16 }

17 proctype Edge (byte i) {
18 byte s, d;
19 do
20 :: if
21 :: atomic { fromSensor[i] ? MSG(s,d)
22 -> if
23 :: i == d -> toActuator[d] ! MSG(s,d)
24 :: else -> Edge2Fog[i] ! MSG(s,d)
25 fi }
26 :: atomic { Fog2Edge[i] ? MSG(s,d) -> toActuator[d] ! MSG(s,d)
27 fi
28 od
29 }

30 proctype Fog (byte i) {
31 byte j, x, s, d, p, q;
32 do
33 :: for (x : 0 .. (K-1)) {
34 atomic { Edge2Fog[i*K+x] ? MSG(s,d)
35 -> j = d/K;
36 if
37 :: i == j -> Fog2Edge[d] ! MSG(s,d)
38 :: else -> if
39 :: i > j -> p=K+j
40 :: else -> p=K+j-1
41 fi
42 Fog2Fog[(K-1)*i+p-K] ! MSG(s,d)
43 fi }
44 }
45 :: for (q : K .. (2*K-2)) {
46 atomic { Fog2Fog[(mod(i-1-q+K,K)) + (q-K)*K] ? MSG(s,d)
47 -> Fog2Edge[d] ! MSG(s,d) }
48 }
49 od
50 }

51 init {
52 byte i;
53 for (i : 0 .. (K*(K-1))) {
54 run Devices (i)
55 run Edge(i) }
56 for (i : 0 .. (K-1)) {
57 run Fog (i) }
58 }

Sensors 2022, 22, 1084 13 of 25

6. Modeling with Acp

In view of the outcome attained with Spin/Promela simulation regarding the basic
model, it is going to be proposed an alternative modeling by means of ACP. It is to be noted
that ACP describes the functionality of the diverse sorts of entities taking part of a model
by means of algebraic equations describing the behaviour of each of those, according to its
set of rules, which do not include the notion of time.

In fact, this absence of time considerations changes the focus from quantitative anal-
ysis, as such being undertaken by means of the Spin/Promela simulation, to qualitative
examinations, which permit to focus on diverse characteristics regarding the overall be-
haviour of the model without any time constraint. In this context, performance is measured
in time units in the former, whereas alternative units are used in the latter [56].

ACP is an abstract process algebra whose main characteristic is to abstract away from
the real nature of the entities being modeled, which allows to establish a generic high level
approach to just focus on the behaviour of each entity being part of such a model [57]. This
way, a generic IoT system may be modeled by first describing the behaviour of each type
of entity, which in turn allows to undertake a model specification by setting all entities
in a concurrent manner, which eventually may lead to carry out a model verification by
inspecting the exterior behaviour of such a model, and then comparing to that of the real
system [58].

In this context, verification may be achieved in ACP if algebraic equations describing
the behaviour of both the model built up and the real system taken as a reference have the
same string of actions and the same branching structure. If that is the case, they both are
accounted to be rooted branching bisimilar, which is considered to be a sufficient condition
to get a model verified [59].

It is to be noted that the way to face communications in ACP differ from that used in
Promela, as the latter specifically declares the unidirectional channels where connections
take place, whilst the former does not define any channels whatsoever, as those are the
result of one end being able to communicate with the other end. This way, it is not necessary
to set a mapping array to single out each unidirectional interfog channels, as all of them
may be defined in a generic way thanks to the abstraction features of ACP.

Regarding the basic notions of ACP to implement models, it is to be said that there
are two atomic actions, such as a given item Ω sending a generic message d through a
particular channel x, which is described as sΩ,x(d) and a given item Ω reading a generic
message d through a particular channel x, that being exposed by rΩ′ ,x′(d). In order to
establish relationships among atomic actions, a bunch of operators are available, including
a sequential one defined by ×, an alternate one given by +, a concurrent one denoted by ||,
or a conditional one presented by the statement (True / condition . False) [60].

Furthermore, another operator called encapsulation, depicted by ∂H(), is necessary to
carry out model specification, as it allows internal communications through a particular
channel, given by cΩ,x 7−→x′ ,Ω′(d) out of a sending action by an item Ω at the initial end of
that channel, stated as x, such as sΩ,x(d) and a reading action by an item Ω′ at the final end
of that channel, spotted as x′, such as rΩ′ ,x′(d), which get both cancelled at that stage, so
just the communication action prevails. Additionally, an extra operator named abstraction,
exhibited by τI(), is needed to undertake model verification, as it permits internal actions
and internal communications to be masked, whilst not affecting the external actions, hence
unveiling the external behaviour of the model [61].

In order to better understand the ACP equations being cited in this section, it is to be
said that each recursive equation describes a class of items, those being either end devices
(H), edge nodes (E), fog nodes (F) or cloud nodes (G), where each of them may include a
certain number of instances, these being defined by a summatory. The role of the items in
the lower layer of each scenario is just being the source or destination of a traffic flow, that
is, just sending or receiving data. However, the items in the upper layers of each scenario
may execute different sets of actions if a traffic flow is received either through the lower
ports or the upper ports, where the ports involved are selected through a summatory.

Sensors 2022, 22, 1084 14 of 25

The sets of actions being run in each case are meant to guide the received traffic to-
wards its intended destination by means of selecting the outgoing port having the optimal
path to such a destination. Moreover, the diverse sets of actions are separated by the alter-
native operator (+) and each action within a given set contains sequential operations (×)
indicating the order in which the relevant actions are run and some conditional statements
(True / condition . False) with the target of finding the optimal path to destination, such
as a fog element being the destination fog or an edge element being the destination edge,
where the string of actions being executed after the condition depends on the completion
of such a condition (those on the left hand side of the condition) or otherwise (those on
the right hand side). Besides, the concurrent operator (||) runs all entities involved in a
simultaneous manner, thus making possible to obtain the sequence of events occurring in a
particular scenario with the help of the rest of operators.

On the other hand, in order to portray the processing being carried out at the diverse
remote computing facilities exposed in previous sections, each of them with its AI-based
capacities, those are going to be exposed by using the Greek alphabet, such as αAI for
AI-powered computations undertaken on an edge node, βAI for AI-based calculations done
on an fog node and γAI for AI-powered processing done on a cloud node. Moreover, it is
to be said that the models presented do not incorporate any training schemes for those
AI-based capacities, as it is supposed they are already trained for simplicity purposes. This
way, the focus in the models may be set into the arithmetic operations to achieve an efficient
path between any given source and any given destination.

In this context, some algebraic models are going to be proposed in an incremental
manner. To start with, a core model is exposed, which only contains fog nodes, those
represented by variable F and edge nodes, those expressed by variable E, according to the
prerequisites established in previous section, such as k fogs and k edges per node, thus
making up to k2 edges overall. After that, a basic model is proposed, which adds up one
single end device or host, given by variable H, per each of the edges, thus accounting for
k end devices per edge node, which in turn makes up to k2 end devices overall. It is to
be remarked that this is the model designed with Promela and executed with Spin in the
last section.

Besides, an extended model is exhibited, which incorporates k end devices per edge,
thus making up to k2 end devices per fog and accounting for k3 overall. Moreover, an
enhanced model is shown, which incorporates just 2 cloud nodes for redundancy purposes,
given by variable G, such that each fog has a direct link to each of those. Additionally, a
full model could also be built up by including sensors and actuators, even though it is
not going to be depicted as it might be easily deducted following the same pattern as the
extended one, in a way that it might account for k sensors and k actuators connected per
end device, which might do for k2 for each type per edge, k3 for each kind per fog and k4

for each sort overall.
As in the previous section, it is to be reminded that all those models are based on

key arithmetic tools, such as integer division and modular arithmetic. However, integer
division in excess is also being used so as to find out the ports related to unidirectional
interfog communications, as quoted in Equations (3) and (4). Therefore, it is interesting
to cite some alternative ways to calculate them, so Equation (7) presents integer division,
Equation (8) exposes modulus k and Equation (9) exhibits integer division in excess.

int(a/b) = ba/bc = (a−a|b)/b (7)

a mod b = a|b = (a|b + b)|b (8)

da/be = −b−a/bc = −(a|b−a)/b (9)

It is to be noted that in all models presented, the items in the lowest layer just sends
raw data (d) or receives processed data (e), whilst the items in the upper layers may
carry out two chain of actions. The first one is related to the reception of a raw message
through any of its downlink ports, followed by dealing with it by either processing it

Sensors 2022, 22, 1084 15 of 25

and sending it back to an item in the lower layer on the way to its final destination, or
otherwise, forwarding it to an item in the upper layer for it to take charge of it. The second
one is related to the reception of a processed message through any of its uplink ports,
followed by processing it and sending it back to an item in the lower layer on the way to
its final destination.

Regarding optimization in communications, the arithmetic framework proposed
makes use of integer divisions by k for an item located in any layer to find the element
where it is hanging on to, as well as modular arithmetic in order to find out the port
looking at either the source host or the destination host, depending whether the segment
considered within the path is upwards or downwards.

Therefore, the optimization of resources when using the presented models are based
in the use of integer divisions and modular arithmetic to achieve traffic forwarding in an
optimal way by just applying arithmetic operations, as opposed to getting it by means
of looking up into the forwarding tables of the relevant devices. The main benefit of the
former compared to the latter are the simplicity of operations, that leading to achieve
shorter response times when finding out the proper forwarding route, even though the
latter may be used in any condition, whereas the former requires the deployment of the
framework proposed to get optimal results, or otherwise suboptimal outcomes arise.

6.1. Core Scenario: Edge-Fog

In this case, there are only fog nodes (F) and edge nodes (E), as exposed in Figure 3,
where the former has k downlink ports, those ranging {0 · · · k− 1}, and k− 1 uplink ports,
those going {k · · · 2k− 2}, whilst the latter shows just 1 uplink port, labeled as 0. As stated
before, there are k fog nodes and k edge nodes per fog, resulting in k2 overall.

F0

F2 F1

p3
p4

p4p3
p3

p4

E0 E1 E2

E8 E7 E6 E5 E4 E3

p0 p1 p2

p0
p0 p1p2p1p2

Figure 3. Core scenario: Edge-Fog for k = 3.

Furthermore, as explained in previous sections, all edge nodes connected to a fog
node share the same result of their integer division by k, which just happens to be the
fog node identifier. On the other hand, the downlink ports of all fog nodes are congruent
modulo k with the edge node connected to each port, whereas the uplink ports of all fog
nodes may be calculated by Equations (3) and (4), which makes use of integer division in
excess to achieve both ends of each unidirectional interfog channel.

With all that in mind, Equation (10) describes the behaviour of a generic edge node
Eε and Equation (11) does it for a generic fog node Fφ. In this sense, it is to be noted that
atomic actions bear two parameters, such as the former is the device identifier and the
latter is the port involved, whilst ε and φ are the identifier of each one of the edge nodes
and fog nodes, respectively.

Sensors 2022, 22, 1084 16 of 25

In addition, the only AI-based processing is carried out at fog premises, branded as
βAI, because edge devices are just the source (a) or destination (b) of all messages going
through the system. Furthermore, generic raw data are labeled as d prior to being computed
by an AI-based processing, whereas they are done as e after that point. Besides, the sending
end of an interfog link is found out by Equation (3), where the source fog is branded as
i = ba/kc, whereas destination fog is done as j = bb/kc, even though the destination end is
irrelevant in this algebraic model, as the destination fog just listens to all uplink ports and
sends any received message towards its proper destination edge.

Eε =
k2−1

∑
ε=0

(
sEε ,0(d) + rEε ,0(e)

)
× Eε (10)

Fφ =
k−1

∑
φ=0

(
k−1

∑
x=0

rFφ ,x(d)× βAI ×
(

sFφ ,b|k (e) / φ = bb/kc . s
Fφ ,k+j−

⌈⌊
j

i+1

⌋
/k

⌉(e))+
2k−2

∑
x=k

rFφ ,x(e)× sFφ ,b|k (e)

)
× Fφ (11)

At this stage, all entities may be executed in a concurrent fashion, where the encapsu-
lation operator restricts the effects of non-determinism. Actually, such an operator enables
all internal communications, which reveals the sequence of events occurring in this model,
as seen in Equation (12). It is to be reminded that in this case, the edge nodes are the source
and sink of all messages, so they do not take part of the internal model, which is now
restricted just to fog nodes. Moreover, ∅ indicates that no action is taken within a con-
ditional statement. Besides, the statement csource_item,source_port 7−→destination_port,destination_item
describes the elements of each internal communication occurred within the model.

k−1

∑
φ=0

∂H

(
Fφ

)
=

(k−1

∑
x=0

rFφ ,x(d)× βAI×

(
∅ / φ = bb/kc . c

Fi ,k+j−
⌈⌊

j
i+1

⌋
/k

⌉
7−→k+i−

⌈⌊
i

j+1

⌋
/k

⌉
,Fj
(e)
)
× sFφ ,b|k (e)

)
× ∂H

(
Fφ

)
(12)

At this point, the model have been specified and the application of the abstraction
operator on the aforesaid specification may reveal its external behaviour, as that operator
will mask both internal communications and internal actions, hence prevailing only the
external actions.

k−1

∑
φ=0

τI

(
∂H

(
Fφ

))
=

k−1

∑
x=0

rFφ ,x(d)× sFφ ,b|k (e)× τI

(
∂H

(
Fφ

))
(13)

On the other hand, the external behaviour of the real system consists of receiving
some raw data (d) from a source edge from an incoming link, and after processing them
and turning them into processed data (e), it is send over to a destination edge towards an
outgoing link, as shown in Equation (14).

X = rIN(d)× sOUT(e)× X (14)

Confronting Equation (13) with Equation (14), it may seem obvious that they are both
recursive equations being multiplied by the same factors, even though the nomenclature
of the incoming and outgoing channels may differ. Hence, it may be stated that both
exquations are rooted branching bisimilar, as they exhibit the same actions, along with the
same branching structure, which induces the application of Equation (15).

k−1

∑
φ=0

τI

(
∂H

(
Fφ

))
←→ X (15)

Sensors 2022, 22, 1084 17 of 25

Therefore, that is a sufficient condition to have a model verified; hence, the core model
proposed in ACP may be considered as verified.

6.2. Basic Scenario: Oneenddevice-Edge-Fog

Taking the previous model as a core, an extra end device is connected to every edge
node, which are represented by H. This way, edge nodes will have a downlink port to
connect to its associate end device and an uplink port to connect to its associated fog node,
where the former is identified by 0 and the latter does it by 1. On the contrary, the only
port located in all end devices is identified by 0. It is to be reminded that this is the basic
model studied above in the Spin/Promela code and it is depicted in Figure 4.

In this case, there are k fogs, k2 edges and k2 end devices, where the latter just generate
messages (a) and receive messages (b), whereas the other two construct the modeled
system. Taking that into account, Equation (16) denotes the behaviour of a generic end
device Hη , Equation (17) describes it for a generic edge node Eε and Equation (18) states it
for a generic fog node Fφ, which matches Equation (11). Furthermore, AI-powered tasks
are undertaken on edge nodes, labeled as αAI, as well as on fog node, named as βAI.

Hη =
k2−1

∑
η=0

(
sHη ,0(d) + rHη ,0(e)

)
× Hη (16)

Eε =
k2−1

∑
ε=0

(
rEε ,0(d)×

(
αAI× sEε ,0(e) / ε = b . sEε ,1(d)

)
+ rEε ,1(e)× sEε ,0(e)

)
× Eε (17)

Fφ =
k−1

∑
φ=0

(
k−1

∑
x=0

rFφ ,x(d)× βAI ×
(

sFφ ,b|k (e) / φ = bb/kc . s
Fφ ,k+j−

⌈⌊
j

i+1

⌋
/k

⌉(e))+
2k−2

∑
x=k

rFφ ,x(e)× sFφ ,b|k (e)

)
× Fφ (18)

F0

F2 F1

p3
p4

p4p3
p3

p4

E0 E1 E2

E8 E7 E6 E5 E4 E3

p0 p1 p2

p0
p0 p1p2p1p2

H0 H1 H2

H3H4H5H6H8 H7

p1

p0 p0 p0

p0 p0 p0
p0 p0 p0

p1 p1

p1 p1 p1 p1 p1 p1

Figure 4. Basic scenario: OneEndDevice-Edge-Fog for k = 3.

At the stage, the encapsulation operator reveals the sequence of events taking place in
the model, as seen in Equation (19). It is to be remarked that in this case, the end devices
are the source and sink of all messages, labeled as a and b, respectively, so they do not
participate in the internal model, which is now restricted just to edge nodes and fog nodes.

Sensors 2022, 22, 1084 18 of 25

Furthermore, source edge is identified by Ea, whilst destination edge is done by Eb, as
there are just one end device per edge. On the other hand, source fog is labeled by Fba/kc,
whereas destination fog is done by Fbb/kc.

k2−1

∑
ε=0

k−1

∑
φ=0

∂H

(
Eε||Fφ

)
=

(
rEa ,0(d)×

(
αAI / a = b .

(
cEa ,1 7−→a|k ,Fba/kc(d)× βAI×(

∅ / ba/kc = bb/kc . c
Fi ,k+j−

⌈⌊
j

i+1

⌋
/k

⌉
7−→k+i−

⌈⌊
i

j+1

⌋
/k

⌉
,Fj
(e)
)
×

cFbb/kc ,b|k 7−→1,Ebb/kc
(e)
)
× sEb ,0(e)

))
× ∂H

(
Eε||Fφ

)
(19)

At this point, the abstraction operator unveils the external behaviour of the model, as
shown in Equation (20).

k2−1

∑
ε=0

k−1

∑
φ=0

τI

(
∂H

(
Eε||Fφ

))
= rEa ,0(d)× sEb ,0(e)× τI

(
∂H

(
Eε||Fφ

))
(20)

On the other hand, the external behaviour of the real system matches that cited in
Equation (14).

Comparing Equation (20) with Equation (14), the same reasoning applies herein, which
induces the application of Equation (21).

k2−1

∑
ε=0

k−1

∑
φ=0

τI

(
∂H

(
Eε||Fφ

))
←→ X (21)

Hence, this is a sufficient condition to get a model verified; thus, the basic model
proposed in ACP may be considered as verified.

6.3. Extended Scenario: Multipleenddevice-Edge-Fog

The previous model may be easily extended by adding up k end devices per edge
node, resulting in k2 per fog node and k3 overall. Hence, end devices may calculate the
edge identifier they are hanging on by applying an integer division by k, whilst the fog
node they have above is found out with an integer division by k2. On the other hand,
arithmetic modulo k may find the port of an edge device connected to an end device,
whereas arithmetic modulo k2 does it for the path from a fog node aimed at a given end
device. Regardless, Figure 5 exposes the overall picture.

F0

F2 F1

p3
p4

p4p3
p3

p4

E0 E1 E2

E8 E7 E6 E5 E4 E3

p0 p1 p2

p0
p0 p1p2p1p2

H2 H4 H6

H11H13H15H19H24 H22

p3 p3 p3

p2

p3p3p3p3p3p3

H1H0 H5 H7 H8H3

H10H12H14 H9H16H17H18H20H25H26 H23 H21

p0p1 p2p0p1 p2p0p1

p0p2p1p0p2p1p0p2p1p0p2p1p0p2p1p0p2p1

Figure 5. Extended scenario: MultipleEndDevices-Edge-Fog for k = 3.

Sensors 2022, 22, 1084 19 of 25

The equations describing the types of entities involved are Equation (22) for end
devices (H), which accounts for more items than Equation (16), Equation (23) for edge
nodes (F), whose difference with Equation (17) is that now an edge has k downlink ports,
going from 0 to k − 1, and 1 uplink port identified by k, and also Equation (24) for fog
devices (F), which is analogous to Equation (18).

Hη =
k3−1

∑
η=0

(
sHη ,0(d) + rHη ,0(e)

)
× Hη (22)

Eε =
k2−1

∑
ε=0

(
k−1

∑
y=0

rEε ,y(d) ×
(

αAI × sEε ,b|k(e) / ε = bb/kc . sEε ,k(d)
)

+ rEε ,k(e) × sEε ,b|k (e)

)
× Eε (23)

Fφ =
k−1

∑
φ=0

(
k−1

∑
x=0

rFφ ,x(d)× βAI ×
(

sFφ ,b|k (e) / φ = bb/k2c . s
Fφ ,k+j−

⌈⌊
j

i+1

⌋
/k

⌉(e))+
2k−2

∑
x=k

rFφ ,x(e)× sFφ ,b|k (e)

)
× Fφ (24)

At this moment, the encapsulation operator is applied so as to obtain the sequence of
events occurring in the model, as exposed in Equation (25).

k2−1

∑
ε=0

k−1

∑
φ=0

∂H

(
Eε||Fφ

)
=

(
rEa ,a|k (d)×

(
αAI / ba/kc = bb/kc .

(
cEa ,k 7−→a|k ,Fba/k2c

(d)× βAI×(
∅ / ba/k2c = bb/k2c . c

Fi ,k+j−
⌈⌊

j
i+1

⌋
/k

⌉
7−→k+i−

⌈⌊
i

j+1

⌋
/k

⌉
,Fj
(e)
)
×

cFbb/k2c ,b|k 7−→k,Ebb/kc
(e)
)
× sEb ,b|k (e)

))
× ∂H

(
Eε||Fφ

)
(25)

At that point, the abstraction operator reveals the external behaviour of the model, as
exhibited in Equation (26).

k2−1

∑
ε=0

k−1

∑
φ=0

τI

(
∂H

(
Eε||Fφ

))
= rEa ,a|k (d)× sEb ,b|k (e)× τI

(
∂H

(
Eε||Fφ

))
(26)

Moreover, the external behaviour of the real system matches that quoted in Equation (14),
which results to be rooted branching bisimilar to Equation (26), thus that is a sufficient
condition to get a model verified; thus, the basic model proposed in ACP may be considered
as verified.

6.4. Enhanced Scenario: Multipleenddevices-Edge-Fog-Cloud Scenario

The previous model may be enhanced by implementing a redundant cloud system,
which are represented by G, in a way that each fog node will use link 2k− 1 to reach the
cloud node for backup and storage purposes. On the other hand, the links in the cloud
facilities match those of the fog nodes receiving such interconnections. Besides, it is to be
noted that the cloud nodes will have AI-powered processing, that being denoted as γAI .
Putting all together, Figure 6 depicts the overall picture.

Sensors 2022, 22, 1084 20 of 25

F0

F2 F1

p3

p4

p4p3

p3

p4

E0 E1 E2

E8 E7 E6
E5 E4 E3

p0
p1 p2

p0
p0 p1p2p1p2

H2 H4 H6

H11H13H15H19H24 H22

p3 p3 p3

p3p3p3p3p3p3

H1H0 H5 H7 H8H3

H10H12H14 H9H16H17H18H20
H25H26 H23 H21

p1 p2 p0 p1 p2 p1 p2

p2 p1 p0p2 p1 p0p2 p1 p0p2 p1 p0p2 p1 p0p2 p1 p0

G0
p5

p5

p5
p0

p1

p2

p0 p0

Figure 6. Enhanced scenario: MultipleEndDevices-Edge-Fog-Cloud for k = 3.

In this context, Equation (22) still applies for end devices, whilst Equation (23) still do
for edge nodes. With respect to fog nodes, Equation (27) takes Equation (24) as a foundation,
and from there on, it includes communication with the cloud whenever it gets some traffic
flow in order to implement backup policies regarding processing or storage. Additionally,
Equation (28) presents the model for cloud node.

Fφ =
k−1

∑
φ=0

((k−1

∑
x=0

rFφ ,x(d)× βAI ×
(

sFφ ,2k−1(e) + rFφ ,2k−1(e)
)
×

(
sFφ ,b|k (e) / φ = bb/k2c . s

Fφ ,k+j−
⌈⌊

j
i+1

⌋
/k

⌉(e))+ 2k−2

∑
x=k

rFφ ,x(e)× sFφ ,b|k (e)
)
+

)
× Fφ (27)

Gζ =
(k−1

∑
z=0

rGζ ,z(d)× γAI × rGζ ,z(e)
)
× Gζ (28)

At this stage, the encapsulation operator is applied so as to achieve the sequence of
events happening in the model, as shown in Equation (29).

k2−1

∑
ε=0

k−1

∑
φ=0

∂H

(
Eε||Fφ||Gζ

)
=

(
rEa ,a|k (d)×

(
αAI / ba/kc = bb/kc .

(
cEa ,k 7−→a|k ,Fba/k2c

(d)× βAI×(
cFbb/k2c ,2k−1 7−→bb/k2c,Gζ

(e)× γAI × cGζ ,bb/k2c7−→2k−1,Fbb/k2c

)
×(

∅ / ba/k2c = bb/k2c . c
Fi ,k+j−

⌈⌊
j

i+1

⌋
/k

⌉
7−→k+i−

⌈⌊
i

j+1

⌋
/k

⌉
,Fj
(e)
)
×

cFbb/k2c ,b|k 7−→k,Ebb/kc
(e)× sEb ,b|k (e)

))
× ∂H

(
Eε||Fφ||Gζ

)
(29)

At that point, the abstraction operator unveils the external behaviour of the model, as
exhibited in Equation (30).

k2−1

∑
ε=0

k−1

∑
φ=0

τI

(
∂H

(
Eε||Fφ||Gζ

))
= rEa ,a|k (d)× sEb ,b|k (e)× τI

(
∂H

(
Eε||Fφ||Gζ

))
(30)

Besides, the external behaviour of the real system matches that cited in Equation
(14), which occurs to be rooted branching bisimilar to Equation (30); hence, this is a

Sensors 2022, 22, 1084 21 of 25

sufficient condition to have a model verified; thus, the basic model proposed in ACP may
be considered as verified.

6.5. How the Model Works

It is to be considered that the arithmetic model proposed is aimed at speeding up the
times for routing and switching by means of applying simple arithmetic operations, such as
integer divisions and modular arithmetic, as opposed to using the traditional routing and
switching strategies where the next hop of a destination is searched by means of looking
up into a certain table with a number of entries.

The optimal strategy regarding performance in this context may depend on which
one is faster, either the arithmetic operations or the searching operations, according to the
hardware and software resources available and how those operations are implemented. In
this sense, the key point when assessing whether the arithmetic strategy, based on integer
divisions and modular arithmetic, performs better than the traditional searching algorithms
when dealing with routing and switching will basically depend on how those different
approaches are coded into the ASIC hardware and the software complements being used,
although the arithmetic approach seems to be more efficient in theory.

In other words, making the necessary arithmetic calculations to go from a source host
to a destination host may seem faster beforehand than searching through lookup tables
with many registers on them; hence, it may appear that the arithmetic framework might
be more efficient than searching into the forwarding tables. Nonetheless, the way those
operations are implemented in hardware and software will definitely influence which
method is the most efficient. However, it is to be noted that the arithmetic operations are
only useful for the specific framework proposed, with the appropriate number of elements
on each layer, whilst the searching operations do apply to any type of topology.

Focusing on the basics of the model described, and keeping in mind that a represents
the source end device and b does the destination one, for any value of parameter k, it is to
be reminded that intraedge communication occurs when the source edge (Eba/kc) and the
destination edge (Ebb/kc) match, such that Eba/kc = Ebb/kc, whilst intrafog communications
happens when the intraedge condition is not met, accounting for Eba/kc 6= Ebb/kc, although
at the same time the source fog (Fba/k2c) and the destination fog (Fbb/k2c) match, such that
Fba/k2c = Fbb/k2c, whereas interfog communications take place when the intrafog condition
is not met, such that Fba/k2c 6= Fbb/k2c, which obviously involves Eba/kc 6= Ebb/kc.

Regarding the ports involved in each case scenario, for intraedge communications the
edge source port is given by a|k and the edge destination port is done by b|k. Besides, for
intrafog communications the fog source port is given ba/kc|k and the fog destination port
is done by bb/kc|k, whilst the edge downlink source and destination ports are the same as
in the intraedge case and the edge uplink source and destination ports are k in both cases.
Moreover, for interfog communications the fog uplink source port was cited in Equation
(3) and the fog uplink destination port was quoted in Equation (4), whilst the fog downlink
source and destination ports match those given in the intrafog case, and the same happens
with the ports related to the edge nodes.

In that sense, some examples may be quoted so as to test how the arithmetic framework
works. For this matter, let us take the extended model (studied in Section 6.3) with
parameter k = 3 and let us show a test of intraedge, intrafog and interfog scenarios. That
way, the optimal path between any given pair of end devices are completely defined,
quoting all intermediate nodes being part of that path and the downlink and uplink ports
being used on them.

• Intraedge: source host a = 4, destination host b = 5. First of all, check the intraedge
condition: Eba/kc = Ebb/kc → Eb4/3c = Eb5/3c = E1 (common edge node E1), where its
edge source downlink port is a|k = 4|3 = 1 and its edge destination donwlink port is
b|k = 5|3 = 2.

• Intrafog: source host a = 4, destination host b = 8. To start with, check the intraedge
condition: Eba/kc = Ebb/kc → Eb4/3c = E1 6= Eb8/3c = E2 (source edge node E1, whilst

Sensors 2022, 22, 1084 22 of 25

destination edge node E2). Then, check the intrafog condition: Fba/k2c = Fbb/k2c ⇒
Fb4/32c = Fb8/32c = F0 (common fog node F0), where its fog source downlink port is
ba/kc|k = b4/3c|3 = 1|3 = 1 and its fog destination downlink port is bb/kc|k = b8/3c|3 =
2|3 = 2. Furthermore, source edge node is Eba/kc = Eb4/3c = E1, where its edge source
downlink port is a|k = 4|3 = 1, whilst its edge source uplink port is k = 3, and
destination edge node is Ebb/kc = Eb8/3c = E2, where its edge destination downlink
port is b|k = 8|3 = 2, whilst its edge destination uplink port is k = 3.

• Interfog: source host a = 4, destination host b = 9. To begin with, check the intraedge
condition: Eba/kc = Ebb/kc → Eba/kc 6= Ebb/kc → Eb4/3c = E1 6= Eb9/3c = E3 (there is
no common edge node). In turn, check the intrafog condition: Fba/k2c = Fbb/k2c ⇒
Fb4/32c = F0 6= Fb9/32c = F1 (source fog node F0, whilst destination fog node F1),
where the fog source uplink port in F0 is k + bb/k2c+ b−bbb/k2c/(ba/k2c+ 1)c/kc =
3 + 1 + b−b1/(0+1)c/3c = 4 and the fog destination uplink port in F1 is k + ba/k2c+
b−bba/k2c/(bb/k2c+ 1)c/kc = 3+ 0+ b−b0/(1+1)c/3c = 3, whereas fog source down-
link port is ba/kc|k = b4/3c|3 = 1|3 = 1 and fog destination downlink port is
bb/kc|k = b9/3c|3 = 9|3 = 0. Furthermore, source edge is Eba/kc = Eb4/3c = E1,
where its edge source downlink port is a|k = 4|3 = 1, whilst its edge source uplink
port is k = 3, and destination edge is Ebb/kc = Eb9/3c = E3, where its edge destination
downlink port is b|k = 9|3 = 0, whilst its edge destination uplink port is k = 3.

7. Conclusions

In this paper, we undertook the modeling of a generic edge computing infrastructure
for IoT devices. To start with, a small introduction about the application of computational
intelligence to IoT environments has been proposed, as well as some notion about FDT
have been stated.

All those points are being implemented when dealing with IoT ecosystems, which are
rising exponentially in recent times and most analyst forecast even higher growth rates in
the coming years, in fields as IIoT, VANET or IoT-based healthcare. However, focusing in
the application of computational intelligence to IoT, it may be considered that such devices
have limited computing resources; hence, they need to outsource their computing tasks to
a remote computing node.

In this sense, edge computing seems to be the key player, as those are located the
closest to IoT devices, whereas fog nodes may be used as an alternative computing scheme,
or otherwise, being higher in the remote computing hierarchy, whilst cloud nodes may be
employed as a backup system for them all.

The strategy being followed here in is to situate edge nodes in the lower level, thus
being directly in touch with IoT devices, whereas fog nodes are just above the edge ones in
the hierarchy, hence providing them with backup facilities for processing or storage. In
addition, cloud nodes are above fog nodes in the hierarchy, thus delivering backup services
to fog facilities.

In this context, a generic model has been proposed herein, in a way that a bunch of
fog servers are interconnected by means of a full mesh network topology with a link to
a cloud node for backup necessities. Additionally, each of those fog servers has a certain
number of edge nodes hanging on them, which at the same time are providing services to
IoT items, playing the part of end devices.

This generic model has been formally described by means of two different FDT, such
as Spin/Promela and ACP, where the former might be seen as a timed FDT and the latter
may be considered as a timeless one. In this sense, a Spin/Promela model was designed
although an explosion of states occurred with just a restricted number of devices. This
situation led to the adoption of an ACP approach, which allowed us to obtain generic
algebraic models related to the scenarios proposed, where all those were duly verified.

Author Contributions: Conceptualization, P.J.R.; Formal analysis, P.J.R.; Supervision, K.G., C.B. and
C.J.; Validation, S.A. All authors have read and agreed to the published version of the manuscript.

Sensors 2022, 22, 1084 23 of 25

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACP Algebra of Communicating Processes
AI Artificial Intelligence
AIoT Artificial Intelligence of Things
ANN Artificial Neural Networks
ASIC Application-specific integrated circuit
AV Autonomous Vehicles
CL Centralized Learning
CNN Convolutional Neural Networks
DL Deep Learning
DS Data Science
EA Evolutionary Algorithm
ECNN Evolutionary Convolutional Neural Networks
FDT Formal Description Techniques
FL Federated Learning
G-IoT Green Internet of Things
GPU Graphical Processing Unit
HFCL Hybrid Federated Centralized Learning
IIoT Industrial Internet of Things
IoFT Internet of Federated Things
IoT Internet of Things
LAN Local Area Network
LTL Linear Temporal Logic
MEC Multi-Access Edge Computing
MLP Multi Layer Perceptron
MSC Message Sequence Chart
MSG Message
ML Machine Learning
OSI Open Systems Interconnection
Pub/Sub Publisher/Subscriber
PS Parameter Server
PROMELA PROtocol/PROcess MEta LAnguage
RAN Radio Access Network
ReLu Rectified Linear Activation Function
RNN Recurrent Neural Networks
SPIN Simple Promela INterpreter
VANET Vehicular Ad-Hoc Networks
WAN Wide Area Network

References
1. Deng, S.; Zhao, H.; Fang, W.; Yin, J.; Dustdar, S.; Zomaya, A.Y. Edge Intelligence: The Confluence of Edge Computing and

Artificial Intelligence. IEEE Internet Things J. 2020, 7, 7457–7469.
2. Hao, C.; Dotzel, J.; Xiong, J.; Benini, L.; Zhang, Z.; Chen, D. Enabling Design Methodologies and Future Trends for Edge AI:

Specialization and Codesign. IEEE Des. Test 2021, 38, 9391712.
3. Agarwal, G.K.; Magnusson, M.; Johanson, A. Edge AI Driven Technology Advancements Paving Way Towards New Capabilities.

Int. J. Innov. Technol. Manag. 2021, 18, 2040005.
4. Quasim, M.T. Resource Management and Task Scheduling for IoT using Mobile Edge Computing. Wirel. Pers. Commun. 2021, 1,

1–18. https://doi.org/10.1007/s11277-021-09087-7.

Sensors 2022, 22, 1084 24 of 25

5. Rong, G.; Xu, Y.; Tong, X.; Fan, H. An edge-cloud collaborative computing platform for building AIoT applications efficiently. J.
Cloud Comput. 2021, 10, 36.

6. Wang, Q.; Liu, L.; Zhang, S.; Lau, F. On Massive IoT Connectivity with Temporally-Correlated User Activity. arXiv 2021,
arXiv:2101.11344.

7. Shafique, M.; Marchisio, A.; Putra, R.V.W.; Hanif, M.A. Towards Energy-Efficient and Secure Edge AI: A Cross-Layer Framework.
arXiv 2021, arXiv:2109.09829.

8. Shahidinejad, A.; Farahbakhsh, F.; Ghobaei-Arani, M.; Malik, M.H.; Anwar, T. Context-Aware Multi-User Offloading in Mobile
Edge Computing: A Federated Learning-Based Approach. J. Grid Comput. 2021, 19, 18.

9. Bibi, R.; Saeed, Y.; Zeb, A.; Ghazal, T.M.; Rahman, T.; Said, R.A.; Abbas, S.; Ahmad, M.; Khan, M.A. Edge AI-Based Automated
Detection and Classification of Road Anomalies in VANET Using Deep Learning. Comput. Intell. Neurosci. 2021, 2021, 6262194.

10. Artificial Intelligence Technology: AI Trends That Matter for Business. Available online: https://mobidev.biz/blog/future-
artificial-intelligence-technology-ai-trends/ (accessed on 4 October 2021).

11. Low Code and No Code Platforms for AI and Computer Vision. Available online: https://viso.ai/computer-vision/low-code-ai-
for-computer-vision/ (accessed on 4 October 2021).

12. Iyer, C.K.; Hou, F.; Wang, H.; Wang, Y.; Oh, K.; Ganguli, S.; Pandy, P. Trinity: A No-Code AI platform for complex spatial datasets.
arXiv 2021, arXiv:2106.11756.

13. Top 12 ‘No-Code’ Machine Learning Platforms in 2021. Available online: https://analyticsindiamag.com/can-businesses-rely-
entirely-on-no-code-low-code-platforms/ (accessed on 4 October 2021).

14. Using IoT for Smart Office Automation. Available online: https://mobidev.biz/blog/using-iot-for-smart-office-automation/
(accessed on 4 October 2021).

15. Zhu, M.; Sun, Z.; Chen, T.; Lee, C. Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple
degree of freedom sensory system. Nat. Commun. 2021, 12, 2692.

16. Silva, M.C.; da Silva, J.C.; Delabrida, S.; Bianchi, A.G.; Ribeiro, S.P.; Silva, J.S.; Oliveira, R.A. Wearable Edge AI Applications for
Ecological Environments. Sensors 2021, 15, 5082.

17. Mohan, H.M.; Anitha, S.; Chai, R.; Ling, S.H. Edge Artificial Intelligence: Real-Time Noninvasive Technique for Vital Signs of
Myocardial Infarction Recognition Using Jetson Nano. Adv.-Hum.-Comput. Interact. 2021, 2021, 6483003.

18. Yacoub, A.; Hamri, M.E.; Frydman, C. DEv-PROMELA: Modeling, verification, and validation of a video game by combining
model-checking and simulation. SIMULATION—Trans. Soc. Model. Simul. Int. 2020, 96, 881–910.

19. Ben-Ari, M. Principles of the Spin Model Checker, 1st ed.; Springer: London, UK, 2008.
20. Fokkink, W. Introduction to Process Algebra, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007.
21. Iqbal, I.M.; Adzkiya, D.; Mukhlash, I. Formal verification of automated teller machine systems using SPIN. Proc. AIP Conf. 2017,

1867, 020045.
22. Gleirscher, M.; Marmsoler, D. Formal Methods in Dependable Systems Engineering: A Survey of Professionals from Europe and

North America. Empir. Softw. Eng. 2020, 25, 4473–4546.
23. Smolinski, M. Resolving Classical Concurrency Problems Using Outlier Detection. J. Appl. Comput. Sci. 2017, 25, 69–88.
24. Roig, P.J.; Alcaraz, S.; Gilly, K.; Bernad, C.; Juiz, C. Arithmetic Framework to Optimize Packet Forwarding among End Devices in

Generic Edge Computing Environments. Sensors 2022, 22, 421.
25. Al-Fares, M.; Loukissas, A.; Vahdat, A. A scalable, commodity data center network architecture. ACM SIGCOMM Comput.

Commun. Rev. 2008, 38, 63–74.
26. Umair, M.; Cheema, M.A.; Cheema, O.; Li, H.; Lu, H. Impact of COVID-19 on IoT Adoption in Healthcare, Smart Homes, Smart

Buildings, Smart Cities, Transportation and Industrial IoT. Sensors 2021, 21, 3838.
27. Iggena, T.; Bin, I.E.; Fischer, M.; Tönjes, R.; Elsaleh, T.; Rezvani, R.; Pourshahrokhi, N.; Bischof, S.; Fernbach, A.; Xavier, P.J.; et al.

IoTCrawler: Challenges and Solutions for Searching the Internet of Things. Sensors 2021, 21, 1559.
28. Ferreira, C.M.S.; Garrocho, C.T.B.; Oliveira, R.A.R.; Silva, J.S.; Cavalcanti, C.F.M.D.C. IoT Registration and Authentication in

Smart City Applications with Blockchain. Sensors 2021, 21, 1323.
29. Internet of Things (IOT) Market—Growth, Trends, Covid-19 Impact, and Forecasts (2021–2026). Available online: https://www.

mordorintelligence.com/industry-reports/internet-of-things-moving-towards-a-smarter-tomorrow-market-industry/ (accessed
on 4 October 2021).

30. How Many IoT Devices Are There in 2021? [All You Need to Know]. Available online: https://techjury.net/blog/how-many-iot-
devices-are-there/ (accessed on 4 October 2021).

31. IoT Trends to Drive Innovation for Business in 2021. Available online: https://mobidev.biz/blog/iot-technology-trends/
(accessed on 4 October 2021).

32. Yang, C.T.; Chen, H.W.; Chang, E.J.; Kristiani, E.; Nguyen, K.L.P.; Chang, J.S. Current advances and future challenges of AIoT
applications in particulate matters (PM) monitoring and control. J. Hazard. Mater. 2021, 419, 126442.

33. Wan, W.; Kubendran, R.; Schaefer, C.; Eryilmaz, S.B.; Zhang, W.; Wu, D.; Deiss, S.; Raina, P.; Qian, H.; Gao, B.; et al. Edge AI
without Compromise: Efficient, Versatile and Accurate Neurocomputing in Resistive Random-Access Memory. arXiv 2021,
arXiv:2108.07879.

34. Armgarth, A.; Pantzare, S.; Arven, P.; Lassnig, R.; Jinno, H.; Gabrielsson, E.O.; Kifle, Y.; Cherian, D.; Sjöström, T.A.; Berthou, G.; et al.
A digital nervous system aiming toward personalized IoT healthcare. Sci. Rep. 2021, 11, 7757.

 https://mobidev.biz/blog/future-artificial-intelligence-technology-ai-trends/
 https://mobidev.biz/blog/future-artificial-intelligence-technology-ai-trends/
https://viso.ai/computer-vision/low-code-ai-for-computer-vision/
https://viso.ai/computer-vision/low-code-ai-for-computer-vision/
https://analyticsindiamag.com/can-businesses-rely-entirely-on-no-code-low-code-platforms/
https://analyticsindiamag.com/can-businesses-rely-entirely-on-no-code-low-code-platforms/
https://mobidev.biz/blog/using-iot-for-smart-office-automation/
https://www.mordorintelligence.com/industry-reports/internet-of-things-moving-towards-a-smarter-tomorrow-market-industry/
https://www.mordorintelligence.com/industry-reports/internet-of-things-moving-towards-a-smarter-tomorrow-market-industry/
https://techjury.net/blog/how-many-iot-devices-are-there/
https://techjury.net/blog/how-many-iot-devices-are-there/
https://mobidev.biz/blog/iot-technology-trends/

Sensors 2022, 22, 1084 25 of 25

35. Cheruvu, S.; Kumar, A.; Smith, N.; Wheeler, D.M. Connectivity Technologies for IoT. In Demystifying Internet of Things Security,
1st ed.; Apress Berkeley: Berkeley, CA, USA, 2020.

36. Bauer, M.; Sánchez, L.; Song, J.S. IoT-Enabled Smart Cities: Evolution and Outlook. Sensors 2021, 21, 4511.
37. Pradhan, B.; Bhattacharyya, S.; Pal, K. IoT-Based Applications in Healthcare Devices. Med. Internet Things (IoT) Devices 2021, 2021,

6632599.
38. Vargas, J.; Alsweiss, S.; Toker, O.; Razdan, R.; Santos, J. An Overview of Autonomous Vehicles Sensors and Their Vulnerability to

Weather Conditions. Sensors 2021, 21, 5397.
39. Dhirani, L.L.; Armstrong, E.; Newe, T. Industrial IoT, Cyber Threats, and Standards Landscape: Evaluation and Roadmap. Sensors

2021, 21, 3901.
40. Fraga-Lamas, P.; Lopes, S.I.; Fernández Caramés, T.M. Green IoT and Edge AI as Key Technological Enablers for a Sustainable

Digital Transition towards a Smart Circular Economy: An Industry 5.0 Use Case. Sensors 2021, 21, 5745.
41. Kjorveziroski, V.; Filiposka, S.; Trajkovic, V. IoT Serverless Computing at the Edge: Open Issues and Research Direction. Computers

2021, 10, 130. doi:10.3390/computers10100130.
42. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Poor, H.V. Federated Learning for Internet of Things: A

Comprehensive Survey. arXiv 2021, arXiv:2104.07914.
43. Kontar, R.; Shi, N.; Yue, X.; Chung, S.; Byon, E.; Chowdhury, M.; Jin, J.; Kontar, W.; Masoud, N.; Nouiehed, M.; et al. The Internet

of Federated Things. IEEE Access 2021, 9, 156071–156113.
44. Famitafreshi, G.; Afaqui, M.S.; Melià-Seguí, J. A Comprehensive Review on Energy Harvesting Integration in IoT Systems from

MAC Layer Perspective: Challenges and Opportunities. Sensors 2021, 21, 3097.
45. How Will Adopting an Edge Computing Strategy Benefit Organizations? Available online: https://www.intelligentcio.com/

apac/2021/08/23/how-will-adopting-an-edge-computing-strategy-benefit-organizations/ (accessed on 16 December 2021).
46. Next-Generation IoT and Edge Computing Strategy Forum Summary. Available online: https://digital-strategy.ec.europa.eu/

en/library/next-generation-iot-and-edge-computing-strategy-forum-summary/ (accessed on 16 December 2021).
47. Mouha, R.A. Internet of Things (IoT). J. Data Anal. Inf. Process. 2021, 9, 77–101.
48. Bi, Z.; Jin, Y.; Maropoulos, P.; Zhang, W.J.; Wang, L. Internet of things (IoT) and big data analytics (BDA) for digital manufacturing

(DM). Int. J. Prod. Res. 2021, 59, 1–18.
49. Mazón-Olivo, B.; Pan, A. Internet of Things: State-of-the-art, Computing Paradigms and Reference Architectures. IEEE Lat. Am.

Trans. 2021, 20, 49–63.
50. Comini, M.; Gallardo, M.M.; Villanueva, A. A denotational semantics for PROMELA addressing arbitrary jumps. arXiv 2021,

arXiv:2108.12348.
51. Krishnan, R.; Lalithambika, V.R. Modeling and Validating Launch Vehicle Onboard Software Using the SPIN Model Checker. J.

Aerosp. Inf. Syst. 2020, 17, 695–699.
52. Shimakawa, M.; Iwasaki, Y.; Hagihara, S.; Yonezaki, N. Discussion of LTL Subsets for Efficient Verification. In Proceedings of the

Workshop on Theory and Practice of Computation, Osaka, Japan, 12–13 September 2017; Volume 1, pp. 14–27.
53. Introduction to Promela. Available online: http://spinroot.com/spin/Man/Intro.html/ (accessed on 4 October 2021).
54. Zakarija, I.; Škopljanac-Mačina, F.; Blašković. Automated simulation and verification of process models discovered by process

mining. Autom. J. Control. Meas. Electron. Comput. Commun. 2020, 61, 312–324.
55. Kulik, T.; Boudjadar, J.; Tran-Jorgesen, P.W.V. Security Verification of Industrial Control Systems using Partial Model Checking. In

Proceedings of the 8th International Conference on Formal Methods in Software Engineering, Seoul, Korea, 7–8 October 2020;
pp. 98–108.

56. Molero, X.; Juiz, C.; Rodeño, M. Evaluación y Modelado del Rendimiento de los Sistemas Informáticos, 3rd ed.; Pearson Prentice Hall:
Hoboken, NJ, USA, 2004.

57. Groote, J.F.; Mousavi, M.R. Modeling and Analysis of Communicating Systems, 1st ed.; MIT Press: Cambridge, MA, USA, 2014.
58. Bergstra, J.A.; Middleburg, C.A. Using Hoare Logic in a Process Algebra Setting. Fundam. Inform. 2021, 179, 321–344.
59. Fokkink, W. Modelling Distributed Systems, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017.
60. Bergstra, J.A.; Middleburg, C.A. Process algebra with strategic interleaving. arXiv 2020, arXiv:1703.06822.
61. Alcaraz, S.; Roig, P.J.; Gilly, K.; Filiposka, S.; Aknin, N. Formal Algebraic Description of a Fog/IoT Computing Environment. In

Proceedings of the 24th International Conference Electronics, Palanga, Lithuania, 15–17 June 2020; Volume 1, pp. 1–7.

https://www.intelligentcio.com/apac/2021/08/23/how-will-adopting-an-edge-computing-strategy-benefit-organizations/
https://www.intelligentcio.com/apac/2021/08/23/how-will-adopting-an-edge-computing-strategy-benefit-organizations/
https://digital-strategy.ec.europa.eu/en/library/next-generation-iot-and-edge-computing-strategy-forum-summary/
https://digital-strategy.ec.europa.eu/en/library/next-generation-iot-and-edge-computing-strategy-forum-summary/
http://spinroot.com/spin/Man/Intro.html/

	Introduction
	Iot Current Trends
	Computational Intelligence and Iot
	Basic Model Proposed
	Modeling with Spin/Promela
	Modeling with Acp
	Core Scenario: Edge-Fog
	Basic Scenario: Oneenddevice-Edge-Fog
	Extended Scenario: Multipleenddevice-Edge-Fog
	Enhanced Scenario: Multipleenddevices-Edge-Fog-Cloud Scenario
	How the Model Works

	Conclusions
	References

