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Abstract: Sickle cell disease (SCD) is a group of inherited disorders affecting red blood cells, which is
caused by a single mutation that results in substitution of the amino acid valine for glutamic acid
in the sixth position of the β-globin chain of hemoglobin. These mutant hemoglobin molecules,
called hemoglobin S, can polymerize upon deoxygenation, causing erythrocytes to adopt a sickled
form and to suffer hemolysis and vaso-occlusion. Until recently, only two drug therapies for SCD,
which do not even fully address the manifestations of SCD, were approved by the United States
(US) Food and Drug Administration. A third treatment was newly approved, while a monoclonal
antibody preventing vaso-occlusive crises is also now available. The complex nature of SCD
manifestations provides multiple critical points where drug discovery efforts can be and have been
directed. These notwithstanding, the need for new therapeutic approaches remains high and one
of the recent efforts includes developments aimed at inhibiting the polymerization of hemoglobin
S. This review focuses on anti-sickling approaches using peptide-based inhibitors, ranging from
individual amino acid dipeptides investigated 30–40 years ago up to more promising 12- and 15-mers
under consideration in recent years.
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1. Introduction

Drug treatment of diseases follows different disease-dependent therapeutic strategies, such as
replacing certain systemic deficiencies as seen in insulin management of type I diabetes mellitus,
prophylactic treatments as seen in the use of pyrimethamine in preventing malaria, modulating
receptor interaction often involving dysfunctional biochemical processes either in the host or in the
offending pathogen. In a number of diseases of special interest, however, pathological sequelae as well
as clinical manifestations can be directly traced to critical defects in protein folding and aggregation [1].
A number of diseases fall into this category, including Alzheimer’s disease, Parkinson’s diseases,
Creutzfeldt–Jakob disease, type II diabetes mellitus, and sickle cell disease. Their clinical presentations
can often be traced to mutational changes in amino acid sequence, which frequently instigate abnormal
folding and aggregation behavior of the concerned protein. In sickle cell disease (SCD), a point mutation
involving the replacement of glutamic acid at position 6 of the β-globin chain of hemoglobin to valine
leads to the polymerization of hemoglobin [2]. In manifestation, SCD represents a symptom complex
that involves dehydration of the Glu6 to Val6 mutated hemoglobin, which is called sickle hemoglobin
or hemoglobin S (HbS), and elevated 2,3-diphosphoglycerate (2,3-DPG) levels whose interaction
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with hemoglobin reduces HbS solubility and promotes polymerization, also called sickling [3,4].
This ultimately leads to hampered O2 binding and transport, impaired erythrocyte morphology
and interaction with endothelial surfaces [5,6], premature erythrocyte rupture and anemia, painful
vaso-occlusive crisis, a general poor health, and, in many cases, death [7–11].

Despite growing understanding of the polymerization of HbS and its effects on red blood
cells (RBCs), until very recently, only two drugs—hydroxyurea and L-glutamine—were approved
by the United States (US) Food and Drug Administration (FDA) for the management of SCD [12].
Hydroxyurea is the most widely employed drug treatment of sickle cell anemia in different age
groups [13–18]. While its clinically observed efficacy has been attributed to different effects at
the cellular level [19], the most important mechanism of action relates to its ability to induce
the production of fetal hemoglobin (HbF), which does not polymerize, and to increase the total
concentration of hemoglobin [20,21]. Hydroxyurea remains a viable treatment option for SCD,
and the concern of toxicities associated with its administration has largely been limited to side effects
that resolve with medication discontinuation [22–26]. There have, however, been certain reports
of associated malignancies [27–32], but further investigations are needed to categorically confirm
these [33]. L-glutamine is the second approved drug treatment [12,34]. While its mechanism of
action is not known, and only suggested to involve a reduction of oxidative stress via elevation of
the levels of reduced glutathione [35,36], it is clear that it has no effect on hemoglobin S aggregation
and hemoglobin production [37–41]. A third option for the treatment of SCD is hemopoietic stem
transplantation, but its general applicability is limited by technical and cost considerations, and thus,
out of the reach of SCD sufferers in third-world countries [42–47]. Of the millions of people with SCD,
more than 75% are believed to live in Nigeria, Democratic Republic of Congo, and India [5,48,49].
These countries are additionally responsible for about 80% of global newborns having the causative
Glu6 to Val6 mutation [50].

Recent reviews described different treatment modalities and efforts to develop new drugs targeting
SCD [12,51,52]. A number of research attempts have been made to design interventions aimed at
modulating the structural properties, aggregation tendencies, and defective O2 transport properties of
sickle hemoglobin. For example, allosteric modulators and covalent modifiers of HbS that stabilize
the non-polymer forming R-state Hb conformation have been reported and include the recently FDA
approved voxelotor (GBT 440) [53] and derivatives of vanillin [54,55]. Compounds like senicapoc,
a Gardos channel blocker, were also reported with the ability to prevent RBC dehydration [56]; clinical
assessment in SCD, however, failed to find a correlation between improvements in hemolysis and
vaso-occlusive crisis [57]. Selective inhibition of phosphodiesterase 9A by IMR-687 was recently
reported to reduce both sickling and vaso-occlusion, which is believed to result from the induction of
cGMP (cyclic guanosine monophosphate) and HbF [58]. Compounds which directly interact with HbS
and disrupt the intermolecular contacts crucial to HbS polymerization have also been investigated,
and they include small organic compounds [55], amino acid-based compounds (discussed in this
review), as well as herbal preparations (e.g., Nix-0699 [59,60]). Other drug discovery efforts have
focused on biochemical processes downstream of HbS polymerization rather than seeking to explore
specific peculiarities of the aggregation process. A recent review by Eaton and Bunn argued in favor
of research attention directed at the HbS polymerization process, especially because the aggregation
kinetics as well as the circulatory transit time make it possible to achieve clinical improvement with
only a small fraction of HbS aggregation inhibited [61,62]. Here, we review therapeutic approaches
based on peptide-based drugs targeting the process of HbS polymerization. While this represents a
departure from the traditional focus on small molecule inhibitors, especially covalent modulators of
hemoglobin, for other protein aggregation diseases, peptide inhibitors turned out to be promising
candidates for blocking the detrimental protein−protein interactions. Thus, this class of inhibitors
deserves a closer inspection for their possible potential to treat SCD. An important aspect in this
context is their larger size compared to traditional small molecular inhibitors, which, in principle,
should translate into a greater interaction with polymerizing HbS and thus better antisickling potency.
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Before examining the role and potential of peptide inhibitors in SCD, we first provide a brief overview
of the structure and aggregation of sickle hemoglobin, as well as of previous therapeutic approaches
aimed at inhibiting HbS polymerization, allowing peptide inhibitors to be put into context.

2. Hemoglobins: Structure, Function, and Aggregation

The function of the red blood cells and their hemoglobin is to carry oxygen (O2) from the lungs
to all the body tissues and to carry carbon dioxide (CO2) back to the lungs. This function is enabled
by the structural characteristics of hemoglobin (Hb), allowing it to bind O2 and CO2. Both HbA,
which refers to the wild-type hemoglobin present in individuals without sickling disorder, and HbS
exist as tetramers consisting of two α subunits and two β subunits arranged into a pseudotetrahedral
symmetry (Figure 1A). With the two 141-residue α-globin chains and the two 146-residue β-globin
chains, and each globin chain carrying one heme group, the full HbA/HbS assembly contains 574 amino
acids and four heme molecules. It is from these four heme molecules and the four globin chains that
hemoglobin derives its name.
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Figure 1. (A) The quaternary structure of HbS consisting of two α subunits (here denoted α1 and α2 for
ease of distinction, shown in shades of blue) and two β (β1 and β2, shades of red) subunits. Each globin
subunit carries one heme (green), including an Fe2+ ion (orange). (B) The hemes are linked to the
globin by covalent bonds between their irons and Nε of histidines His87 of the α chains and His92 of
the β chains, known as the proximal histidines. On the other side of the hemes, the distal histidines are
located, which are His58 in the α chains and His63 in the β chains. (C) The single mutation Glu6Val
happens on the surface of the β chains near their N-terminus. The His and Val residues are shown as
sticks and are colored by atom name (C: Yellow; N: Blue; O: Red). This figure was produced using PDB
entry 5E6E [63].

The quaternary structure of hemoglobin is maintained by relatively weak but precisely coordinated
non-covalent interaction forces, including van der Waals interactions, hydrogen bonds, and salt bridges
between the different globin chains. In total, there are 30 helices in the hemoglobin structure: The
two α-globin chains feature a total of 14 helices between them, while the β-globins have 16 helices.
Each globin chain is covalently linked to a heme molecule via their proximal histidine residue (His87 in
the α-globin chains and His92 in the β-globin chains). The heme, in turn, consists of a protoporphyrin
part and a centrally coordinated iron ion (Figure 1B). The local environment of the globin molecules
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maintains the coordinated iron ion in its reduced form, in which state it can form a total of six bonds.
Four of the six coordination sites of the ferrous ion are covalently bonded to the protoporphyrin ring,
another to the imidazole side chain of the histidine residues, while the sixth coordination site allows
for binding and unbinding of dissolved gases. It is this last coordination site that is responsible for O2

binding. Following Fe2+ binding, bound oxygen establishes hydrogen bonding with the imidazole
side chain of His58 in the α-globins, and His63 of the β-globins, the distal histidine. In this state,
heme adopts a relaxed, conformationally unstrained arrangement structurally representing the “R”
conformation and functionally the oxygenated hemoglobin [63].

In the deoxygenated form, the distal histidine side chains have a propensity to swing out of the
heme pocket, thus allowing a compression of the surrounding helices with respect to each other, which
in turn causes Fe2+ to move out of the porphyrin plane [64]. This gives rise to a tensed conformation
(“T” conformation) with the heme adopting a dome-like arrangement (Figure 2). This structural
change precipitates a series of further changes in the remaining body of the HbS protein, which, under
deoxygenation and dehydration conditions, provokes a pathologic cascade that ultimately leads to
clinical manifestations.
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conformations of hemoglobin.

It deserves noting that the Glu6Val mutation involves an amino acid replacement at the HbS surface
(Figure 1C) and, as such, only affects protein–protein interaction involving surface residues [65–78],
without any effect on amino acids located at the core [69,70]. The side chain of Val6 in the β-globin
structure (the donor β-globin) of HbS forms a hydrophobic key, which fits well into an essentially
hydrophobic cavity formed by Phe85 and Leu88 of the β-globin of an adjacent HbS molecule (Figure 3).
It should be noted that both HbA and HbS form linear aggregates involving the formation of
axial contacts between Hb molecules. Only in the case of HbS, these linear aggregates grow into
double filaments, facilitated by lateral βVal6–β′Phe85/β′Leu88 contacts (where the prime indicates
that Phe85 and Leu88 belong to another hemoglobin than Val6). The double filaments further
assemble into ~200 Å thick fibers, which eventually accumulate in highly complex, pathological HbS
fiber networks [79]. These aggregates affect the functionality of the red blood cell by destroying
their structural pliability into stiffened and deformed erythrocytes. Differences at the cellular level,
for instance, originating from different degrees of cellular dehydration or oxidative stress, may further
complicate the HbS polymerization, such that each patient’s clinical manifestations are, to some extent,
unique [80–82].
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Figure 3. (A) Schematic representation of how the Glu6Val mutation modifies normal hemoglobin
polymerization of HbS heterotetramers, involving linear Hb aggregates formed by both HbA and HbS
(left) into double HbS filaments (right). The hemoglobin tetramer is represented as a circle, such that
one quarter corresponds to one protein subunit using the same coloring as in Figure 1. The βGlu6Val
mutation is indicated as a protrusion from the circle in the β2 subunit and the hydrophobic pocket
as a nick in the neighboring β′1 subunit. Seven double filaments aggregate further to form fibers
(bottom, reproduced with permission from reference [83]). (B) A dimer formed by two HbS aggregates
is shown. (C) This aggregation is mediated by β2Val6 interacting with the hydrophobic pocket formed
by β′1Phe85 and β′1Leu88. The side chains of these three residues are shown as yellow sticks and also
transparent van der Waals surfaces to better indicate the space these residues occupy. Panels B and C
were produced from PDB entry 2HBS [84].

3. HbS as a Target for Drug Design

3.1. HbS Aggregation Is An Inefficient Process

Efforts to rationally design antisickling agents have often viewed the sickle hemoglobin both
as the drug target as well as the starting point for lead discovery. Such efforts are indeed not new;
the 1970s through the 1980s witnessed a good deal of research interest into the molecular nature of
the HbS molecule, as well as the search for compounds capable of disrupting its polymerization.
A prevailing doubt about the suitability of the HbS molecule as target for drug development has to do
with the perceived limitation imposed by its high content level in man (about 450g) [61], suggesting
that an intolerably high dose of antisickling compound would be required to achieve clinically useful
degrees of inhibition [85]. This perception was mostly based on an aggregation model built on
the assumption of a highly efficient nucleation dependent HbS polymerization process believed to
involve two nucleation stages, beginning with a rate-limiting homogeneous nucleation, followed
by a highly efficient heterogeneous nucleation phase [86,87]. For aggregation to occur, the delay
time associated with the homogeneous nucleation should necessarily be shorter than re-oxygenation
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circulation time, which is the time required for the hemoglobin to pass through the blood vessels and
be re-oxygenated [88]. In light of recent findings [89,90], there is increasing need to revisit what is
accepted with respect to HbS polymerization kinetics. In a recent study employing high resolution
differential interference contrast (DIC) microscopy (55 nm resolution at 1 Hz, the highest resolution
currently available for HbS aggregation kinetics), monomer incorporation into HbS polymers was
found to be a highly inefficient process, with only 30,000 out of one million HbS monomers incorporated
per second [90]. This translates to a 3% efficiency for HbS polymerization as against the previously
reported monomer incorporation efficiency of more than 95% [91,92]. This observation is supported by
the finding of Wang and Ferrone, who, based on light scattering experiments, revealed that the overall
thermodynamics into double filaments (Figure 3A) is marginally unfavorable, with the axial contacts
being 1.8 kcal/mol weaker than the lateral contacts [93]. At such a low polymerization efficiency, HbS
monomer binding and unbinding events are only marginally in favor of polymer growth, such that
small disturbances (for instance, resulting from inhibitor binding) are sufficient to push the equilibrium
towards polymer disassembly. Castle et al. calculated the magnitude of binding disturbance required
and estimated it to be a 1.2 kcal/mol change in HbS monomer−polymer interaction in 5% of the
available HbS molecules that is required to halt the polymerization process (see reference [90] for
the calculation). This agrees qualitatively with the earlier estimated ~1.5 kcal/mol hydrophobic free
energy contribution resulting from Val6 binding within the Phe85/Leu88 pocket [94]. With about
30 picogram (pg) of hemoglobin per RBC [95,96], disruption of polymerization in less than 1.5 pg
HbS per cell should in principle be sufficient to frustrate aggregation, especially considering that
only between 40 and 60% of the RBCs typically undergo sickling [97]. This reasoning does not only
bring HbS polymerization within the purview of non-covalent inhibition, but it also rationalizes
why antisickling effects have been observed for various small molecular weight inhibitors [98–100].
For instance, screening for non-covalent antisickling agents that reverse HbS polymerization by altering
RBC shape and volume (towards more spherical structures with larger volumes) discovered antisickling
properties for gramicidin A and monensin A at concentrations of 200 pM and 2 nm, respectively [101].
Another example is the aggregation inhibition by HbF, which is required to be present in a just a little
fraction (0.2) of total hemoglobin of SCD patients to achieve clinical resolution of symptoms [102,103].
This antisickling effect of HbF serves as the mechanistic basis for SCD treatment with HbF-inducing
hydroxyurea (see Introduction). Like HbF, addition of HbA to polymerizing HbS has also been shown
to inhibit HbS aggregation [104].

3.2. Antisickling Effect and HbS Conformation

Targeting sickle hemoglobin for inhibitor design does not only aim to directly inhibit its aggregation
into multi-stranded polymers, but also includes approaches that either result in the stabilization
of the R conformation of the HbS molecule, or the destabilization of the T conformer [105,106].
Compounds whose antisickling properties are based on this concept include vanillin and pyridyl
derivatives of vanillin, 5-hydroxymethylfurfural (5-HMF), and the recently approved voxelotor (GBT
440) [54,99,106–110]. They bind to the N-terminal valine (and possibly lysine) residues of the α-globin
chains of HbS (Figure 4) [98], forming a reversible Schiff-base adduct which stabilizes the R-state and/or
destabilizes the T-state, increasing hemoglobin solubility, and thus inhibiting HbS aggregation. Iqbal et
al. employed an electrochemistry-based technique to investigate HbS polymerization in the presence of
vanillin and 5-HMF [86]. At HbS concentrations of 100 mg/mL, aggregation inhibition was obtained for
vanillin concentrations corresponding to 0.5:1, 1:1, and 10:1 mole ratios relative to HbS. A similar pattern
was obtained for 5-HMF, except for an interesting observation that the 0.5:1 inhibitor/HbS ratio was
found to slightly promote aggregation. At 1:1 inhibitor/HbS concentration, both compounds achieved
roughly 70% aggregation inhibition, while a near perfect inhibition was recorded when the inhibitor
concentration was increased to achieve a 10:1 mole ratio relative to the hemoglobin. In scanning
the inhibitors against HbS, Iqbal et al. employed an HbS concentration that is about three orders of
magnitude smaller than the intracellular concentration of hemoglobin, which is 334 mg/mL assuming
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an RBC volume of 90 fL and mean corpuscular hemoglobin of 30 pg. At such higher cellular content of
hemoglobin, a more efficient system of inhibition is probably needed. Thus, continuing searches for
antisickling agents is warranted, independent of the successful progression of GBT440 through phase
III clinical trial leading to its recent FDA approval.
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3.3. Antisickling Agents from In Silico Screening

Drug repurposing presents an attractive proposition to treat both common and rare diseases,
considering the high attrition rates, substantial costs, and slow pace of new drug discovery and
development. As drug repurposing involves the use of de-risked compounds, this approach should
entail lower overall development costs and shorter development timelines. A first step towards drug
repurposing for SCD was made in a recent computational screening of existing FDA approved drugs
for their potential antisickling properties [111]. In this work, virtual screening was employed to screen
existing drugs with the AutoDock Vina score, which were then rescored using an effective energy that
specifically emphasizes the presence, size, and electronegativity of the chemical fragments present in
each screened compound capable of competitively disrupting Val6 binding to theβPhe85/βLeu88 pocket.
A number of compounds identified by this approach were shown in preliminary tests to possess
antisickling activity. The concentrations of the compounds ranged from 0.02 M for glipizide, ketoprofen,
and losartan to 2.2 M for atorvastatin. The docking-generated models in Figure 5 suggest that,
in all but one case, binding of the compounds involves βPhe85 and/or βLeu88, which, however,
should be considered with caution, given the lack of structural data of the HbS−ligand complexes.
Interestingly, at least two of these drugs are given for adjunctive treatment of SCD because of their
restorative effect against albuminuria in patients with SCD [112,113]. However, thus far, there is no
other record reporting effects of these compounds in sickle RBC.
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3.4. Interprotein Contacts During HbS Aggregation

In the quest to target HbS to directly disrupt polymerization as therapeutic approach, one should
consider that this may be more challenging than it first seems because of the plethora of multiple
binding sites that, when interfered with, may influence the conformational preferences of HbS that
favor or disfavor polymerization. There exists a good number of data suggesting that both intra-
and interpeptide contacts sponsor the polymerization process of HbS, which involves interactions at
multiple sites on the hemoglobin molecule. Without doubt, the aberrant valine residue at position 6 of
the β-globin is involved, believed to be in immediate contact with β′Phe85 and β′Leu88 (Figure 3).
It is thought that concurrently, to this contact, a hydrogen bond between βThr4 and β’Asp73 is formed
due to the spatial proximity between these residues. In addition to these primary contacts, secondary
contacts, which involve hydrophobic and also a number of ionic interactions [84,88,114–118], have
been identified and proposed to either influence directly the polymerization process, modulate the
conformational equilibrium between the R and T state, or simply modify the solubility of deoxygenated
HbS. For example, the αAsn78→Lys mutation leads to an increase in the solubility of deoxy-HbS,
alleviating the severity of SCD [118,119]. Another challenge for the design of antisickling agents
aimed at disrupting the aggregation process is a common problem when targeting protein−protein
interactions, because these interaction sites are typically flat and large, quite different from the “grooves”
or pockets in which small molecules typically bind. Peptides are ideal candidates to overcome this
problem, as they can mimic a protein surface to effectively compete for binding [120]. In the following
section, we present selected efforts to design peptides or peptide-based systems intended as inhibitors
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of HbS polymerization. For a review of non-peptide chemical classes of HbS polymerization inhibitors,
the reader is referred to references [51,61,83] for excellent treatment of the topic.

4. Amino Acid-Derived Antisickling Compounds

4.1. Peptide Length and HbS Polymerization Inhibition

One of the oldest ideas driving the design of HbS aggregation inhibitors relies on the
acknowledgment of the causal role played by the Glu6Val β-globin mutation on disease development.
Many of the earliest reported efforts sought to obtain compounds with the right combination of
hydrophobicity, shape, and charge complementarity that, in principle, can bind within or in the
immediate vicinity of the cavity formed by β′Phe85 and β′Leu88 and, at the same time, possess charged
groups oriented outwards. This outward projection is to prevent βVal6 of an incoming β-globin
chain from binding as part of the lateral contact in HbS polymer. While the nature of βVal6 binding
site would seem to place an upper limit on the molecular size of prospective inhibitors capable of
binding to this site, in reality, conflicting reports have been published by different groups working
on amino acid-derived inhibitors. In the late 1970s and early 1980s, Rich and co-workers examined
short peptide inhibitors (up to pentapeptides) of HbS aggregation based on the belief that amphipathic
nature was required to inhibit the polymerization of deoxygenated HbS [121,122]. Out of the peptides
examined, the lowest minimal inhibitor mole ratio (MIMR) of peptide to HbS necessary to prevent HbS
polymerization was found for N-terminally succinylated (Phe)3, (Phe)3–Arg, and (Trp)2 (Table 1), where
succinylation in each case served to enhance peptide solubility, or to modulate net charge, or both.
It is, however, important to note that the concentrations of the peptides employed in these works were
too high to be of any direct benefit in a clinical setting: The best inhibitory effects were achieved with
peptide/HbS mole ratios of about 10. While structural data were lacking to categorically conclude on
structure–activity relationship (SAR), the reported pattern of inhibition showed inhibitory activity
increasing with peptide chain length. This could point to the fact that the nature of HbS−HbS interaction
surface requires sufficiently large inhibitors to effectively disrupt crucial amino acid interactions. It is
thus likely that more potent peptide inhibitors will be achieved with peptide lengths longer than those
screened in these studies [121,122]. Interestingly, a similar trend was observed with peptide inhibitors
of amyloid-β aggregation, whereby highly potent aggregation inhibitors were achieved with 12-amino
acid peptides, while shorter ones lacked this property [123–125]. In fact, a phage display work by
Hanson et al. in 2013 successful identified a highly potent 12-residue peptide (Hb-B10, sequence
CHNLLPTPWWCA) with a micromolar range (21 µmol/L) binding affinity for hemoglobin [126].
Even though the intention was not to target HbS polymerization but to aid the clearance of circulating
hemoglobin, the outcome of this research shows that indeed it is possible to obtain peptide-based
systems with a HbS binding affinity required for clinical intervention.

Table 1. Short peptides with the best demonstrated inhibitory activity identified in [121,122], given as
the minimal inhibitor mole ratio (MIMR) of peptide to HbS necessary to prevent HbS polymerization.
The values are means ± standard error. “Suc” stands for succinyl: –OOC–(CH2)2–CO–.

Peptide MIMR

Suc-(L-Phe)-(L-Phe)-(L-Phe) 9.5 ± 0.5

Suc-(L-Phe)-(L-Phe)-(L-Phe)-(L-Arg) 10.0 ± 1.0

Suc-(L-Trp)-(L-Trp) 10.0 ± 0.5

Suc-(L-Trp)-(L-Phe) 12.5 ± 0.5

The work of Kubota and Yang was similarly founded on the special importance of theβVal6 residue
during HbS polymerization by designing oligopeptides to mimic the N-terminal segments of the
β-globin chain of Hb [127]. The idea behind this approach is that such peptides would interact with the
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βPhe85/βLeu88 pocket, or any other complementary binding site, and thus inhibit HbS polymerization.
The tested peptides were indeed found to exhibit significant HbS aggregation inhibitory attributes,
with the β1–6 hexapeptides of the N-terminal end of both HbA (sequence VHLTPE) and HbS (sequence
VHLTPV) molecules reported to increase the minimum gelling concentration (MGC) by about 75% [127].
The MGC is the concentration of HbS required to form a gel (or polymer), which is about 9.5 g/dL
in the absence of peptide inhibitors, and an aggregation inhibitor is expected to increase this value.
The highest inhibitory activities were obtained at peptide/heme mole ratios of between 2 and 2.5.
Considering that there are four heme molecules per hemoglobin, this translates to a peptide/hemoglobin
ratio of 8 to 10, which is in the MIMR range reported by Rich et al. [121,122] and listed in Table 1.
These concentrations, like those reported in [121,122], are too high to have any clinical applicability.
Truncating the length of the oligopeptides below six residues significantly reduced the inhibitory effect,
which seems to suggest that the β1–6 hexapeptides might indeed interact with the βVal6 binding site
on the β-globin chain [127]. According to the authors, hexapeptides, but not shorter oligopeptides,
are likely to preserve the secondary structure necessary to provide the complementary shape needed to
interact with the βVal6 binding site. The lack of structural data, however, makes this interpretation of
the experimental outcome, at best, speculative; it is possible that the peptides interacted at other sites
of the HbS molecule. Hexapeptides mimicking both HbA and HbS N-terminal segments produced
similar inhibitory effects, while increasing the peptide length beyond six did not improve activity,
although shorter peptides were less effective. Interestingly, in a separate work, it was observed
that longer oligopeptide inhibitors involving sequences β1–12 (sequence VHLTPVEKSAVT), β3–13

(sequence LTPVEKSAVTA), β4–8 (sequence TPVEK), and β4–10 (sequence TPVEKSA) of HbS promote
HbS polymerization [128], as they decrease the solubility of HbS [129].

The susceptible balance between peptide sequence, length, and structure for the capability to
inhibit HbS polymerization is also demonstrated in a more recent work [130]. Akbar et al. studied
the effects of 15-, 11-, 7-, and 3-mer peptides derived from one of the helices of the β-globin chain
of hemoglobin. In the case of the 15-mer peptide, the sequence comprised the β-globin residues
65−79 with sequence KKVLGAFS[H/L]GLAHLD, where, at position 73, the β73His and β73Leu
mutations were included instead of the native β73Asp, as, in HbS, these mutations were previously
observed to inhibit HbS aggregation [131]. The shorter peptides with 3, 7, and 11 residues failed to
inhibit polymerization, suggesting the importance of secondary structure and multiple contact points
for the observed inhibitory activity. For the longer peptide, it was found that the β73His 15-mer peptide
more significantly inhibited polymerization compared with the β73Leu 15-mer peptide. The β73His
15-mer peptide is believed to interact with β4Thr and thus disrupt the hydrogen bonding between
β4Thr and β’73Asp, and also hydrophobic interactions involving β6Val due to its spatial proximity.
However, it should be mentioned that a peptide/HbS ratio of 3:1 was needed to obtain a noteworthy
delay in HbS polymerization [131]. While it is likely that different hemoglobin binding sites were
employed by these peptides, they represent about 70% improvement in potency over the peptides
studied in earlier works [121,122,127]. The outcomes of the different experiments suggest that there is
no simple relationship between peptide length and HbS polymerization inhibition. Other factors that
are important for inhibitory activity are considered in the following parts.

4.2. Peptide Hydrophobicity and Hydrophilicity

The effect of charged groups in designed peptide inhibitors of HbS polymerization has been
somewhat difficult to generalize, with different works reporting both positive and negative inhibitory
effects [111,115,121,122,126,128,132,133]. Some experiments involving large short-peptide libraries
observed that the inhibitory effect depended more on the presence of hydrophobic rather than charged
residues, and that peptides containing tryptophan [128,129] and phenylalanine [134] were found to
display the highest polymerization inhibition. This also agrees with the results published by Rich et al.
(Table 1) [121,122]. These seem to suggest that the HbS aggregation inhibitory effect of the studied
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peptides depended more on hydrophobic contacts formed with the hemoglobin than on specific
charge interactions.

The work of Abraham et al. also endeavored to disrupt not only the
βVal6−β’Phe85/β’Leu88 interaction, but also the hydrogen bonding between βThr4 and β’Asp73 [135].
To this end, four proline derivatives (Figure 6A,B) were developed: Two of them were designed
to primarily form hydrogen bonds with His2, Thr4, and Lys132 of the HbS β-globin, while the
other two were designed to bind covalently to βLys132, as well as to interact with βHis2 and
βThr4 via ionic and hydrogen bonds. Based on the overall fold of the β-globin chain, it was expected
that the peptides were placed enough in the vicinity of βVal6 to also enable the disruption of the
βVal6−β’Phe85/β’Leu88 interaction (Figure 6C). Two of the compounds contain a salicylate moiety
to allow for possible covalent interaction with βLys132, as salicylate and other aromatic esters have
been reported to acetylate lysines of the Hb β-globin [136]. While the two non-covalently binding
proline derivatives successfully inhibited polymerization of deoxygenated HbS, though with inhibitory
levels of only a fraction of that of phenylalanine [134], the two compounds with a salicylate group
were mildly aggregation-promoting. This observation is not totally unexpected, as aspirin and other
salicylate esters had been known to promote sickling, and this effect must have been inherited from
the salicylate group via a mechanism speculated to involve αArg141 acetylation and the consequential
stabilization of the HbS T conformation [137]. The relatively low levels of inhibition reported for this
set of peptides further suggests that hydrophobicity is more important for disrupting polymer contacts.
This, however, should not downplay the role of ionic interactions in hemoglobin polymerization,
which was observed to show pH and ionic concentration-dependency pointing at specific roles for
ionic interactions in modulating aggregation [115,138].
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Following the discovery of tryptophan and phenylalanine (tryptophan was found to possess a 
2.1-fold higher anti-polymerization property of that of phenylalanine [139]) as the amino acids with 
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Figure 6. Proline derivatives tested for HbS anti-polymerization efficacy: (A) (4S)-1-butyryl-
4-[(carboxymethyl)amino]-l-proline and (B) (4S)-1-butyryl-4-[(carboxymethyl)methylamino]-l-proline-
2-ester with salicylic acid and their 1-benzoyl analogues [135]. (C) The anticipated binding site of these
ligands is formed by βHis2, βThr4, and βLys132, which is thought to disturb the binding of βThr4 to
β’Asp73 and of βVal6 to β’Phe85/β’Leu88. The salicylate group in (B) is expected to covalently bind
to βLys132.

4.3. Effects of Amino Acids and Specific Chemical Properties

Following the discovery of tryptophan and phenylalanine (tryptophan was found to possess a
2.1-fold higher anti-polymerization property of that of phenylalanine [139]) as the amino acids with
the highest HbS polymerization inhibitory properties [121,122,128,129,134], efforts were expended to
design analogues of the two amino acids with the aim of improving inhibitory efficiency [139,140].
Poillon studied 42 derivatives and analogues of alanine with varied aromatic side chains substituted
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at the β-carbon atom of alanine. Of all investigated derivatives and analogues, the six most potent
aggregation inhibitors are shown in Figure 7. Again, the millimolar range inhibitory concentrations
obtained (from 6 mM for 6-bromotryptophan to 30 mM for phenylalanine) are too unrealistic
concentrations for clinical relevance. Other factors affecting the chemistry and hydrophobic nature
were also believed to have contributed to the observed activities. Aromatic substitutions as opposed to
aliphatic side chains, bicyclic aromatic rings as opposed to monocyclization, bromination compared with
other halides, as well as 1-naphthyl substitution as opposed to 2-naphthyl substitution were observed
to be associated with the highest HbS polymer destabilizing effect. Also, in 1977/1978, it was speculated
that more efficient inhibitors might be achieved by enhancing the polarizability of the aromatic nucleus
via appropriate substitution with heavy halogen or aryl groups [127,141]. This prediction is supported
by the findings of Poillon as, for example, 5-bromotrytophan showed anti-polymerization activities
roughly twice as effective as tryptophan and 4.4 times greater than that of phenylalanine [128]. In the
absence of larger SAR studies that systematically vary each structural parameter, it is difficult to
derive categorical conclusions from the published data. Nevertheless, it would seem that the peptide
inhibition obtained by varying the structure (e.g., by aromatic substitution) was indirectly linked to
changes in hydrophobic character, and better inhibitors (depending on the specific HbS sites targeted)
will likely require a good degree of balance between different chemical properties of amino acids
constituting the peptide inhibitors.
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In 1986, Perutz et al. published their x-ray crystallography-based work on the binding between
deoxygenated hemoglobin and four halogenated derivatives of aromatic oxyacetic acids (clofibric acid,
ethracrynic acid, bezafibrate, p-bromobenzolyoxy acetic acid) and succinyl-l-tryptophan-l-tryptophan
(STT) [79]. The objective of their work was to exploit stereo structural attributes of the HbS molecule in
designing agents capable of inhibiting the process of HbS polymerization. The five studied compounds
exhibited highly variable effects on HbS sickling ranging from HbS aggregation inhibition to the
facilitation of HbS aggregation. These varied activities were believed to result from a significant degree
of diversity existing in HbS binding sites employed by the different compounds. The short peptide
STT (Figure 8) was observed to exert a dose-dependent increase in HbS solubility, the highest value
being obtained at a 40 mM concentration. The low-resolution crystallographic data revealed that STT
preferentially binds at the entrance to the central cavity between the two α-globins of one hemoglobin
molecule via hydrogen bonds and several van der Waals interactions. This binding position is similar
to the pose of 5-HMF (Figure 4), vanillin, and its pyridyl derivatives, but while these compounds
stabilize the R state, STT only binds to the T state of hemoglobin. It was suggested that by increasing
the solubility of deoxygenated HbS, STT inhibits polymerization and thus serves as a good starting
point for drug design.
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4.4. Highly Potent Peptide Inhibitors

Motivated by reported binding of a fragment of the N-terminus of the erythrocyte band
3 protein to the 2,3-DPG (the endogenous allosteric effector that binds deoxygenated hemoglobin
and stabilizes it in the T conformation) binding at the β-cleft of hemoglobin [142], Danish et al.
in 1994 designed short peptides based on the band 3 protein and investigated their abilities to
inhibit HbS polymerization [143]. Three peptides were studied: Peptide I N:1-15AA with sequence
Ac-MEELQDDYEDDMEEN corresponding to the first fifteen amino acids of the band 3 protein, Peptide
A N:1-8AA+K with sequence Ac-MEELQDDYK, and a “mirror image” Peptide II containing two
Peptide A N:1-8AA+K units linked with a bis(sulfosuccinimidyl) suberate via the two Nε atoms of the
lysine side chains (Figure 9). Oxygen binding studies conducted in the absence of 2,3-DPG revealed a
dose-dependent rightward shift mimicking 2,3-DPG binding for Peptide N:1-15AA and Peptide II,
indirectly indicating interaction with the 2,3-DPG binding site, since all other factors were kept constant.
While only marginal improvements were recorded in HbS solubility and polymerization assay for the
shortest peptide, Peptide A N:1-8AA+K, Peptide I N:1-15AA, and Peptide II displayed significantly
improved HbS solubility and polymerization inhibition profiles. The highest effects were observed
for Peptide II. It is noteworthy that Peptide II at a peptide-to-hemoglobin concentration as low as
0.25:1 already significantly inhibited HbS polymerization, while also moderately increasing hemoglobin
solubility. The highest inhibition of polymerization was observed at peptide/HbS concentration of
1:1. The suggested mode of action assumes that Peptide II would bind at the 2,3-DPG binding site,
while the other end of the peptide would bind similarly to another deoxy-HbS molecule. The resulting
ternary complexes (which were called “binary hemoglobin complexes” by Danish et al. [143]) would
be incapable of forming HbS double filaments.
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In summary, the degrees of HbS polymerization inhibition reported by the different groups vary
widely and depend on multiple factors. To fully understand how these different factors influence
activity, it is important to have carefully designed studies that systematically vary each of the structural
variables. What we can learn from the experiments discussed in this review and from our understanding
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of the structural complexity of the hemoglobin molecule is that it is likely that different peptide inhibitors
bind to different locations on the HbS molecule. In the end, two- to three-residue peptides featuring
the aromatic amino acids tryptophan and phenylalanine [121,122] were equivalent in inhibitory
activity to peptides containing six residues lacking aromatic amino acids [127]. The concentrations
at which aggregation inhibition was observed were, however, too high, pointing to the need for
more extensive peptide design. Longer peptides targeting the β4Thr–β’73Asp interaction in addition
to the β6Val–β’Phe85/β’Leu88 contact for disruption achieved significant improvement in potency.
Moreover, the successful design of the highly potent Peptide II with peptide/hemoglobin inhibition
ratio of 0.25:1 brings peptide inhibitors within the potency range needed for clinical relevance [143].
We believe that as structural information (e.g., from high resolution crystallographic analysis or NMR
spectroscopy) become more available, it will be possible to properly categorize different peptide
inhibitors based on hemoglobin interaction and, in turn, to improve them.

5. Benefits and Challenges Associated with Peptide-Based Drugs

Peptide systems, short peptides in particular, have already been employed as potential inhibitors
of protein aggregation in a number of pathological conditions involving pathological protein
aggregation [123–125,144–146]. The advantages associated with the use of short peptides include low
overall toxicity resulting from the compatibility of peptide inhibitors with living tissues as opposed to
small molecule inhibitors. Secondly, metabolic degradation of peptide inhibitors does not yield toxic
metabolites, which, combined with the earlier point, allows for a well-tolerated and safe therapeutic
option. Furthermore, the high chemical diversity, selectivity, and potency associated with peptide-based
inhibitors are versatile, making them viable start-off points in drug discovery campaigns. With regard
to protein aggregation in particular, peptide inhibitors, because of their chemical and structural
composition, can offer good fits capable of interacting with protein surfaces sufficiently large to disrupt
the process of protein aggregation [120]. In spite of these benefits associated with the use of peptides
in therapeutics, it should be noted that they are often associated with poor pharmacokinetics relating
to short half-life and low oral bioavailability [147,148]. Because of the presence of peptidases, peptide
drugs are rapidly degraded and cleared in different body compartments, leading to insufficient exposure
of the target system to the administered drug. Available approaches for handling these challenges
include the use of D-amino acids or non-natural residues, chemical modifications such as protecting
the terminals with appropriate chemical groups (e.g., acetylating the N-terminal and amidating the
C-terminal), cyclization, and incorporation of organic molecules in the peptide side chains [149–152].
Since these approaches alter the physicochemical attributes of the peptide, they can also be useful in
improving the membrane partitioning of the peptide drugs. In practice, peptide penetration across
cellular barriers has been accomplished via the incorporation of groups facilitating membrane crossing,
like positively charged amino acids [153–155] or ligands (e.g., sugars), for recognition of membrane
receptors [156]. The latter approach has been successfully employed to improve both the stability
and the intestinal absorption of peptide drugs [157–159]. In the area of cancer drug delivery, where
peptide-based chemotherapeutic agents are routinely required to be delivered to intracellular targets,
increasing levels of success are being recorded with the development of innovative techniques like
the use of cell-penetrating peptides, viral based-vectors, and nanoparticle-based systems [160–162].
It is expected that these new developments can be leveraged upon in delivering peptide-based HbS
inhibitors into the intracellular compartment of RBCs.

6. Conclusions

In this review, we have presented a number of peptide-based inhibitors that have been investigated
in relation to their HbS polymerization inhibitory activities. In order to understand their mode of
action, we first described the structure of hemoglobin and the inter-residue interactions that drive
the polymerization of HbS. Moreover, to put the current knowledge about peptide-based inhibitors
into context of other recent drug discovery approaches, we provided a very short review of the most
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promising of these projects. Here, voxelotor (GBT440) should be emphasized, as it has recently received
FDA approval for the treatment of SCD. It is a small molecule that covalently binds to HbS, causing an
increase of the proportion of oxy-HbS within RBCs and thereby reducing polymerization as oxy-Hb
cannot participate in polymerization. The mode of action of the presented peptide-based inhibitors,
on the other hand, are thought to either target the primary interaction between the pathological
βVal6 from one HbS molecule and the hydrophobic acceptor pocket in the region of β’Phe85 and
β’Leu88 of another HbS molecule or to interfere with one of the various secondary contacts promoting
HbS polymerization. It should be mentioned that many of the reported antisickling peptide-based
agents were reported more than 30 years ago. Though considering that they were not further
developed since then, there is vast room for improving them. The fact that anti-polymerization
activity was observed with peptide lengths as short as two amino acids in some cases is, in particular,
a significant advantage, since this should permit modifications and design of more potent peptide-based
inhibitors for SCD treatment. Indeed, the larger and optimized peptides Hb-B10 [126] and Peptide II
(Figure 9) [143] demonstrated a much improved HbS polymerization inhibition over the short peptides
that were studied 30−40 years ago. A similar pattern is seen for Alzheimer’s disease, involving the
discovery of the first amyloid-aggregation inhibiting D-peptide developed more than 15 years ago [124].
Continuous improvement in the lead D-peptide inhibitor has resulted in a candidate molecule now in
a clinical trial [125,163], demonstrating that this line of research is worth pursuing. The advantages of
peptide-based compounds outweigh the disadvantages associated with the use of amino acids-based
inhibitors, partly because it is possible to circumvent some of them (e.g., by amino acid configuration
inversion to increase biological half-life [149–152]). In conclusion, the level of success reported in
the design of peptide inhibitors of protein aggregation should stimulate new investigations into
the therapeutic potentials of antisickling peptides for the treatment of SCD. Such peptides must,
however, be able to inhibit HbS polymerization at therapeutically relevant concentrations of the
peptide inhibitors.
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