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a b s t r a c t

Intrinsically disordered proteins are known to perform a variety of important functions such as
macromolecular recognition, promiscuous binding, and signaling. They are crucial players in various
cellular pathway and processes, where they often have key regulatory roles. Among vital cellular
processes intimately linked to the intrinsically disordered proteins is transcription, an intricate biological
performance predominantly developing inside the cell nucleus. With this work, we gathered informa-
tion about proteins that exist in various compartments and sub-nuclear bodies of the nucleus of the
human cells, with the goal of identifying which ones are highly disordered and which functions are
ascribed to the disordered nuclear proteins.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Being the first discovered cellular organelle, the nucleus, this
membrane enclosed organelle found in eukaryotic cells, was
described for the first time by the early microscopist Antonie
van Leeuwenhoek (1632–1723). The nucleus is a key component of
the eukaryotic cell since it is the “container” of its genetic
information that serves as the “control center” of the cell, which
is responsible for the storage of genetic information and coordina-
tion of gene expression [1–3]. The number of nuclei within a cell
varies between the species from one and four, with one being the
most common case. This organelle generally occupies about 6% of
the total size of the cell. Among the most important functions
ascribed to the nucleus are: storage of hereditary material (in
chromosomes and genes); storage of proteins and RNA (specifi-
cally in the nucleolus); exchange of hereditary molecules (DNA
and RNA); and production of ribosomes. The nucleus is a dynamic
organelle, whose morphology (size and shape) is tightly regulated
and is noticeably changed during the cell cycle [4]. There is a
correlation between altered nuclear morphology and development
of some diseases, e.g., cancer [4].

The cell nucleus is not a homogeneous entity, but contains
several structures or compartments and sub-nuclear bodies [5].

Contrary to other components of the cell, most of these compart-
ments are highly dynamic (do not exist all the time but only during
certain stages of the cell, when those compartments are needed),
and many of them are membrane-less, being formed via recruit-
ment of proteins, RNA and DNA. Fig. 1 represents a schematic model
of this membrane-enclosed organelle and shows that nucleus
contains numerous nuclear domains or subnuclear organelles, such
as nuclear pores, chromatin, nucleolus, PcG bodies (subnuclear
organelles containing polycomb group proteins), Cajal bodies,
promyelocytic leukemia (PML) nuclear bodies, Oct1/PTF/transcrip-
tion (OPT) domains, nuclear speckles, nuclear gems (Gemini of
coiled bodies), cleavage bodies, SAM68 nuclear bodies, perinuclear
compartment, and several others [6]. Despite being different
morphologically and functionally, all the aforementioned nuclear
domains have some common features, e.g., all of them contain
various types of RNA (or, in some cases, DNA) and different proteins.

Four levels of structural organization are known for a foldable
ordered protein. Here, primary structure refers to the product of
transcription, the protein amino acid sequence. Secondary struc-
ture corresponds to the 3D form of specific local segments, such as
α-helix or β-strand. Tertiary structure represents the spatial con-
glomeration of secondary structure elements into a 3D super-
structure. Tertiary structure is the highest form of the structural
organization of a single-chain protein, whereas a multi-chain
protein has quaternary structure that represents a more complex
structural level constituting the assembly of tertiary structures.

Although for a long time it has been assumed that the presence
of unique structure is a crucial prerequisite for protein to be
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functional, recent studied revealed that many biologically active
proteins are characterized by a lack of tertiary structure. The
discovery of these intrinsically disordered proteins (IDPs) and
hybrid proteins consisting ordered domains and intrinsically dis-
ordered protein regions (IDPRs) challenged the protein structure
paradigm stating that a protein must have a defined 3D-structure
in order to perform a function [7–13]. Studies of different genomes
suggested that IDPs are very abundant in nature and that proteins
from eukaryotes have more intrinsic disorder than proteins of
bacteria or archaea (up to 42% of all proteins in humans) [10,14–20].

Besides being very common in all analyzed proteomes, IDPs/
IDPRs were shown to possess unique functional repertoire (being
commonly involved in regulation, signaling and control pathways
[21–23]), which is complementary to catalytic and transport
functions of ordered proteins [24–27].

Since among the disorder-specific functions are DNA- and RNA-
interactions, the goal of this work was to study the nuclear proteins of
the human cell, to evaluate their level of disorder and to see if there is
any sort of connection between intrinsic disorder and the functional
roles these proteins play in the cell. The study is challenged by the fact
that the information on components of the nucleus of human cells is
scarce. Little information is currently available about the highly
dynamic environment of this important cellular compartment, its
organelles and interactions between them and the roles each such
organelle plays. Furthermore, the molecular mechanisms defining the
ability of these nuclear domains to maintain their specific structures in
the absence of membranes also remain mostly unknown [28]. Studies
of the proteins containing in each of these organelles (also called sub-
nuclear domains or compartments) are sparse. Therefore, the overall
goals of this project were: to find the proteins located in the human
nucleus; to analyze distribution of these proteins within the sub-
nuclear compartments; to analyze functions and structures of these
proteins; to evaluate the intrinsic disorder propensities of these
proteins; to look at the roles of intrinsic disorder in function and
regulation of nuclear proteins; to map the distribution of disorder
propensity within the nuclear compartments; and to study the
relationship – if any – between the dynamic organelles within the cell
nucleus and the level of disorder in the proteins that make them up.

2. Materials and methods

To solve this problem, a series of existing tools and data sources
were used, and with them a pipeline was built to collect and

process the information needed. Fig. S1 represents the resulting
pipeline that had three major processing points, data collection,
data processing, and data analysis.

2.1. Data collection

This stage had two steps. On the first step, the Nuclear Protein
Database [29] was used to identify the proteins located inside the
nucleus of eukaryotic cells. A total of 795 proteins were identified.
On the second step, each protein was checked against UniProt to
narrow the dataset to proteins that were curated and of human
origin. The request for a protein to be curated provided us with the
possibility to work only with proteins that have been reviewed
and have reliable information. The protocol of protein curation in
UniProt is shown in Fig. S1. The proteins of interest should be of
human origin to filter out other species and focus on Homo sapiens
only. The output of this stage was 185 proteins, collected in text
files (FASTA sequences) and XML files. Each XML file contained all
the details that UniProt provided for a given protein including all
the names used for a protein, codes, cell location(s), functions,
processes, sequence, etc. The distribution of these proteins in the
different nucleus compartments is shown in Table 1. It is worth
mentioning that the nucleus of the human cell has more proteins,
but at the time this project started, the Nuclear Protein Data-
base (http://npd.hgu.mrc.ac.uk/) [29] contained only 185 human
curated proteins.

2.2. Data processing

On the second stage, which also had two steps, the 185 proteins
were analyzed with a set of disorder predictors. There were
several choices when it came to choose one, depending on the
way the disorder is predicted. Because of their reputations and the
detailed information they provide, the binary classifier CH-CDF
plot and the PONDR-FITs metapredictor [30] were chosen for this
project.

2.2.1. PONDR-FITs processing
PONDR-FITs is a protein disorder meta-predictor (combines

several methods to predict the level of disorder of a given
sequence). This tool has proven to be moderately more accurate
than many other disorder predicting tools [30]. The input for
PONDR-FITs is the FASTA sequences of the proteins. The tool

Fig. 1. Sub-nuclear compartments. Reproduced with the permission from [211].
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returns a series of files for each protein, such as a META file that
contains detailed prediction information for the protein to the
amino acid level; VSL2 file that contains the sequence of residues
and two columns with the results of disorder prediction for each
residue (a number between 0 and 1) and a ‘flag’ field indicating if
the residue is considered to be disordered (‘D’ if the prediction is
greater than 0.5, ‘.’ otherwise). Furthermore, the VSL2 output file
contains, the header representing a summary of the regions that
are predicted as disordered; VLXT file containing the sequence of
residues and the POND VLXT disorder score for each residue
(a number between 0 and 1).

In addition to these files with raw data, the in-house version of
PONDR-FITs returns a unique file with a summary of the findings
for all the proteins processed. The columns of this file are:

� 1st column: name
� 2nd column: length of the protein
� 3rd and 4th: R%_meta and No – fraction of disordered residues

and number of disordered segments in the protein predicted by
PONDR-FIT;

� 5th and 6th: R%_VLXT and No – fraction of disordered residues
and number of disordered segments in the protein predicted by
PONDR-VLXT;

� 7th and 8th: R%_VL3 and No – fraction of disordered residues
and number of disordered segments in the protein predicted by
PONDR-VL3;

� 9th and 10th: R%_VSL2B and NO – fraction of disordered
residues and number of disordered segments in the protein
predicted by PONDR-VSL2B;

� 11th and 12th: R%_IUPred and NO – fraction of disordered
residues and number of disordered segments in the protein
predicted by IUPred;

� 13th and 14th: R%_FD and NO – fraction of disordered residues
and number of disordered segments in the protein predicted by
FoldIndex;

� 15th and 16th: R%_Top and NO – fraction of disordered residues
and number of disordered segments in the protein predicted by
TopIDP;

� 18th: CH_charge – averaged net charges
� 19th: CH_hydro – averaged hydrophobicity
� 20th: CH_dist – spatial distance on CH plot
� 21st: CH_dist2 – vertical distance on CH plot
� 22nd and 23th: N_CDFx and dCDFx – points above CDF

boundary and distance from CDF boundary calculated by
PONDR-VLXT prediction;

� 24th and 25th: N_CDFs and dCDFs – points above CDF bound-
ary and distance from CDF boundary calculated by PONDR-
VSL2B prediction;

� 26th and 27th: N_CDF3 and dCDF3 – points above CDF
boundary and distance from CDF boundary calculated by
PONDR-VL3 prediction;

� 28th and 29th: N_CDFi and dCDFi – points above CDF boundary
and distance from CDF boundary calculated by IUpred pre-
diction;

� 30th and 31st: N_CDFf and dCDFf - points above CDF boundary
and distance from CDF boundary calculated by FoldIndex
prediction;

� 32nd and 33th: N_CDFt and dCDFt – points above CDF
boundary and distance from CDF boundary calculated by
TopIDP prediction;

On the second step of this stage, all the information collected
up to this moment in various files was loaded in a MySQL database
using PHP scripts. There was no particular reason to choose both
tools (MySQL, PHP) aside from the fact that the development and
execution were quick, both are open source tools, and the
extensive experience of the author of the pipeline with both
technologies.

Table 2 represents the PHP scripts that were designed to
complete the following tasks:

1. Load and read of all the files of a given folder and a file type
(meta, vls2, etc.).

2. Parse of information, breaking down each row and columns,
cutting the white spaces and transforming the strings into
numbers when necessary.

Table 1
Distribution of the 185 curated human proteins among the sub-nuclear compart-
ments and the average disorder contents of these proteins.

Compartment Number of proteins Average disorder (%)

Cleavage body 2 83
OPT domain 2 78
SAM68 nuclear body 1 72
Nuclear speckles 12 65
Chromatin 1 60
PcG body 8 59
Nuclear pore complex 15 55
Cajal body 6 54
Perinuclear compartment 1 52
Heterochromatin 43 51
Nucleolus 86 44
PML body 1 41
RNA polymerase II 6 27
Gem 3 25

Table 2
The PHP scripts written in this study.

PHP script name Function

compartments.
php

Relate the compartment with the protein code, and store that relationship in the “COMPARTMENT” table.

longregions.php Once the data from the vsl2 files is loaded, this script reads the vsl2_files table and calculates the long disordered regions (regions with 30 or more
consecutive disordered residues).
This script then stores the results in the table “LONG_DISORDERED_REGIONS”, saving: the protein code, the position where the region starts and the
length of the region.

meta.php Load and process all the .meta files. The results are stored in the table “META_FILES”.
sum.php Load and process all the pondrfit summary files. The results are stored in the table “PONDFIT_SUM”.
vlxt.php Load and process all the .vlxt files. The results are stored in the table “VLXT_FILES”.
vsl2.php Load and process all the .vsl2 files. The results are stored in the table “VSL2_FILES”.
pullXmlUniprot.
php

Look for each protein at Uniprot.org and pull its XML.

parseXmlUniprot.
php

Open each of the files retrieved by pullXmlUniprot.php, and look for the nodes in the XMLs that list the protein's biological processes and functions,
and store them in an Excel file (that later will be loaded to the Database with the help of a EDI).
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3. Insert of the resulting values into a table in a MySQL Database.
Each file had a table related and additional tables were built to
store the information shared across the files, like the protein
name and compartment.

4. Pull the information of each protein from UniProt in XML
format.

5. Read the information of each protein and obtain its full name
and list of functions.

Having all the data loaded in a Relational Database facilitated
the structuring of the information and the easy querying and
filtering. The results from the PHP scripts were stored in a
Database created in MySQL. The resulting E-R (entity-relationship)
diagram is shown in Fig. S2, whereas Fig. S3 shows view created
from different tables.

2.2.2. Binary classification based on the CH-CDF analysis
In CD-CDF plot, coordinates of each spot are calculated as a

distance of the corresponding protein in the CH-plot (charge-
hydropathy plot) [9,17] from the boundary (Y-coordinate) and an
average distance of the respective cumulative distribution function
(CDF) curve [17] from the CDF boundary (X-coordinate) [31–33].
The primary difference between these two binary predictors (i.e.,
predictors which evaluate the predisposition of a given protein to
be ordered or disordered as a whole) is that CH-plot is a linear
classifier that takes into account only two parameters of the
particular sequence (charge and hydropathy), whereas CDF
analysis is dependent on the output of the PONDRs predictor, a
nonlinear classifier, which was trained to distinguish order and
disorder based on a significantly larger feature space. According to
these methodological differences, CH-plot analysis is predisposed
to discriminate proteins with substantial amount of extended
disorder (random coils and pre-“molten globules”) from proteins
with compact conformations (“molten globule”-like and rigid
well-structured proteins). On the other hand, PONDR-based CDF
analysis may discriminate all disordered conformations, including
molten globules, from rigid well-folded proteins. Therefore, this
discrepancy in the disorder prediction by CDF and CH-plot pro-
vides a computational tool to discriminate proteins with extended
disorder from molten globule-like compact IDPs or hybrid proteins
containing ordered domains and IDPRs. Positive and negative
Y values in CH-CDF plot correspond to proteins predicted within
CH-plot analysis to be natively unfolded or compact, respec-
tively. On the contrary, positive and negative X values are
attributed to proteins predicted within CDF analysis to be
ordered or intrinsically disordered, respectively. Thus, the resul-
tant quadrants of CDF-CH phase space correspond to the follow-
ing expectations: Q1, proteins predicted to be disordered by
CH-plots, but ordered by CDFs; Q2, ordered proteins; Q3, pro-
teins predicted to be disordered by CDFs, but compact by CH-
plots (i.e., putative molten globules or hybrid proteins with
ordered domains and IDPRs); Q4, proteins predicted to be
disordered by both methods.

2.2.3. Disorder analysis with MobiDB
Disorder evaluations for human nuclear proteins were further

enhanced by utilizing the outputs of the MobiDB database (http://
mobidb.bio.unipd.it/), [34,35] that generates consensus disorder
scores based on the outputs of ten disorder predictors, such as
ESpritz in its two flavors, [36] IUPred in its two flavors, [37]
DisEMBL in two of its flavors, [38] GlobPlot, [39] PONDRs VSL2B,
[40,41] and JRONN [42].

2.2.4. Focused look on some human nuclear proteins
For several human nuclear proteins, disorder evaluations

together with important disorder-related functional information
was retrieved from D2P2 database (http://d2p2.pro/) [19]. D2P2 is a
database of predicted disorder that represents a community
resource for pre-computed disorder predictions on a large library
of proteins from completely sequenced genomes [19]. D2P2 data-
base uses outputs of PONDRs VLXT [43], IUPred [37], PONDRs

VSL2B [40,41], PrDOS [44], ESpritz [36] and PV2 [19]. This database
is further enhanced by information on the curated cites of various
posttranslational modifications and on the location of predicted
disorder-based potential binding sites.

2.2.5. Finding potential disorder-based binding sites
Potential binding sites in disordered regions can be identified

by the ANCHOR algorithm [45,46]. This approach relies on the
pairwise energy estimation approach developed for the general
disorder prediction method IUPred, [37,47] being based on the
hypothesis that long regions of disorder contain localized potential
binding sites that cannot form enough favorable intrachain inter-
actions to fold on their own, but are likely to gain stabilizing
energy by interacting with a globular protein partner [45,46].
Regions of a protein suggested by the ANCHOR algorithm to have
significant potential to be binding sites are the ANCHOR-indicated
binding site (AIBS).

2.3. Data analysis

The last step was about analyzing the data loaded in MySQL
using Structured Query Language (SQL). The goals of these stages
were to:

� Group the proteins by their percentage of disorder.
� Find the compartments of the nucleus that have a high number

of disordered proteins.
� Find functions and processes of highly disordered proteins.
� See if some function(s) or process(es) is(are) common among

these groups of proteins, suggesting that their lack of structure
has a direct impact in the function.

� Find functions and processes of highly structured proteins.
� Compare these proteins' functions and processes with those

found among the disordered ones.

To accomplish this, the following were used:

� SQL queries in MySQL.
� Views built in MySQL.
� Graphs created in Excel.

3. Results

The overall disorder contents of various nuclear domains are
listed in Table 1, whereas Table S1 represents details of disorder
prediction for each of 185 human nuclear proteins analyzed in this
study. These data clearly show that according to the accepted
classification where two arbitrary cutoffs for the levels of intrinsic
disorder are used to classify proteins as highly ordered (IDP
scoreo10%), moderately disordered (10%r IDP scoreo30%) and
highly disordered (IDP scoreZ30%), [48] the majority of cellular
suborganelles are strongly disordered. This idea is further illu-
strated by Fig. 2 representing a pie-chart that shows the distribu-
tion of human nuclear proteins among these three disorder
categories.

Fig. 3 provides the peculiarities of the disorder distribution per
nuclear compartment. Here, plot shows how many proteins in a
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given compartment have that percentage of disorder or greater.
For example, heterochromatin has 43 proteins with 10% or more
disorder, representing 100% of its proteins. The same compartment
has 39 proteins (or 91%) with 20% or more disorder, and 33
proteins (77%) with 30% or more disorder, and so on. Therefore,
Fig. 3 gives a visual representation of the peculiarities of intrinsic
disorder distribution within the nuclear compartments analyzed
in this study and shows that a significant faction of proteins in
various nuclear compartments correspond to proteins with high
intrinsic disorder contents (i.e., proteins containing at least 50% of
disordered residues).

To get further insight into the nature of disorder in human
nuclear proteins, the binary CH-CDF classifier was applied. Fig. 4
represents the results of this analysis and clearly shows the by

their overall level of intrinsic disorder human nuclear proteins can
be grouped into three classes according to their localization within
the CH-CDF phase space. In fact, the vast majority of proteins in
almost all nuclear suborganelles are expected to disordered as a
whole and behave either as native coils or native pre-molten
globules (i.e., predicted as disordered by CH and CDF), or potential
native molten globules/hybrid proteins (predicted as disordered by
CDF but as compact by CH-plot). Only �12% of these proteins are
expected to be ordered as whole, being predicted as ordered by
both CH and CDF tools. There is no single protein in this set which
would be predicted to be ordered by CDF and disordered by
CH-plot analysis.

The point that human nuclear proteins analyzed in this study are
mostly disordered is further illustrated in Fig. 5 that compares the
percentage of disorder evaluated for the different nuclear proteins
by PONDRs VSL2B and JRONN. Fig. 5 shows that the results of the
disorder predictions obtained by these two computational tools are
mostly agree with each other. The aforementioned classification of
proteins as highly ordered (IDP scoreo10%), moderately disordered
(10%rIDP scoreo30%), and highly disordered (IDP scoreZ30%)
[48] is visualized in this plot as light blue, light yellow, and light
pink areas, respectively. Fig. 5 shows that according to this classi-
fication and based on the results of disorder evaluation by the two
predictors, almost all human nuclear proteins are predicted as
either moderately or highly disordered.

Often, intrinsically disordered protein regions (IDPRs) contain
local regions with a strong tendency to become ordered. TheseFig. 2. Peculiarities of disorder distribution in human nuclear proteins.

Fig. 3. Detailed representation of the disorder distribution in various nuclear compartments. This bar graph shows howmany proteins in each compartment have disordered
regions accounting for Z0%, Z10%, Z20%, …, Z80%, Z90%, and 100% of their residues.
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regions might undergo coupled folding and binding resulting from
their interaction with corresponding binding partners (e.g., for
some early NMR studies see Refs. [49–54]). Furthermore, predic-
tions of local order within long disordered regions coincide with
potential binding sites [55]. Therefore, molecular recognition
features (MoRFs) can be found as short regions with increased
order propensity and high α-helix-forming propensity that are
located within the long disordered regions and undergo coupled
binding and folding short regions [56,57]. Systematic application
of this computational tool to databases of genomics and function-
ally annotated proteins indicated that α-MoRFs are likely to be play
important roles protein–protein interactions involved in signaling
events [56]. Alternatively, disorder-based potential binding sites
can be found using the ANCHOR algorithm [45,46]. These
ANCHOR-indicated binding sites (AIBSs) found as a result of the
analysis of 185 human nuclear proteins are listed in Table S1. This
analysis revealed that AIBS are present in all nuclear proteins
which contain at least one AIBS. Furthermore, all but one nuclear
protein were shown to contain multiple AIBSs. In fact, 2231 AIBSs
were found in 185 human nuclear proteins, suggesting that, on
average, each protein contained �12 AIBS. Table S1 shows that
only 28 proteins contain less than 5 AIBSs, and there are 23
proteins that have more than 20 AIBSs each. The largest number of
AIBSs (97) is found within the antigen KI-67 (UniProt ID: P46013)
located within the heterochromatin (see Table S1). There are four
more proteins containing at least 40 AIBSs each: nuclear receptor
corepressor 2 (N-CoR2, UniProt ID: Q9Y618; 55 AIBSs), breast
cancer type 1 susceptibility protein (BRCA1, UniProt ID: P38398,
44 AIBSs), protein SON (also known as Bax antagonist selected in
saccharomyces 1 (Bass1) or negative regulatory element-binding
protein (NRE-binding protein), UniProt ID: P18583, 43 AIBSs), and
transcriptional regulator ATRX (UniProt ID: P46100, 40 AIBSs).
Furthermore, Table S1 shows that all nuclear compartments
contained multi-AIBS proteins and that length of the AIBSs was
ranging from 6 to 211 residues. The presence of more than one
AIBS in a protein suggests that almost all nuclear proteins are
involved either in the polyvalent interactions by using multiple
binding sites to interact with one binding partner or in
scaffolding-like interactions by using multiple binding sites to
interact with multiple binding partners. The wide spread of
lengths of identified AIBSs also suggests the presence of multiple

disorder-based binding mechanisms (ranging from local folding-
on-binding of short regions to wrapping around binding mode to
global binding-induced folding of large regions). The high abun-
dance of AIBS within human nuclear proteins suggests that these
disorder-based features are commonly utilized by these proteins
for their interactions with binding partners.

Fig. 6 represents illustrative examples of interaction networks
for five nuclear proteins, which, according to the ANCHOR analysis,
contained the largest number of disorder-based binding sites.
These proteins are: KI-67 (UniProt ID: P46013, Fig. 6A), N-CoR2
(UniProt ID: Q9Y618, Fig. 6B), BRCA1 (UniProt ID: P38398, Fig. 6C),
SON (UniProt ID: P18583, Fig. 6D), and ATRX (UniProt ID: P46100,
Fig. 6E). The interactivity of these human proteins was evaluated
by the online database resource STRING (Search Tool for the
Retrieval of Interacting Genes) that provides both experimental
and predicted information on interactions of a protein of interest
[58]. STRING produces the network of predicted associations for a
particular group of proteins. The network nodes are proteins,
whereas the edges represent the predicted or known functional
associations. An edge is drawn with up to 7 differently colored
lines that represent the existence of the seven types of evidence
used in predicting the associations. A red line indicates the
presence of fusion evidence; a green line – neighborhood evi-
dence; a blue line – co-occurrence evidence; a purple line –

experimental evidence; a yellow line – text mining evidence; a
light blue line – database evidence; a black line – co-expression
evidence [58]. Fig. 5 clearly shows that in agreement with the high
numbers of predicted potential disorder-based interaction sites in
these five proteins, all of them serve as hubs of well-developed
and exhaustive interaction networks. For comparison, Fig. 6F
represents the results of STRING analysis of the probable ribosome
biogenesis protein RLP24 (UniProt ID: Q9UHA3), which is a human
nuclear protein with just one predicted AIBS. This protein too is
involved in numerous interactions.

High binding promiscuity and high levels of connectivity
predicted for these proteins indicates that these human nuclear
proteins, which are also predicted to contain substantial amount of
intrinsic disorder, belong to the family of disordered hub proteins,
which are multitasking proteins found in protein–protein interac-
tion networks (PPI), where these promiscuous binders have multi-
ple links. Depending on timing of their interactions within the PPI
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Fig. 5. Abundance of intrinsic disorder in human nuclear proteins. JRONN vs. PONDRs VSL2B plot representing the correlation between the disorder content evaluated by
PONDRs VSL2B (x-axis) [40,41] and by JRONN (y-axis) [42]. Solid black line corresponds to the diagonal. Dashed line shows linear fit of all the data point to the
equation (R2¼0.90):.
DSJRONN ¼ –1:471þ0:8570:02 � DSPONDR :
Following the accepted practice, two arbitrary cutoffs for the levels of intrinsic disorder are used to classify proteins as highly ordered (IDP scoreo10% light blue field),
moderately disordered (10%r IDP scoreo30%, light yellow field) and highly disordered (IDP scoreZ30%, light pink field) [48].
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networks, hubs are classified as “party hubs” if they are involved in
multiple simultaneous interactions, whereas hubs with multiple
sequential interactions are considered as “date hubs” [59].
Obviously, the biological role of the “date hubs” is to connect
biological modules to each other [60], whereas “party hubs” have
scaffolding roles by enabling the assembly of functional modules
[59]. Binding promiscuity of hub proteins is believed to rely on
intrinsic disorder [23,61–65], that provides a molecular mechan-
ism for one-to-many and many-to-one PPIs [7].

The next step was to identify the common functions performed
by the proteins with the highest and lowest levels of disorder. The
question to answer with this exercise was: “is there a relationship
between the structure – or lack thereof – of these proteins and
their functions?” Interestingly enough, several shared functions
were identified for both disorder categories. Results of this analysis
are shown in Tables 3–5 which list functions and processed
shared by seven or more highly disordered proteins and three
or more moderately disordered proteins. There is a higher number
of functions assigned to highly disordered proteins (Table 4)

compared to the functions found among moderately disordered
proteins (Table 5). This indicates that most of the functions in the
nucleus of the cell (which are critical to the function and survival
of the entire cell) depend on highly disordered proteins.

4. Discussion

The space between the nuclear envelope and the nucleolus is
filled by a transparent, semi-solid, granular substance known as
nucleoplasm, nuclear sap or karyolymph. It is composed mainly of
nucleoproteins but also contains organic and inorganic molecules,
such as nucleic acids (DNA and RNA), minerals, and enzymes
needed for the synthesis of DNA, RNA and ribosomal subunits.
These and other nuclear components are not uniformly distributed
within the nucleoplasm, and nucleus contains several temporary
membrane-less organelles (nuclear domains or nuclear suborga-
nelles, or subnuclear organelles, or subnuclear bodies), such as
nucleolus, chromatin, PcG bodies, Cajal bodies, PML nuclear

Fig. 6. Analysis of the interactivity of the several human nuclear proteins by the STRING platform [58]. Analyzed proteins are: (A) KI-67 (UniProt ID: P46013), (B) N-CoR2
(UniProt ID: Q9Y618), (C) BRCA1 (UniProt ID: P38398), (D). SON (UniProt ID: P18583), (E) ATRX (UniProt ID: P46100), and (F) RLP24 (UniProt ID: Q9UHA3). STRING produces
the network of predicted associations for a particular group of proteins. The network nodes are proteins, whereas the edges represent the predicted or known functional
associations. An edge is drawn with up to 7 differently colored lines that represent the existence of the seven types of evidence used in predicting the associations. A red line
indicates the presence of fusion evidence; a green line – neighborhood evidence; a blue line – co-occurrence evidence; a purple line – experimental evidence; a yellow line –

text mining evidence; a light blue line – database evidence; a black line – co-expression evidence [58].

T. Frege, V.N. Uversky / Biochemistry and Biophysics Reports 1 (2015) 33–51 39



bodies, OPT domains, nuclear speckles, nuclear gems, cleavage
bodies, SAM68 nuclear bodies, perinuclear compartment, and
several others (see Fig. 1) [6]. Sections below represent several

subnuclear bodies and consider some prominent examples of the
experimentally validated intrinsically disordered proteins from
these nuclear suborganelles.

Table 3
Functions shared by highly disordered proteins.

Type Description Count % avg disorder

PROCESS Negative regulation of apoptotic process 7 77
PROCESS Small molecule metabolic process 9 72
PROCESS Mitotic nuclear envelope disassembly 8 72
PROCESS Regulation of glucose transport 8 72
PROCESS Transmembrane transport 8 72
PROCESS Carbohydrate metabolic process 8 72
PROCESS Glucose transport 8 72
PROCESS Hexose transport 8 72
PROCESS Cytokine-mediated signaling pathway 9 68
PROCESS Mitotic cell cycle 15 66
PROCESS Negative regulation of transcription from RNA polymerase II promoter 16 65
PROCESS mRNA transport 9 64
PROCESS mRNA processing 11 63
PROCESS Negative regulation of transcription, DNA-templated 21 62
PROCESS Transcription from RNA polymerase II promoter 11 62
PROCESS Positive regulation of transcription from RNA polymerase II promoter 18 61
PROCESS Transcription, DNA-templated 35 61
PROCESS Viral process 17 60
PROCESS Gene expression 18 60
PROCESS RNA splicing 16 60
PROCESS mRNA metabolic process 7 58
PROCESS Positive regulation of transcription, DNA-templated 14 57
PROCESS mRNA splicing, via spliceosome 11 56
PROCESS Negative regulation of cell proliferation 7 56
PROCESS RNA metabolic process 9 53
PROCESS Regulation of transcription, DNA-templated 17 53
PROCESS Negative regulation of cell growth 7 52
PROCESS Cellular response to DNA damage stimulus 10 51
PROCESS DNA repair 11 51
PROCESS Cellular protein metabolic process 7 47
FUNCTION Sequence-specific DNA binding transcription factor activity 11 65
FUNCTION Chromatin binding 22 65
FUNCTION DNA binding 33 63
FUNCTION Transcription corepressor activity 10 61
FUNCTION Poly(A) RNA binding 48 61
FUNCTION Sequence-specific DNA binding 8 61
FUNCTION Protein binding 91 59
FUNCTION Enzyme binding 7 59
FUNCTION Nucleotide binding 16 58
FUNCTION Zinc ion binding 18 55
FUNCTION Identical protein binding 11 55
FUNCTION RNA binding 24 53
FUNCTION Transcription coactivator activity 7 50
FUNCTION ATP binding 17 50
FUNCTION Metal ion binding 7 41

Table 4
Functions shared by moderately disordered proteins.

Type Description Count % avg disorder

FUNCTION Metal ion binding 3 15
FUNCTION ATP binding 7 13
FUNCTION ATP-dependent RNA helicase activity 3 13
FUNCTION Protein binding 14 13
FUNCTION RNA helicase activity 3 13
FUNCTION DNA binding 7 12
FUNCTION Poly(A) RNA binding 8 12
PROCESS Protein transport 3 16
PROCESS mRNA processing 3 14
PROCESS Negative regulation of transcription from RNA polymerase II promoter 4 14
PROCESS ATP catabolic process 3 13
PROCESS DNA repair 4 12
PROCESS Gene expression 5 12
PROCESS Positive regulation of transcription from RNA polymerase II promoter 3 12
PROCESS Innate immune response 4 11
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4.1. Disorder in cleavage body (average disorder score 83%)

Cleavage bodies have diameters of 0.3–1 μm and range in
number from 1 to 4 per nucleus [66]. These suborganelles got
their name from the fact that they contains the cleavage stimula-
tion factor (CstF), and the cleavage and polyadenylation specificity
factor (CPSF), both of which are necessary for 30-terminal proces-
sing of polyadenylated mRNAs [66]. Besides these cleavage factors
cleavage bodies are known to contain transcription factors TFIIE
and TFIIF [67]. One of proteins colocalized with cleavage bodies is
prothymosin α [68], structural properties which were character-
ized by a multitude of biophysical techniques to show that it is a
typical highly extended IDP with almost complete lack of residual
secondary structure [69–71].

4.2. Disorder in OPT domains (average disorder score 80%)

Oct1/PTF/transcription (OPT) domains are active domains that
contain nascent transcripts, rich in transcription factors (PTF, Oct1,
TBF, and Sp1), and includes RNA polymerase II. These domains are
1.0–1.5 μm in diameter [72,73]. Each mammalian nucleus contains
between one to three of OPT domains that appear during the G1
stage of the cell division, usually close to the nucleoli, and
disappear on the S stage [6]. Each OPT domain typically contains
2 or 3 transcription ‘factories’ where bromouridine-triphosphate
BrUTP (BrUTP, a specific label, which, being introduced into
eukaryotic cells in culture, substitutes for UTP during transcrip-
tion, thereby providing reliable readout of pre-mRNA for detection
by immunochemical methods), is incorporated into nascent tran-
scripts [73]. Two of the transcription factors found in this sub-
nuclear organelle, PTF and Oct1, are known to activate the
transcription of genes encoding snRNAs and other ‘processing
RNAs’. These proteins bind to proximal and distal sequence
elements (PSEs and DSEs) within the promoters and activate
transcription by RNA polymerases II or III [73]. Sp1 is the
promoter-specific transcription factor that enhances transcription
from a variety of genes by binding to GC-rich decanucleotide
recognition elements (GC boxes) within the 50-flanking promoter
sequences [74,75].

The level of intrinsic disorder in this nuclear domain is high,
since the majority of its constituents are transcription factors;
i.e., proteins that are known to be highly disordered in general
[76–79]. In agreement with these general observations, one of the
proteins found in the OPT domain, transcription factor Sp1
(UniProt ID: P08047), contains very significant amount of disorder
(see Fig. 7A). In fact, the overall disorder content of this protein
evaluated by PONDRs VSL2 is 72%. Also, Fig. 7A shows that
this transcription factor has multiple disorder-based interaction
sites, is full of PTMs and has several functional domains. The

DNA-binding domain located at the C-terminus of this transcrip-
tion factor is known to contain three contiguous Cys2-His2 zinc
finger domains with the consensus sequence Cys-X2-4-Cys-X12-
His-X3-His [80]. Structures of these zinc finger domains (residues
619–654, 654–684, and 684–712) in their zinc bound form have
been determined by NMR [81]. This analysis revealed that
although all of these DNA binding motifs have a canonical fold,
they interact with DNA differently [81]. In fact, each of fingers
2 and 3 recognizes four base pairs strictly by using residues at
positions �1, 2, 3, and 6 of the recognition helix. However, the
interaction mode of finger 1 is quite different and this motif can
use only two residues for DNA recognition at positions �1 and
3 of the helix [81]. As a result, in comparison with other Cys2-His2
zinc fingers, finger 1 has more relaxed sequence and site specifi-
city. Based on these observations it was suggested that this relaxed
finger 1 defines the ability of Sp1 to bind various DNA sequences
with high affinity [81].

4.3. Disorder in SAM68 nuclear bodies (average disorder score 72%)

Similar to the perinucleolar compartment (PNC, see below)
SAM68 nuclear bodies are unique structures associated with the
surface of nucleoli and involved in the RNA metabolism [6,82].
They range in size from 0.25 to 1.0 μm in diameter, and there are
1–10 of these bodies per nucleus. The major components of the
SAM68 nuclear bodies are the members of a group of RNA-binding
proteins that contain a GSG domain (GRP33, Sam68, GLD-1), also
known as the signal transduction and activation of RNA (STAR)
domain [6]. The founding member of this class of proteins, Src
associated in mitosis 68 kDa protein (Sam68, also known as KH
domain-containing, RNA-binding, signal transduction-associated
protein 1, KHDRBS1), belongs to the heteronuclear ribonucleopro-
tein particle K (hnRNP K) homology (KH) domain family of
RNA-binding proteins [83]. Sam68 is involved in various post-
transcriptional regulation events, such as alternative splicing and
RNA export [84–86]. Since Sam68 is involved in protein and RNA
binding, this dual activity is reflected in its structure [83]. Protein
has the KH domain (residues 171–197) flanked by conserved
N- and C-terminal sequences needed for its RNA binding and four
proline-rich regions needed for interaction with SH3 and WW
domain-containing proteins [83]. These proline-rich protein recog-
nition sequences are flanked by Arg/Gly-rich motifs which can be
asymmetrically dimethylated on arginine residues to give the
DMA/Gly-rich regions. For human protein, structure is known for
the homodimerization domain (residues 97–135) [87] and the
tyrosine-rich domain (residues 365–419) in a complex with the
armadillo repeat domain of adenomatous polyposis coli (APC) [88].
The unusual topology of the homodimerization domain is indica-
tive of the folding upon binding mechanism, where intrinsically

Table 5
Functions found in common between highly and moderately disordered nuclear proteins.

Type Description

FUNCTION ATP binding
FUNCTION DNA binding
FUNCTION Metal ion binding
FUNCTION Poly(A) RNA binding
FUNCTION Protein binding
PROCESS ATP catabolic process
PROCESS DNA repair
PROCESS Gene expression
PROCESS Innate immune response
PROCESS mRNA processing
PROCESS Negative regulation of transcription from RNA polymerase II promoter
PROCESS Positive regulation of transcription from RNA polymerase II promoter
PROCESS Protein transport
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disordered monomers fold at dimerization. In the Sam68-APC
complex, only 11 of 55 residues of the Sam 68 tyrosine-rich
domain are visible (residues 379–389), indicating that the

N- and C-termini of this fragment are disordered. In agreement
with these observations, Fig. 7B shows that Sam68 is predicted to
be heavily disordered and contain numerous disorder-based

Fig. 7. Evaluation of the functional intrinsic disorder propensity of representative human nuclear proteins by D2P2 database (http://d2p2.pro/) [19]. (A) Sp1 (UniProt ID:
P08047). (B) Sam68 (UniProt ID: Q07666). (C) CASC3 (UniProt ID: O15234). (D) Coilin (UniProt ID: P38432). (E) SRA1p (UniProt ID: Q9HD15). (F) SMN (UniProt ID: Q16637).
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interactions regions and numerous sites of posttranslational mod-
ifications (PTMs).

4.4. Disorder in nuclear speckles (average disorder score 65%)

Nuclear speckles (or interchromatin granule clusters) are the
storage sites for the pre-mRNA splicing factors that can be later
recruited by RNA polymerase II transcription sites in the nucleo-
plasm. The cell nucleus contains 25–50 such speckles which are

diffusely distributed throughout the nucleoplasm and that include
a set of pre-mRNA splicing factors [89]. In Drosophila, proteins
targeted to the speckled regions were shown to contain an
arginine/serine- (RS) rich domain composed of approximately
120 amino acids [89]. One of the proteins associated with the
nuclear speckles is cancer susceptibility candidate gene 3 protein
(CASC3, 703 residuies, UniProt ID: O15234), which is a typical
representative of the IDP world. This protein is predicted to be
highly disordered, to contain a large number of PTM sites and

Fig. 7. (continued)
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several disorder-based molecular recognition regions (see Fig. 7C).
Structural information is available for the functional region (resi-
dues 137–283) required for the RNA-binding, interaction with

MAGOH, localization in nucleus speckles, and to the formation of
the splicing-dependent exon junction complex (EJC). Of 146
residues used in crystallization experiment, only central region

Fig. 7. (continued)
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(residues 172–249) was resolved, whereas both N- and C-termini
showed high level of disorder manifested in missing electron
density for residues 137–171 and 249–283 [90].

4.5. Disorder in chromatin and heterochromatin (average disorder
scores 60% and 51%)

The nucleoplasm contains thread-like, coiled, elongated struc-
tures, which are chromatin or chromatin fibers. Chromatin is not
evenly distributed within the nucleus but is known to be organized
into the chromosome territories [6,91,92]. During cell division,
these fibers take ribbon-like structures and are known as chromo-
somes (molecules made of DNA and proteins). The chromatin fibers
are twisted, fine, anastomose, and uniformly distributed within the
nucleoplasm. There are two segments in the chromatin: hetero-
chromatin and euchromatin. Heterochromatin, being present in
certain places in the chromatin, is genetically inert and does not
take part in transcription. It only replicates late in the S-phase of the
cell. Euchromatin, in turn, replicates early, forms the bulk of the
chromatin, is genetically active and only a portion takes part in
transcription. Chromatin is a way of dynamic storage of long DNA
molecules. The primary functions ascribed to chromatin are DNA
packaging into a smaller volume to fit in the cell, DNA reinforcement
to allow mitosis, preventing DNA damage, and providing means to
control DNA replication and gene expression [93]. The dynamics of
chromatin structure is tightly regulated through multiple mechan-
isms such as histone modification, chromatin remodeling, histone
variant incorporation, and histone eviction [93].

The major players in the hierarchical packaging of genomic
DNA in the eukaryotic nucleus are histone proteins. In fact, the
fundamental repeating unit of chromatin is the nucleosome that
comprises 146 base pairs of DNA wrapped in 1.7 superhelical turns
around a core histone octamer consisting of two dimers of H2A-
H2B that serve as molecular caps for the central (H3–H4)2
tetramer [94–96]. At the first level of chromatin organization,
nucleosomes are arranged in the specific array, that represents a
“beads-on-a-string” fiber with a diameter of 11-nm [95]. The
subsequent binding of the linker histone (H1 or H5) transforms
the nucleosome arrays into a more condensed 30-nm chromatin
fiber, which represents the second structural level of DNA organi-
zation [96,97].

Histones are small, highly basic nuclear proteins that associate
with DNA in a specific stoichiometry to form the nucleosome,
which further contributes to the formation of the chromatin fiber
to package the complete genome within the nucleus. There are
five classes of histones in mammals, namely core histones H2A,
H2B, H3, H4, and a linker histone H1 (or H5 in avian erythrocytes,
which unlike mammalian erythrocytes, have nuclei). Each histone
class has various numbers of variants that are expressed in a
cellular context-dependent manner. Activity of histones is tightly
regulated via the broad range of reversible, enzymatic posttransla-
tional modifications (PTMs), constituting a specific histone code
[98–102]. Since the major function of histones is DNA condensa-
tion in chromatin, these proteins are intimately involved in major
cellular processes such as DNA damage response, X chromosome
inactivation, transcriptional regulation, and even formation of an
epigenetic memory [103–110]. Several diseases and syndromes are
related to the dysregulation of histone functions and PTMs [111].

The fact that the histone tails are typical IDPRs is well-
established [112]. For example, the N-terminal tails are the most
basic regions of the histones that contain no acidic residues, and
have very high contents of basic residues [113]. The C-terminal
sequences of core histones extend beyond the histone fold and are
highly dynamic [95]. The highly dynamic nature of histone tails is
visualized by the X-ray structures of nucleosomes, where tail
domains appear to sample multiple conformations [95,114–117].

The intrinsically disordered nature of the N-terminal “tail”
domains (NTDs) of the core histones and the C-terminal tail
domains (CTDs) of linker histones, peculiarities of their amino
acid compositions, and the role of intrinsic disorder in functioning
and posttranslational modifications of these domains were sys-
temized in a review by Hansen et al. [118]

Furthermore, pure histones dissolved in water with no added
salt are intrinsically disordered [119–127]. However, in the presence
of salt they adopt folded conformation [121–127]. This salt-induced
refolding is a highly cooperative conformational change that is
similar to the transitions observed during the renaturation of
unfolded globular proteins [127]. Systematic structural character-
ization of a sample of histones from calf thymus, representing a
mixture of core histones H2A, H2B, H3, and H4, revealed that the
bovine core histones are intrinsically disordered proteins [128]. This
conclusion was recently extended to 42000 histones from all five
histone classes found in �750 species [129]. Here, the comprehen-
sive computational analysis revealed that the majority of the
histone family members were predicted to be mostly disordered,
with intrinsic disorder extending far beyond the limits of men-
tioned NTDs of the core histones and CTDs of linker histones [129].

4.6. Disorder in PcG bodies (average disorder score 59%)

PcG bodies are associated with pericentromeric heterochroma-
tin [130]. They got their name from their content, which is
polycomb group (PcG) complex containing Ring1, Bmi1, and hPc2
proteins [130]. The number of these domains per cell varies from
two to several hundred. PcG bodies are not randomly dispersed,
but are clustered into defined areas within the nucleus. They also
vary in size (0.2–1.5 μm) and protein composition [6,130]. It is
believed that PcG bodies are required to maintain the transcrip-
tionally repressive state of many genes, including Hox genes,
throughout development [131]. PcG proteins can form different
complexes (e.g., polycomb repressive complexes 1 and 2, PRC1 and
PRC2) which are different in composition and function [132,133].
For example, PRC1 includes Bmi1, HPH2, PC3, and Ring proteins
(Ring1A and Ring1B) [134] and have two major biological func-
tions, binding chromatin to prevent it from being remodeled by
ATP-dependent remodeling factors, [135] and serving as an E3
ubiquitin ligase responsible for the mono-ubiquitination of the
nucleosomal histone H2A at lysine 119 [134]. On the other hand,
PRC2 complex serves as a histone methyltransferase responsible
for the methylation of histone H3 at lysine 27 [136,137].

Bmi1 plays a central role in the assembly of the mammalian
PRC1 complex. Although this protein does not have detectable
ubiquitin ligase activity, the binding of Bmi1 greatly stimulates the
E3 ligase activity of the Ring1B [131,134]. Human Ring1B (residues
1–336) and a Bmi1 fragment encompassing residues 1–230 were
used in the analysis of the structural prerequisites of the Bmi1-
Ring1B complex formation [138]. The pre-crystallization treatment
of the mixture of these proteins with the protease elastase
generated mini Bmi1-Ring1B core that included the N-terminal
regions of both proteins (residues 5–101 of Bmi1 and residues
15–114 of Ring1B) [138]. The fact that very large parts of both
proteins can be removed by proteolysis indicates that these
regions (or their significant fractions) are intrinsically disordered.

4.7. Disorder in the nuclear pore (average disorder score 55%)

Since the nucleus is one of the membrane-enclosed cellular
organelles, it has an outer structure (see Fig. 1), the nuclear
envelope, which separates the contents of the nucleus from the
cytoplasm and known to disappear during cell division. The
nuclear envelope is composed of two layers: an outer membrane
(which is contiguous with the endoplasmic reticulum) and an
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inner membrane (also known as nuclear lamina), each of about
75–90 Å thick and lipoproteinaceous in nature. The space between
these two membranes is known as the perinuclear space [139].
Both the nuclear envelope and the nuclear lamina enable the
exchange of ions between the nucleus and cytoplasm, and in some
cell types (such as salivary glands) these two structures work as a
barrier for the diffusion of substances and some ions, such as
potassium(Kþ), sodium (Naþ) and chlorine (Cl–) [140–142].

The integrity of the nuclear envelope is interrupted by the pre-
sence of nuclear pores, large, multichain proteinaceous machines,
known as the nuclear pore complexes. The number of pores found
in the nuclear envelope depends on the species and the type of the
cell. The pores are arranged hexagonally along the membrane. It
was estimated that these pores cover 10% of the surface of the
nucleus in mammalian cells. In some cases, this pore complex
remains covered by a thin membrane that may serve for selective
permeability, which depends on both the cell type and its metabolic
state [143–145]. Nuclear pore is a large proteinaceous machine
(124 MDa in mammals) that crosses the nuclear envelope and
contains approximately 30 different protein components (nucleo-
porins), each in multiple copies [145]. About half of the nucleopor-
ins are ordered transmembrane proteins that typically contain
either an α-solenoid or a β-propeller fold, or, for multidomain
nucleoporins, both folds in separate structural domains. The other
half nucleoporins belongs to the category of IDPs; i.e., many these
nucleoporins are characterized by extended structure, high con-
formational flexibility, and lack of ordered secondary structure
[146–149]. Careful structural analysis of gate-forming nucleoporins
containing large IDPRs with multiple phenylalanine–glycine repeats
(FG domains) revealed that these IDPs could be grouped into at
least two distinct categories of intrinsically disordered structures.
Some nucleoporins adopt more collapsed configurations and are
characterized by low charge contents. Others are highly charged
and adopt more dynamic, extended coil conformations. Interest-
ingly, several FG nucleoporins feature both types of structures in a
bimodal distribution along their polypeptide chain [148].

4.8. Disorder in Cajal body (average disorder score 54%)

Cajal bodies (CBs) are roughly spherical 0.1–2.0 mM structures
numbering one to five per nucleus. They are not easily seen in all
cell types, but are prominent in highly active cells such as cancer
cells or neurons [150,151]. CBs also known as nucleolar accessory
bodies or coiled bodies are conserved from plant to mammals. The
name “coiled bodies” was given to these suborganelles because of
the presence of the coiled threads of the marker protein, coilin
[150,151]. Being able to concentrate the components of several
nuclear processes, CBs are thought to be responsible for the
increased efficiency of the corresponding processes (e.g., assembly
of U snRNPs, some of which eventually form the RNA splicing
machinery, or spliceosome) [151]. Fig. 7D shows that coilin is
predicted to be disordered and enriched in PTM sites and disorder-
based recognition motifs. In agreement with these predictions,
structural analysis of the coilin from Arabidopsis thaliana revealed
that this protein has a loosely ordered N-terminal domain (resi-
dues 1–117), a highly disordered central domain (residues 117–
350) and a loosely ordered C-terminal region (residues 370–608)
containing the Tudor-like domain [152].

4.9. Disorder in perinucleolar compartment (average disorder score
52%)

The perinucleolar compartment (PNC) is irregularly shaped
nuclear body, ranging from 0.25 to 4.0 mm in length, and is asso-
ciated with the periphery of the nucleolus [153–155]. It contains
several short RNAs which are RNA polymerase III transcripts

(such as Y RNAs, MRP RNA, and RNase P H1 RNA) and the
polypyrimidine tract-binding protein, heterogeneous nuclear ribo-
nucleoprotein I (hnRNP I) [153]. Despite intensive efforts, the
structural information on the full-length hnRNP I (UniProt ID:
P31943) is still missing. Although several fragments of this protein
(its RNA recognition motifs, RRMs) were structurally characterized
by NMR (e.g., RRM1, residues 55–147 [156], RRM2, residues 147–
301 [156], RRM3-RRM4, residues 324–531 [157]) or X-ray crystal-
lography (RRM2, residues 156–286 [158]), all structures contain
long disordered regions. This is in agreement with computational
characterization of intrinsic disorder in human hnRNP I, which is
predicted to have long disordered N-tail and long disordered
linkers connecting RRMs. This “beads-on-a-string” structural orga-
nization defines the capability of this proteins for multivalent
binding and extends the search area for this multivalent
interaction.

4.10. Disorder in nucleolus (average disorder score 44%)

Besides the chromatin, an important organelle which is clearly
visible in the nucleoplasm is the nucleolus. The nucleolus is a
dense, spherical, acidophilic structure. Its size is related to the
ribosomal demands of the cell. Cells with no synthetic activities
(such as spermatozoids or muscle cells) have smaller or no
nucleolus, whereas cells producing large amounts of proteins
(and, thereby, requiring more ribosomes) have large size nucleolus
[159]. The main function of the nucleolus is the biogenesis of
ribosomal subunits, which are later taken to the cytoplasm for the
translation of RNA. The typical nucleolus is composed of 3 regions:
fibrillar center, which contains the genes of the nuclear organizer
of chromosomes, the fibrillar components which are responsible
for RNA synthesis, whereas the cortical granular components – the
outermost regions – are in charge of the maturation of pre-
ribosomal particles [160].

The nucleolar proteins represent the largest subset of human
nuclear proteins analyzed in this study. One of the best studied
IDPs found in this compartment is an inhibitor of cyclin dependent
protein kinases (Cdks) p27kip1 [49,161–167]. Being essentially
unfolded in its unbound state, p27kip1 gains structure at interac-
tion with cyclin A/Cdk2 complex [41,120–126]. The flexibility and
lack of structure are key features of the p27kip1-based signaling
conduit [162–164]. The p27kip1 chain wraps around the cyclin
A/Cdk2 complex and interacts with features at multiple locations,
including some on opposite sides of the complex [168]. Such
interaction mode supports a fully disordered state in uncomplexed
p27Kip1. This type of coupled folding and binding was described for
some other IDPs [169–171]. Lack of structure in the unbound state
facilitates the unzippering of complexes, [7] thereby allowing part
of a complex to separate while maintaining other interactions. The
flexibility of this tethered disordered segment further enables
p27kip1 to fold back and thereby accelerates phosphorylation via
a unimolecular mechanism [164].

4.11. Disorder in PML body (average disorder score 37%)

PML bodies, also referred to as ND10, PODs (PML oncogenic
domains) and Kr bodies, vary in size from 0.3 mm to 1.0 mm in
diameter [172]. The average mammalian nucleus can contain
between 10 and 30 of these structures. Although PML bodies have
been found juxtaposed to other nuclear structures such as nuclear
gems and Cajal bodies, the significance of this association is
unknown. Neither chromatin nor RNA is found within the central
core of these bodies, but newly synthesized RNA is associated with
their periphery [173]. The human MHC locus on chromosome
6 has been shown to associate preferentially with PML bodies
[174]. The PML body contains satellite DNA and several proteins
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such as Sp100, SUM01, HAUSP, HP1, BRCA1, ATRX, DAXX, and, the
promyelocytic leukemia (PML) protein [29,175]. This subnuclear
organelles are believed to be involved in the re-establishment of
the condensed heterochromatic state on late-replicated satellite
DNA [175].

One of the well-characterized IDPs found in PML bodies is an
important tumor suppressor protein BRCA-1, which is known to
participate in many cellular pathways, such as transcription,
apoptosis, and DNA repair, through direct or indirect interaction
with a variety of partners [176]. A canonical isoform of this protein
is a 1863 residues-long polypeptide that contain a long intrinsi-
cally disordered central region [177], flanked by ordered domains
at the two termini, an N-terminal RING finger domain of 103
residues, and C-terminus located two tandem copies of the BRCA1
C-terminal domain with a total of 218 residues making up the two
domains. The long central IDPR of BRCA1 contains numerous
molecular recognition domains for DNA and several protein-
binding partners [178,179]. It is known that intrinsic disorder
plays a unique role in alternatively splicing-based modulation of
the BRCA1 functionality. In fact, alternatively splicing (AS) pre-
dominantly affect the long central IDPR of BRCA1, and different AS
isoforms described for BRCA1 lack various functional regions
[178,179]. The removal of specific functional regions in various
AS isoforms creates diverse functional profiles for the transcribed
gene products. This AS-based functional re-profiling of IDPs was
attributed to the facts that regulatory and signaling elements in
IDPRs usually contain just a few residues, and that the density of
these functionally important segments within the IDPRs is high
[178,179].

4.12. Disorder in RNA polymerase II transcription machinery
(average disorder score 27%)

RNA polymerase II (Pol II) is a proteinaceous machine that
catalyzes the transcription of DNA to synthesize precursors of
mRNA and most snRNAs and microRNAs [180,181]. In humans, the
core enzyme has 12 subunits, RBP1-RBP12, which range in size
from �6 to 200 kDa [182]. The level of evolutionary conservation
of this machine is so high, that many yeast Pol II subunits can be
replaced with their mammalian counterparts without deleterious
effects on cell function [182–186]. The core Pol II is incapable of
promoter recognition and requires a wide range of general
transcription factors and regulatory proteins to bind to upstream
gene promoters and begin transcription. Therefore, the function
competent form of this enzyme, which is known as RNA poly-
merase II holoenzyme, consists of core Pol II, a subset of general
transcription factors, and regulatory proteins known as SRB
proteins [182].

A peculiar protein found in association with the RNA polymer-
ase II transcription machinery is the steroid receptor activator
RNA protein (SRA1p). SRA1p is the translation product of the
bi-functional steroid receptor activator RNA 1 (SRA1), which is a
large RNA transcript that can be processed as a messenger RNA,
but also acts as a long non-coding RNA (lncRNA), possibly serving
as a component of the steroid receptor coactivator-1 complex
[187,188]. SRA1p can be divided into four specific regions: (i) a
basic, intrinsically disordered N-terminal tail (residues 1–64,
7 kDa, pI�9.5); (ii) an intrinsically disordered, proline-rich (40%)
linker region (residues 65–106); (iii) an RNA-binding, α-helical,
103 residue-long acidic domain (residues 107–209, 14.7 kDa,
pI¼6), which is folded similar to the PRP18 splicing factor; and
(iv) a long disordered C-tail (residues 210–236) [188]. In agree-
ment with this structural description derived from the NMR
analysis of this protein, Fig. 7E shows that SRA1p is predicted to
have long disordered tails, disorder-based binding regions and
multiple PTM sites.

4.13. Disorder in gems (average disorder score 25%)

Gems contain the survival motor neuron (SMN) protein
encoded by the SMN1 gene, which is frequently mutated or
deleted in spinal muscular atrophy [189,190]. SMN forms a
complex with Gemins 2–7, interacts with Sm, Sm-like proteins,
RNA helicase A, and hnRNP R, Q, and U [191], plays a critical role in
snRNP biogenesis [192,193], and is implicated in the assembly of
short nucleolar ribonucleprotein (snoRNP) particles [194] and the
RNA polymerase II transcription and processing machinery
[190,195]. SMN is predicted to be a highly disordered protein
(see Fig. 7F). In agreement with these predictions, the structural
information for the whole protein is not available as of yet.
However, a short fragment corresponding to the N-terminal
α-MoRF (residues 26–62) was co-crystallized with Gemin 2
[196]. Also, structural information is available for the Tudor
domain of this protein (residues 84–147) [197], which is the only
relatively long region of predicted order in this protein (see
Fig. 7F). As typical for many regulatory IDPs [198,199], the SMN
protein is heavily phosphorylated.

4.14. Intrinsically disordered proteins as critical constituents of
nuclear domains and major controllers of assembly and disassembly
of these organelles

Recently, it has been proposed that IDPs may play an important
role in driving the intracellular liquid–liquid phase separations
generating various membrane-less organelles [200]. It has been
emphasized that these membrane-less organelles are formed via
the colocalization of molecules at high concentrations within a
small cellular micro-domain. Among considered examples of such
organelles were PML bodies or nuclear dots, or PODs, perinucleo-
lar compartment (PNC), the Sam68 nuclear body (SNB), paraspe-
kles, nuclear speckles or interchromatin granule clusters, nucleoli,
processing bodies, germline P granules, Cajal bodies (CBs), centro-
somes, and stress granules [200], many of which are subnuclear
organelles considered in our study. Being devoid of membranes,
these organelles are highly dynamic, with their components being
in direct contact with the surrounding nucleoplasm or cytoplasm
[201,202]. Such membrane-less organelles are only slightly denser
than the bulk intracellular/intranuclear fluid, are characterized by
high level of internal dynamics, and therefore they can be
considered as liquid-droplet phases of the nucleoplasm/cytoplasm
[203–208]. Being found in different cellular and nuclear locations
and being composed of rather different proteins and nucleic acids,
these organelles are formed via a common mechanism related to
the intracellular phase transitions [209]. These phase transitions
are driven by the effects of macromolecules on the structure and
solvent properties of water and are related to the high concentra-
tions of macromolecular solutes, since at low macromolecule
concentrations, the solution exists as a single phase, whereas at
high concentrations, phase separation occurs [210]. Earlier study
revealed that many proteins responsible for the formation of the
cytoplasmic or nucleoplasmic membrane-less organelles are in
fact intrinsically disordered [200]. It was also hypothesized that
because of the IDPs are known to be engaged in various weak
interactions of different physico-chemical nature and because of
these proteins are commonly seen in different cytoplasmic and
nuclear membrane-less organelles, IDPs might serve as perfect
regulators and controllers of the formation of these organelles via
the aforementioned phase separation [200]. Our current work
provides additional support to this idea and shows that many
subnuclear organelles in human cells are enriched in IDPs and
hybrid proteins possessing ordered and disordered domains
and that human nuclear proteins are very promiscuous binders
possessing both large quantities of potential disorder-based
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interaction sites and the ability of a single such site to be involved
in large number of interactions.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.bbrep.2015.03.003.

Appendix B. Transparency document

Transparency document associated with this article can be
found in the online version at http://dx.doi.org/10.1016/j.bbrep.
2015.03.003.

References

[1] D.S. Goodsell, Miniseries: illustrating the machinery of life: eukaryotic cell
panorama, Biochem. Mol. Biol. Educ.: Bimon. Publ. Int. Union Biochem. Mol.
Biol. 39 (2011) 91–101.

[2] V. Tripathi, K.V. Prasanth, Cell Nucleus eLS, John Wiley & Sons Ltd.,
Chichester, 2011.

[3] New Models of the Cell Nucleus: Crowding, Entropic Forces, Phase Separa-
tion, and Fractals, in: R. Hancock, K. Jeon (Eds.), Academic Press, Amsterdam,
Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San
Francisco, Singapoe, Sydney, Tokyo, 2014.

[4] P. Jevtic, L.J. Edens, L.D. Vukovic, D.L. Levy, Sizing and shaping the nucleus:
mechanisms and significance, Curr. Opin. Cell Biol. 28 (2014) 16–27.

[5] S. Fakan, The functional architecture of the nucleus as analysed by ultra-
structural cytochemistry, Histochem. Cell Biol. 122 (2004) 83–93.

[6] D.L. Spector, Nuclear domains, J. Cell Sci. 114 (2001) 2891–2893.
[7] A.K. Dunker, E. Garner, S. Guilliot, P. Romero, K. Albrecht, J. Hart,

Z. Obradovic, C. Kissinger, J.E. Villafranca, Protein disorder and the evolution
of molecular recognition: theory, predictions and observations, Pac. Symp.
Biocomput. Pac. Symp. Biocomput. (1998) 473–484.

[8] P.E. Wright, H.J. Dyson, Intrinsically unstructured proteins: re-assessing the
protein structure–function paradigm, J. Mol. Biol. 293 (1999) 321–331.

[9] V.N. Uversky, J.R. Gillespie, A.L. Fink, Why are “natively unfolded” proteins
unstructured under physiologic conditions? Proteins 41 (2000) 415–427.

[10] A.K. Dunker, J.D. Lawson, C.J. Brown, R.M. Williams, P. Romero, J.S. Oh,
C.J. Oldfield, A.M. Campen, C.M. Ratliff, K.W. Hipps, et al., Intrinsically
disordered protein, J. Mol. Graph Model. 19 (2001) 26–59.

[11] P. Tompa, Intrinsically unstructured proteins, Trends Biochem. Sci. 27 (2002)
527–533.

[12] G.W. Daughdrill, G.J. Pielak, V.N. Uversky, M.S. Cortese, A.K. Dunker, Natively
disordered proteins, in: J. Buchner, T. Kiefhaber (Eds.), Handbook of Protein
Folding, Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005,
pp. 271–353.

[13] V.N. Uversky, A.K. Dunker, Understanding protein non-folding, Biochim.
Biophys. Acta 1804 (2010) 1231–1264.

[14] A.K. Dunker, Z. Obradovic, P. Romero, E.C. Garner, C.J. Brown, Intrinsic protein
disorder in complete genomes, Genome Inf. Ser. Workshop Genome Inf. 11
(2000) 161–171.

[15] P. Romero, Z. Obradovic, C.R. Kissinger, J.E. Villafranca, E. Garner, S. Guilliot,
A.K. Dunker, Thousands of proteins likely to have long disordered regions,
Pac. Symp. Biocomput. Pac. Symp. Biocomput. (1998) 437–448.

[16] J.J. Ward, J.S. Sodhi, L.J. McGuffin, B.F. Buxton, D.T. Jones, Prediction and
functional analysis of native disorder in proteins from the three kingdoms of
life, J. Mol. Biol. 337 (2004) 635–645.

[17] C.J. Oldfield, Y. Cheng, M.S. Cortese, C.J. Brown, V.N. Uversky, A.K. Dunker,
Comparing and combining predictors of mostly disordered proteins,
Biochemistry 44 (2005) 1989–2000.

[18] B. Xue, A.K. Dunker, V.N. Uversky, Orderly order in protein intrinsic disorder
distribution: disorder in 3500 proteomes from viruses and the three domains
of life, J. Biomol. Struct. Dyn. 30 (2012) 137–149.

[19] M.E. Oates, P. Romero, T. Ishida, M. Ghalwash, M.J. Mizianty, B. Xue,
Z. Dosztanyi, V.N. Uversky, Z. Obradovic, L. Kurgan, et al., D(2)P(2): database
of disordered protein predictions, Nucl.Acids Res. 41 (2013) D508–D516.

[20] Z. Peng, J. Yan, X. Fan, M.J. Mizianty, B. Xue, K. Wang, G. Hu, V.N. Uversky,
L. Kurgan, Exceptionally abundant exceptions: comprehensive characteriza-
tion of intrinsic disorder in all domains of life, Cell. Mol. Life Sci.: CMLS 72
(2015) 137–151.

[21] L.M. Iakoucheva, C.J. Brown, J.D. Lawson, Z. Obradovic, A.K. Dunker, Intrinsic
disorder in cell-signaling and cancer-associated proteins, J. Mol. Biol. 323
(2002) 573–584.

[22] A.K. Dunker, M.S. Cortese, P. Romero, L.M. Iakoucheva, V.N. Uversky, Flexible
nets: the roles of intrinsic disorder in protein interaction networks, FEBS J.
272 (2005) 5129–5148.

[23] V.N. Uversky, C.J. Oldfield, A.K. Dunker, Showing your ID: intrinsic disorder
as an ID for recognition, regulation and cell signaling, J. Mol. Recognit. 18
(2005) 343–384.

[24] P. Radivojac, L.M. Iakoucheva, C.J. Oldfield, Z. Obradovic, V.N. Uversky, A.
K. Dunker, Intrinsic disorder and functional proteomics, Biophys. J. 92 (2007)
1439–1456.

[25] S. Vucetic, H. Xie, L.M. Iakoucheva, C.J. Oldfield, A.K. Dunker, Z. Obradovic,
V.N. Uversky, Functional anthology of intrinsic disorder. 2. Cellular compo-
nents, domains, technical terms, developmental processes, and coding
sequence diversities correlated with long disordered regions, J. Proteome
Res. 6 (2007) 1899–1916.

[26] H. Xie, S. Vucetic, L.M. Iakoucheva, C.J. Oldfield, A.K. Dunker, Z. Obradovic,
V.N. Uversky, Functional anthology of intrinsic disorder. 3. Ligands, post-
translational modifications, and diseases associated with intrinsically dis-
ordered proteins, J. Proteome Res. 6 (2007) 1917–1932.

[27] H. Xie, S. Vucetic, L.M. Iakoucheva, C.J. Oldfield, A.K. Dunker, V.N. Uversky,
Z. Obradovic, Functional anthology of intrinsic disorder. 1. Biological pro-
cesses and functions of proteins with long disordered regions, J. Proteome
Res. 6 (2007) 1882–1898.

[28] K.E. Handwerger, J.G. Gall, Subnuclear organelles: new insights into form and
function, Trends Cell Biol. 16 (2006) 19–26.

[29] G. Dellaire, R. Farrall, W.A. Bickmore, The Nuclear Protein Database (NPD):
sub-nuclear localisation and functional annotation of the nuclear proteome,
Nucl. Acids Res. 31 (2003) 328–330.

[30] B. Xue, R.L. Dunbrack, R.W. Williams, A.K. Dunker, V.N. Uversky, PONDR-FIT:
a meta-predictor of intrinsically disordered amino acids, Biochim. Biophys.
Acta 1804 (2010) 996–1010.

[31] A. Mohan, W.J. Sullivan Jr., P. Radivojac, A.K. Dunker, V.N. Uversky, Intrinsic
disorder in pathogenic and non-pathogenic microbes: discovering and
analyzing the unfoldomes of early-branching eukaryotes, Mol. Biosyst. 4
(2008) 328–340.

[32] B. Xue, C.J. Oldfield, A.K. Dunker, V.N. Uversky, CDF it all: consensus
prediction of intrinsically disordered proteins based on various cumulative
distribution functions, FEBS Lett. 583 (2009) 1469–1474.

[33] F. Huang, C.J. Oldfield, B. Xue, W.L. Hsu, J. Meng, X. Liu, L. Shen, P. Romero,
V.N. Uversky, A. Dunker, Improving protein order-disorder classification
using charge-hydropathy plots, BMC Bioinform. 15 (Suppl. 17) (2014) S4.

[34] T. Di Domenico, I. Walsh, A.J. Martin, S.C. Tosatto, MobiDB: a comprehensive
database of intrinsic protein disorder annotations, Bioinformatics 28 (2012)
2080–2081.

[35] E. Potenza, T.D. Domenico, I. Walsh, S.C. Tosatto, MobiDB 2.0: an improved
database of intrinsically disordered and mobile proteins, Nucl. Acids Res. (2015).

[36] I. Walsh, A.J. Martin, T. Di Domenico, S.C. Tosatto, ESpritz: accurate and fast
prediction of protein disorder, Bioinformatics 28 (2012) 503–509.

[37] Z. Dosztanyi, V. Csizmok, P. Tompa, I. Simon, IUPred: web server for the
prediction of intrinsically unstructured regions of proteins based on esti-
mated energy content, Bioinformatics 21 (2005) 3433–3434.

[38] R. Linding, L.J. Jensen, F. Diella, P. Bork, T.J. Gibson, R.B. Russell, Protein
disorder prediction: implications for structural proteomics, Structure 11
(2003) 1453–1459.

[39] R. Linding, R.B. Russell, V. Neduva, T.J. Gibson, GlobPlot: exploring protein
sequences for globularity and disorder, Nucl. Acids Res. 31 (2003)
3701–3708.

[40] Z. Obradovic, K. Peng, S. Vucetic, P. Radivojac, A.K. Dunker, Exploiting
heterogeneous sequence properties improves prediction of protein disorder,
Proteins 61 (Suppl. 7) (2005) 176–182.

[41] K. Peng, P. Radivojac, S. Vucetic, A.K. Dunker, Z. Obradovic, Length-dependent
prediction of protein intrinsic disorder, BMC Bioinform. (2006) 7.

[42] Z.R. Yang, R. Thomson, P. McNeil, R.M. Esnouf, RONN: the bio-basis function
neural network technique applied to the detection of natively disordered
regions in proteins, Bioinformatics 21 (2005) 3369–3376.

[43] P. Romero, Z. Obradovic, X. Li, E.C. Garner, C.J. Brown, A.K. Dunker, Sequence
complexity of disordered protein, Proteins 42 (2001) 38–48.

[44] T. Ishida, K. Kinoshita, PrDOS: prediction of disordered protein regions from
amino acid sequence, Nucl. Acids Res. 35 (2007) W460–W464.

[45] B. Meszaros, I. Simon, Z. Dosztanyi, Prediction of protein binding regions in
disordered proteins, PLoS Comput. Biol. 5 (2009) e1000376.

[46] Z. Dosztanyi, B. Meszaros, I. Simon, ANCHOR: web server for predicting
protein binding regions in disordered proteins, Bioinformatics 25 (2009)
2745–2746.

[47] Z. Dosztanyi, V. Csizmok, P. Tompa, I. Simon, The pairwise energy content
estimated from amino acid composition discriminates between folded and
intrinsically unstructured proteins, J. Mol. Biol. 347 (2005) 827–839.

[48] K. Rajagopalan, S.M. Mooney, N. Parekh, R.H. Getzenberg, P. Kulkarni,
A majority of the cancer/testis antigens are intrinsically disordered proteins,
J. Cell Biochem. 112 (2011) 3256–3267.

[49] E.A. Bienkiewicz, J.N. Adkins, K.J. Lumb, Functional consequences of pre-
organized helical structure in the intrinsically disordered cell-cycle inhibitor
p27(Kip1), Biochemistry 41 (2002) 752–759.

[50] S.W. Chi, D.H. Kim, S.H. Lee, I. Chang, K.H. Han, Pre-structured motifs in the
natively unstructured preS1 surface antigen of hepatitis B virus, Protein Sci.:
Publ. Protein Soc. 16 (2007) 2108–2117.

[51] H. Lee, K.H. Mok, R. Muhandiram, K.H. Park, J.E. Suk, D.H. Kim, J. Chang,
Y.C. Sung, K.Y. Choi, K.H. Han, Local structural elements in the mostly
unstructured transcriptional activation domain of human p53, J. Biol. Chem.
275 (2000) 29426–29432.

T. Frege, V.N. Uversky / Biochemistry and Biophysics Reports 1 (2015) 33–5148

http://dx.doi.org/10.1016/j.bbrep.2015.03.003
http://dx.doi.org/10.1016/j.bbrep.2015.03.003
http://dx.doi.org/10.1016/j.bbrep.2015.03.003
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref1
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref1
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref1
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref2
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref2
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref2
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref3
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref3
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref3
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref3
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref4
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref4
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref5
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref5
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref6
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref7
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref7
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref7
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref7
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref8
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref8
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref9
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref9
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref10
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref10
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref10
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref11
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref11
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref12
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref12
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref12
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref12
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref12
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref13
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref13
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref14
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref14
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref14
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref15
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref15
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref15
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref16
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref16
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref16
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref17
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref17
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref17
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref18
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref18
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref18
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref19
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref19
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref19
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref20
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref20
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref20
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref20
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref21
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref21
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref21
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref22
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref22
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref22
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref23
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref23
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref23
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref141745
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref141745
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref141745
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref24
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref24
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref24
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref24
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref24
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref25
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref25
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref25
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref25
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref26
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref26
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref26
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref26
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref27
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref27
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref28
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref28
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref28
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref29
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref29
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref29
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref30
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref30
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref30
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref30
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref31
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref31
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref31
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref32
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref32
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref32
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref33
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref33
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref33
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref34
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref34
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref35
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref35
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref36
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref36
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref36
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref37
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref37
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref37
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref38
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref38
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref38
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref39
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref39
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref39
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref40
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref40
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref41
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref41
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref41
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref42
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref42
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref43
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref43
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref44
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref44
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref45
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref45
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref45
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref46
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref46
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref46
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref47
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref47
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref47
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref48
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref48
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref48
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref49
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref49
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref49
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref50
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref50
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref50
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref50


[52] T.A. Ramelot, L.N. Gentile, L.K. Nicholson, Transient structure of the amyloid
precursor protein cytoplasmic tail indicates preordering of structure for
binding to cytosolic factors, Biochemistry 39 (2000) 2714–2725.

[53] E.W. Sayers, R.B. Gerstner, D.E. Draper, D.A. Torchia, Structural preordering in
the N-terminal region of ribosomal protein S4 revealed by heteronuclear
NMR spectroscopy, Biochemistry 39 (2000) 13602–13613.

[54] J.A. Zitzewitz, B. Ibarra-Molero, D.R. Fishel, K.L. Terry, C.R. Matthews,
Preformed secondary structure drives the association reaction of GCN4-p1,
a model coiled-coil system, J. Mol. Biol. 296 (2000) 1105–1116.

[55] E. Garner, P. Romero, A.K. Dunker, C. Brown, Z. Obradovic, Predicting binding
regions within disordered proteins, Genome Inf. Ser. Workshop Genome Inf.
10 (1999) 41–50.

[56] C.J. Oldfield, Y. Cheng, M.S. Cortese, P. Romero, V.N. Uversky, A.K. Dunker,
Coupled folding and binding with alpha-helix-forming molecular recogni-
tion elements, Biochemistry 44 (2005) 12454–12470.

[57] Y. Cheng, C.J. Oldfield, J. Meng, P. Romero, V.N. Uversky, A.K. Dunker, Mining
alpha-helix-forming molecular recognition features with cross species
sequence alignments, Biochemistry 46 (2007) 13468–13477.

[58] D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth, P. Minguez,
T. Doerks, M. Stark, J. Muller, P. Bork, et al., The STRING database in 2011:
functional interaction networks of proteins, globally integrated and scored,
Nucl. Acids Res. 39 (2011) D561–D568.

[59] J.D. Han, N. Bertin, T. Hao, D.S. Goldberg, G.F. Berriz, L.V. Zhang, D. Dupuy,
A.J. Walhout, M.E. Cusick, F.P. Roth, et al., Evidence for dynamically organized
modularity in the yeast protein–protein interaction network, Nature 430
(2004) 88–93.

[60] L.H. Hartwell, J.J. Hopfield, S. Leibler, A.W. Murray, From molecular to
modular cell biology, Nature 402 (1999) C47–C52.

[61] A. Patil, H. Nakamura, Disordered domains and high surface charge confer
hubs with the ability to interact with multiple proteins in interaction
networks, FEBS Lett. 580 (2006) 2041–2045.

[62] C. Haynes, C.J. Oldfield, F. Ji, N. Klitgord, M.E. Cusick, P. Radivojac, V.N. Uversky,
M. Vidal, L.M. Iakoucheva, Intrinsic disorder is a common feature of hub
proteins from four eukaryotic interactomes, PLoS Comput. Biol. 2 (2006) e100.

[63] D. Ekman, S. Light, A.K. Bjorklund, A. Elofsson, What properties characterize
the hub proteins of the protein–protein interaction network of Saccharo-
myces cerevisiae? Genome Biol. 7 (2006) R45.

[64] Z. Dosztanyi, J. Chen, A.K. Dunker, I. Simon, P. Tompa, Disorder and sequence
repeats in hub proteins and their implications for network evolution,
J. Proteome Res. 5 (2006) 2985–2995.

[65] G.P. Singh, M. Ganapathi, K.S. Sandhu, D. Dash, Intrinsic unstructuredness
and abundance of PEST motifs in eukaryotic proteomes, Proteins 62 (2006)
309–315.

[66] W. Schul, B. Groenhout, K. Koberna, Y. Takagaki, A. Jenny, E.M. Manders,
I. Raska, R. van Driel, L. de Jong, The RNA 30 cleavage factors CstF 64 kDa and
CPSF 100 kDa are concentrated in nuclear domains closely associated with
coiled bodies and newly synthesized RNA, EMBO J. 15 (1996) 2883–2892.

[67] J.G. Gall, Cajal bodies: the first 100 years, Annu. Rev. Cell Dev. Biol. 16 (2000)
273–300.

[68] K. Vareli, M. Frangou-Lazaridis, I. van der Kraan, O. Tsolas, R. van Driel,
Nuclear distribution of prothymosin alpha and parathymosin: evidence that
prothymosin alpha is associated with RNA synthesis processing and para-
thymosin with early DNA replication, Exp. Cell Res. 257 (2000) 152–161.

[69] K. Gast, H. Damaschun, K. Eckert, K. Schulze-Forster, H.R. Maurer, M. Muller-
Frohne, D. Zirwer, J. Czarnecki, G. Damaschun, Prothymosin alpha: a
biologically active protein with random coil conformation, Biochemistry 34
(1995) 13211–13218.

[70] V.N. Uversky, J.R. Gillespie, I.S. Millett, A.V. Khodyakova, A.M. Vasiliev,
T.V. Chernovskaya, R.N. Vasilenko, G.D. Kozlovskaya, D.A. Dolgikh, A.L. Fink,
et al., Natively unfolded human prothymosin alpha adopts partially folded
collapsed conformation at acidic pH, Biochemistry 38 (1999) 15009–15016.

[71] V.N. Uversky, J.R. Gillespie, I.S. Millett, A.V. Khodyakova, R.N. Vasilenko,
A.M. Vasiliev, I.L. Rodionov, G.D. Kozlovskaya, D.A. Dolgikh, A.L. Fink, et al.,
Zn(2þ)-mediated structure formation and compaction of the “natively
unfolded” human prothymosin alpha, Biochem. Biophys. Res. Commun.
267 (2000) 663–668.

[72] M.A. Grande, I. van der Kraan, L. de Jong, R. van Driel, Nuclear distribution of
transcription factors in relation to sites of transcription and RNA polymerase
II, J. Cell Sci. 110 (Part 15) (1997) 1781–1791.

[73] A. Pombo, P. Cuello, W. Schul, J.B. Yoon, R.G. Roeder, P.R. Cook, S. Murphy,
Regional and temporal specialization in the nucleus: a transcriptionally-
active nuclear domain rich in PTF, Oct1 and PIKA antigens associates with
specific chromosomes early in the cell cycle, EMBO J. 17 (1998) 1768–1778.

[74] J.T. Kadonaga, K. Jones, R. Tjian, Promoter-specific activation of RNA poly-
merase II transcription by Sp1, Trends Biochem. Sci. 11 (1986) 201–203.

[75] P. Bucher, Weight matrix descriptions of four eukaryotic RNA polymerase II
promoter elements derived from 502 unrelated promoter sequences, J. Mol.
Biol. 212 (1990) 563–578.

[76] J. Liu, N.B. Perumal, C.J. Oldfield, E.W. Su, V.N. Uversky, A.K. Dunker, Intrinsic
disorder in transcription factors, Biochemistry 45 (2006) 6873–6888.

[77] Y. Minezaki, K. Homma, A.R. Kinjo, K. Nishikawa, Human transcription
factors contain a high fraction of intrinsically disordered regions essential
for transcriptional regulation, J. Mol. Biol. 359 (2006) 1137–1149.

[78] H.V. Erkizan, V.N. Uversky, J.A. Toretsky, Oncogenic partnerships: EWS–FLI1
protein interactions initiate key pathways of Ewing's sarcoma, Clin. Cancer
Res. 16 (2010) 4077–4083.

[79] S.D. Westerheide, R. Raynes, C. Powell, B. Xue, V.N. Uversky, HSF transcrip-
tion factor family, heat shock response, and protein intrinsic disorder, Curr.
Protein Pept. Sci. 13 (2012) 86–103.

[80] V.A. Narayan, R.W. Kriwacki, J.P. Caradonna, Structures of zinc finger domains
from transcription factor Sp1. Insights into sequence-specific protein–DNA
recognition, J. Biol. Chem. 272 (1997) 7801–7809.

[81] S. Oka, Y. Shiraishi, T. Yoshida, T. Ohkubo, Y. Sugiura, Y. Kobayashi, NMR
structure of transcription factor Sp1 DNA binding domain, Biochemistry 43
(2004) 16027–16035.

[82] S. Huang, Review: perinucleolar structures, J. Struct. Biol. 129 (2000)
233–240.

[83] K.E. Lukong, S. Richard, Sam68, the KH domain-containing superSTAR,
Biochim. Biophys. Acta 1653 (2003) 73–86.

[84] P. Bielli, R. Busa, M.P. Paronetto, C. Sette, The RNA-binding protein Sam68 is a
multifunctional player in human cancer, Endocr. Relat. Cancer 18 (2011)
R91–R102.

[85] J.J. He, J. Henao-Mejia, Y. Liu, Sam68 functions in nuclear export and
translation of HIV-1 RNA, RNA Biol. 6 (2009) 384–386.

[86] J.N. Foot, M. Feracci, C. Dominguez, Screening protein—single stranded RNA
complexes by NMR spectroscopy for structure determination, Methods 65
(2014) 288–301.

[87] N.H. Meyer, K. Tripsianes, M. Vincendeau, T. Madl, F. Kateb, R. Brack-Werner,
M. Sattler, Structural basis for homodimerization of the Src-associated
during mitosis, 68-kDa protein (Sam68) Qua1 domain, J. Biol. Chem. 285
(2010) 28893–28901.

[88] E.C. Morishita, K. Murayama, M. Kato-Murayama, Y. Ishizuka-Katsura,
Y. Tomabechi, T. Hayashi, T. Terada, N. Handa, M. Shirouzu, T. Akiyama,
et al., Crystal structures of the armadillo repeat domain of adenomatous
polyposis coli and its complex with the tyrosine-rich domain of Sam68,
Structure 19 (2011) 1496–1508.

[89] D.L. Spector, Macromolecular domains within the cell nucleus, Annu. Rev.
Cell Biol. 9 (1993) 265–315.

[90] K.H. Nielsen, H. Chamieh, C.B. Andersen, F. Fredslund, K. Hamborg, H. Le Hir,
G.R. Andersen, Mechanism of ATP turnover inhibition in the EJC, RNA 15
(2009) 67–75.

[91] T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome
territories—a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006)
307–316.

[92] T. Cremer, M. Cremer, Chromosome territories, Cold Spring Harb. Perspect.
Biol. 2 (2010) a003889.

[93] B. Li, M. Carey, J.L. Workman, The role of chromatin during transcription, Cell
128 (2007) 707–719.

[94] R.D. Kornberg, Chromatin structure: a repeating unit of histones and DNA,
Science 184 (1974) 868–871.

[95] K. Luger, A.W. Mader, R.K. Richmond, D.F. Sargent, T.J. Richmond, Crystal
structure of the nucleosome core particle at 2.8 A resolution, Nature 389
(1997) 251–260.

[96] G. Li, D. Reinberg, Chromatin higher-order structures and gene regulation,
Curr Opin Genet. Dev. 21 (2011) 175–186.

[97] P.J. Robinson, L. Fairall, V.A. Huynh, D. Rhodes, EM measurements define the
dimensions of the “30-nm” chromatin fiber: evidence for a compact,
interdigitated structure, Proc. Natl. Acad. Sci. USA 103 (2006) 6506–6511.

[98] B.D. Strahl, C.D. Allis, The language of covalent histone modifications, Nature
403 (2000) 41–45.

[99] J.C. Rice, C.D. Allis, Code of silence, Nature 414 (2001) 258–261.
[100] R.N. Dutnall, Cracking the histone code: one, two, three methyls, you're out!

Mol. Cell 12 (2003) 3–4.
[101] R. Margueron, P. Trojer, D. Reinberg, The key to development: interpreting

the histone code? Curr. Opin. Genet. Dev. 15 (2005) 163–176.
[102] K.P. Nightingale, L.P. O'Neill, B.M. Turner, Histone modifications: signalling

receptors and potential elements of a heritable epigenetic code, Curr. Opin.
Genet. Dev. 16 (2006) 125–136.

[103] J. Chow, E. Heard, X inactivation and the complexities of silencing a sex
chromosome, Curr. Opin. Cell Biol. 21 (2009) 359–366.

[104] E. Koina, J. Chaumeil, I.K. Greaves, D.J. Tremethick, J.A. Graves, Specific
patterns of histone marks accompany X chromosome inactivation in a
marsupial, Chromosome Res. 17 (2009) 115–126.

[105] H. van Attikum, S.M. Gasser, Crosstalk between histone modifications during
the DNA damage response, Trends Cell Biol. 19 (2009) 207–217.

[106] R. Bonasio, S. Tu, D. Reinberg, Molecular signals of epigenetic states, Science
330 (2010) 612–616.

[107] Q. Zhu, A.A. Wani, Histone modifications: crucial elements for damage
response and chromatin restoration, J. Cell Physiol. 223 (2010) 283–288.

[108] A.J. Bannister, T. Kouzarides, Regulation of chromatin by histone modifica-
tions, Cell Res. 21 (2011) 381–395.

[109] S.S. Oliver, J.M. Denu, Dynamic interplay between histone H3 modifications
and protein interpreters: emerging evidence for a “histone language”,
Chembiochem 12 (2011) 299–307.

[110] R.K. Singh, A. Gunjan, Histone tyrosine phosphorylation comes of age,
Epigenetics 6 (2011) 153–160.

[111] P. Chi, C.D. Allis, G.G. Wang, Covalent histone modifications—miswritten,
misinterpreted and mis-erased in human cancers, Nat. Rev. Cancer 10 (2010)
457–469.

[112] D.A. Potoyan, G.A. Papoian, Energy landscape analyses of disordered histone
tails reveal special organization of their conformational dynamics, J. Am.
Chem. Soc. 133 (2011) 7405–7415.

T. Frege, V.N. Uversky / Biochemistry and Biophysics Reports 1 (2015) 33–51 49

http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref51
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref51
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref51
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref52
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref52
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref52
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref53
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref53
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref53
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref54
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref54
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref54
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref55
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref55
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref55
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref56
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref56
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref56
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref57
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref57
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref57
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref57
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref58
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref58
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref58
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref58
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref59
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref59
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref60
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref60
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref60
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref61
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref61
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref61
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref62
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref62
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref62
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref63
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref63
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref63
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref64
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref64
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref64
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref65
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref65
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref65
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref65
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref65
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref65
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref65
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref66
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref66
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref67
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref67
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref67
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref67
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref68
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref68
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref68
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref68
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref69
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref69
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref69
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref69
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref70
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref70
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref70
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref70
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref70
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref70
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref70
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref70
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref71
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref71
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref71
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref72
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref72
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref72
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref72
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref73
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref73
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref74
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref74
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref74
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref75
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref75
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref76
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref76
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref76
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref77
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref77
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref77
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref78
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref78
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref78
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref79
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref79
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref79
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref80
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref80
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref80
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref81
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref81
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref82
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref82
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref83
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref83
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref83
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref84
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref84
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref85
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref85
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref85
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref86
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref86
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref86
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref86
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref87
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref87
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref87
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref87
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref87
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref88
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref88
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref89
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref89
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref89
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref90
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref90
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref90
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref91
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref91
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref92
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref92
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref93
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref93
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref94
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref94
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref94
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref94
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref95
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref95
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref96
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref96
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref96
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref97
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref97
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref98
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref99
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref99
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref100
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref100
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref101
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref101
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref101
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref102
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref102
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref103
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref103
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref103
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref104
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref104
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref105
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref105
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref106
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref106
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref107
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref107
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref108
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref108
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref108
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref109
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref109
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref110
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref110
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref110
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref111
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref111
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref111


[113] B.J. Placek, L.M. Gloss, The N-terminal tails of the H2A–H2B histones affect
dimer structure and stability, Biochemistry 41 (2002) 14960–14968.

[114] K. Luger, T.J. Richmond, The histone tails of the nucleosome, Curr. Opin.
Genet. Dev. 8 (1998) 140–146.

[115] J.C. Hansen, Conformational dynamics of the chromatin fiber in solution:
determinants, mechanisms, and functions, Annu. Rev. Biophys. Biomol.
Struct. 31 (2002) 361–392.

[116] C. Zheng, J.J. Hayes, Structures and interactions of the core histone tail
domains, Biopolymers 68 (2003) 539–546.

[117] H. Kato, J. Gruschus, R. Ghirlando, N. Tjandra, Y. Bai, Characterization of the
N-terminal tail domain of histone H3 in condensed nucleosome arrays by
hydrogen exchange and NMR, J. Am. Chem. Soc. 131 (2009) 15104–15105.

[118] J.C. Hansen, X. Lu, E.D. Ross, R.W. Woody, Intrinsic protein disorder, amino
acid composition, and histone terminal domains, J. Biol. Chem. 281 (2006)
1853–1856.

[119] M. Boublik, E.M. Bradbury, C. Crane-Robinson, E.W. Johns, An investigation of
the conformational changes of histone F2b by high resolution nuclear
magnetic resonance, Eur. J. Biochem. 17 (1970) 151–159.

[120] M. Boublik, E.M. Bradbury, C. Crane-Robinson, An investigation of the
conformational changes in histones F1 and F2a1 by proton magnetic
resonance spectroscopy, Eur. J. Biochem. 14 (1970) 486–497.

[121] H.J. Li, I. Isenberg, W.C. Johnson Jr., Absorption and circular dichroism studies
on nucleohistone IV, Biochemistry 10 (1971) 2587–2593.

[122] H.J. Li, R. Wickett, A.M. Craig, I. Isenberg, Conformational changes in histone
IV, Biopolymers 11 (1972) 375–397.

[123] R.R. Wickett, H.J. Li, I. Isenberg, Salt effects on histone IV conformation,
Biochemistry 11 (1972) 2952–2957.

[124] J.A. D'Anna Jr., I. Isenberg, Conformational changes of histone LAK (f2a2),
Biochemistry 13 (1974) 2093–2098.

[125] J.A. D'Anna Jr., I. Isenberg, Conformational changes of histone ARE(F3, III),
Biochemistry 13 (1974) 4987–4992.

[126] J.A. D'Anna Jr., I. Isenberg, A complex of histones IIb2 and IV, Biochemistry 12
(1973) 1035–1043.

[127] I. Isenberg, Histones, Annu. Rev. Biochem. 48 (1979) 159–191.
[128] L.A. Munishkina, A.L. Fink, V.N. Uversky, Conformational prerequisites for

formation of amyloid fibrils from histones, J. Mol. Biol. 342 (2004) 1305–1324.
[129] Z. Peng, M.J. Mizianty, B. Xue, L. Kurgan, V.N. Uversky, More than just tails:

intrinsic disorder in histone proteins, Mol. Biosyst. 8 (2012) 1886–1901.
[130] A.J. Saurin, C. Shiels, J. Williamson, D.P. Satijn, A.P. Otte, D. Sheer,

P.S. Freemont, The human polycomb group complex associates with pericen-
tromeric heterochromatin to form a novel nuclear domain, J. Cell Biol. 142
(1998) 887–898.

[131] R. Cao, Y. Tsukada, Y. Zhang, Role of Bmi-1 and Ring1A in H2A ubiquitylation
and Hox gene silencing, Mol. Cell 20 (2005) 845–854.

[132] N.J. Francis, R.E. Kingston, Mechanisms of transcriptional memory, Nat. Rev.
Mol. Cell Biol. 2 (2001) 409–421.

[133] J.A. Simon, J.W. Tamkun, Programming off and on states in chromatin:
mechanisms of Polycomb and trithorax group complexes, Curr. Opin. Genet.
Dev. 12 (2002) 210–218.

[134] H. Wang, L. Wang, H. Erdjument-Bromage, M. Vidal, P. Tempst, R.S. Jones,
Y. Zhang, Role of histone H2A ubiquitination in Polycomb silencing, Nature
431 (2004) 873–878.

[135] Z. Shao, F. Raible, R. Mollaaghababa, J.R. Guyon, C.T. Wu, W. Bender,
R.E. Kingston, Stabilization of chromatin structure by PRC1, a Polycomb
complex, Cell 98 (1999) 37–46.

[136] B. Czermin, R. Melfi, D. McCabe, V. Seitz, A. Imhof, V. Pirrotta, Drosophila
enhancer of Zeste/ESC complexes have a histone H3 methyltransferase
activity that marks chromosomal Polycomb sites, Cell 111 (2002) 185–196.

[137] J. Muller, C.M. Hart, N.J. Francis, M.L. Vargas, A. Sengupta, B. Wild, E.L. Miller,
M.B. O'Connor, R.E. Kingston, J.A. Simon, Histone methyltransferase activity
of a Drosophila Polycomb group repressor complex, Cell 111 (2002) 197–208.

[138] Z. Li, R. Cao, M. Wang, M.P. Myers, Y. Zhang, R.M. Xu, Structure of a Bmi-1-
Ring1B polycomb group ubiquitin ligase complex, J. Biol. Chem. 281 (2006)
20643–20649.

[139] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Robers, P. Walter, Intracellular
Compartments and Protein Sorting. Molecular Biology of the Cell, Garland
Science, New York City (2008) 695–724.

[140] A. Mor, M.A. White, B.M. Fontoura, Nuclear trafficking in health and disease,
Curr. Opin. Cell Biol. 28 (2014) 28–35.

[141] J.K. Laba, A. Steen, L.M. Veenhoff, Traffic to the inner membrane of the
nuclear envelope, Curr. Opin. Cell Biol. 28 (2014) 36–45.

[142] M. Amendola, B. van Steensel, Mechanisms and dynamics of nuclear lamina-
genome interactions, Curr. Opin. Cell Biol. 28 (2014) 61–68.

[143] C. Strambio-De-Castillia, M. Niepel, M.P. Rout, The nuclear pore complex:
bridging nuclear transport and gene regulation, Nat. Rev. Mol. Cell Biol. 11
(2010) 490–501.

[144] A. Hoelz, E.W. Debler, G. Blobel, The structure of the nuclear pore complex,
Annu. Rev Biochem. 80 (2011) 613–643.

[145] E. Grossman, O. Medalia, M. Zwerger, Functional architecture of the nuclear
pore complex, Annu. Rev. Biophys. 41 (2012) 557–584.

[146] D.P. Denning, V. Uversky, S.S. Patel, A.L. Fink, M. Rexach, The Saccharomyces
cerevisiae nucleoporin Nup2p is a natively unfolded protein, J. Biol. Chem.
277 (2002) 33447–33455.

[147] D.P. Denning, S.S. Patel, V. Uversky, A.L. Fink, M. Rexach, Disorder in the
nuclear pore complex: the FG repeat regions of nucleoporins are natively
unfolded, Proc. Natl. Acad. Sci. USA 100 (2003) 2450–2455.

[148] J. Yamada, J.L. Phillips, S. Patel, G. Goldfien, A. Calestagne-Morelli, H. Huang,
R. Reza, J. Acheson, V.V. Krishnan, S. Newsam, et al., A bimodal distribution of
two distinct categories of intrinsically disordered structures with separate
functions in FG nucleoporins, Mol. Cell Proteomics 9 (2010) 2205–2224.

[149] M. Fuxreiter, A. Toth-Petroczy, D.A. Kraut, A.T. Matouschek, R.Y. Lim, B. Xue,
L. Kurgan, V.N. Uversky, Disordered proteinaceous machines, Chem. Rev. 114
(2014) 6806–6843.

[150] S.C. Ogg, A.I. Lamond, Cajal bodies and coilin—moving towards function,
J. Cell Biol. 159 (2002) 17–21.

[151] G.E. Morris, The Cajal body, Biochim. Biophys. Acta 1783 (2008) 2108–2115.
[152] V. Makarov, D. Rakitina, A. Protopopova, I. Yaminsky, A. Arutiunian, A.J. Love,

M. Taliansky, N. Kalinina, Plant coilin: structural characteristics and RNA-
binding properties, PLoS One 8 (2013) e53571.

[153] A.G. Matera, M.R. Frey, K. Margelot, S.L. Wolin, A perinucleolar compartment
contains several RNA polymerase III transcripts as well as the polypyrimidine
tract-binding protein, hnRNP I, J. Cell Biol. 129 (1995) 1181–1193.

[154] S. Huang, T.J. Deerinck, M.H. Ellisman, D.L. Spector, The dynamic organization
of the perinucleolar compartment in the cell nucleus, J. Cell Biol. 137 (1997)
965–974.

[155] C. Pollock, S. Huang, The perinucleolar compartment, Cold Spring Harb.
Perspect. Biol. 2 (2010) a000679.

[156] P.J. Simpson, T.P. Monie, A. Szendroi, N. Davydova, J.K. Tyzack, M.R. Conte,
C.M. Read, P.D. Cary, D.I. Svergun, P.V. Konarev, et al., Structure and RNA
interactions of the N-terminal RRM domains of PTB, Structure 12 (2004)
1631–1643.

[157] F.C. Oberstrass, S.D. Auweter, M. Erat, Y. Hargous, A. Henning, P. Wenter,
L. Reymond, B. Amir-Ahmady, S. Pitsch, D.L. Black, et al., Structure of PTB
bound to RNA: specific binding and implications for splicing regulation,
Science 309 (2005) 2054–2057.

[158] A. Joshi, M.B. Coelho, O. Kotik-Kogan, P.J. Simpson, S.J. Matthews, C.W. Smith,
S. Curry, Crystallographic analysis of polypyrimidine tract-binding protein-
Raver1 interactions involved in regulation of alternative splicing, Structure
19 (2011) 1816–1825.

[159] D. Hernandez-Verdun, P. Roussel, M. Thiry, V. Sirri, D.L. Lafontaine, The
nucleolus: structure/function relationship in RNA metabolism, Wiley Inter-
discip. Rev. RNA 1 (2010) 415–431.

[160] F.M. Boisvert, S. van Koningsbruggen, J. Navascues, A.I. Lamond, The multi-
functional nucleolus, Nat. Rev. Mol. Cell Biol. 8 (2007) 574–585.

[161] S.L. Flaugh, K.J. Lumb, Effects of macromolecular crowding on the intrinsically
disordered proteins c-Fos and p27(Kip1), Biomacromolecules 2 (2001)
538–540.

[162] E.R. Lacy, I. Filippov, W.S. Lewis, S. Otieno, L. Xiao, S. Weiss, L. Hengst,
R.W. Kriwacki, p27 binds cyclin-CDK complexes through a sequential
mechanism involving binding-induced protein folding, Nat. Struct. Mol. Biol.
11 (2004) 358–364.

[163] C.A. Galea, Y. Wang, S.G. Sivakolundu, R.W. Kriwacki, Regulation of cell
division by intrinsically unstructured proteins: intrinsic flexibility, modular-
ity, and signaling conduits, Biochemistry 47 (2008) 7598–7609.

[164] A.K. Dunker, V.N. Uversky, Signal transduction via unstructured protein
conduits, Nat. Chem. Biol. 4 (2008) 229–230.

[165] L.M. Espinoza-Fonseca, Dynamic optimization of signal transduction via
intrinsic disorder, Mol. Biosyst. 8 (2012) 194–197.

[166] A.V. Follis, C.A. Galea, R.W. Kriwacki, Intrinsic protein flexibility in regulation
of cell proliferation: advantages for signaling and opportunities for novel
therapeutics, Adv. Exp. Med. Biol. 725 (2012) 27–49.

[167] M.K. Yoon, D.M. Mitrea, L. Ou, R.W. Kriwacki, Cell cycle regulation by the
intrinsically disordered proteins p21 and p27, Biochem. Soc. Trans. 40 (2012)
981–988.

[168] A.A. Russo, P.D. Jeffrey, A.K. Patten, J. Massague, N.P. Pavletich, Crystal
structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the
cyclin A-Cdk2 complex, Nature 382 (1996) 325–331.

[169] C.J. Oldfield, J. Meng, J.Y. Yang, M.Q. Yang, V.N. Uversky, A.K. Dunker, Flexible
nets: disorder and induced fit in the associations of p53 and 14-3-3 with
their partners, BMC Genomics 9 (Suppl. 1) (2008) S1.

[170] W.L. Hsu, C. Oldfield, J. Meng, F. Huang, B. Xue, V.N. Uversky, P. Romero,
A.K. Dunker, Intrinsic protein disorder and protein-protein interactions, Pac.
Symp. Biocomput. Pac. Symp. Biocomput. (2012) 116–127.

[171] W.L. Hsu, C.J. Oldfield, B. Xue, J. Meng, F. Huang, P. Romero, V.N. Uversky,
A.K. Dunker, Exploring the binding diversity of intrinsically disordered
proteins involved in one-to-many binding, Protein Sci.: Publ. Protein Soc.
22 (2013) 258–273.

[172] G.G. Maul, D. Negorev, P. Bell, A.M. Ishov, Review: properties and assembly
mechanisms of ND10, PML bodies, or PODs, J. Struct. Biol. 129 (2000) 278–287.

[173] F.M. Boisvert, M.J. Hendzel, D.P. Bazett-Jones, Promyelocytic leukemia (PML)
nuclear bodies are protein structures that do not accumulate RNA, J. Cell Biol.
148 (2000) 283–292.

[174] C. Shiels, S.A. Islam, R. Vatcheva, P. Sasieni, M.J. Sternberg, P.S. Freemont,
D. Sheer, PML bodies associate specifically with the MHC gene cluster in
interphase nuclei, J. Cell Sci. 114 (2001) 3705–3716.

[175] J.J. Luciani, D. Depetris, Y. Usson, C. Metzler-Guillemain, C. Mignon-Ravix,
M.J. Mitchell, A. Megarbane, P. Sarda, H. Sirma, A. Moncla, et al., PML nuclear
bodies are highly organised DNA–protein structures with a function in
heterochromatin remodelling at the G2 phase, J. Cell Sci. 119 (2006)
2518–2531.

[176] C.X. Deng, S.G. Brodie, Roles of BRCA1 and its interacting proteins, Bioessays
22 (2000) 728–737.

T. Frege, V.N. Uversky / Biochemistry and Biophysics Reports 1 (2015) 33–5150

http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref112
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref112
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref113
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref113
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref114
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref114
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref114
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref115
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref115
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref116
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref116
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref116
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref117
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref117
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref117
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref118
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref118
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref118
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref119
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref119
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref119
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref120
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref120
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref121
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref121
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref122
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref122
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref123
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref123
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref124
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref124
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref125
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref125
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref126
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref127
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref127
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref128
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref128
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref129
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref129
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref129
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref129
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref130
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref130
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref131
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref131
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref132
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref132
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref132
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref133
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref133
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref133
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref134
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref134
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref134
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref135
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref135
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref135
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref136
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref136
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref136
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref137
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref137
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref137
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref138
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref138
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref138
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref139
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref139
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref140
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref140
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref141
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref141
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref142
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref142
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref142
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref143
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref143
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref144
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref144
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref145
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref145
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref145
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref146
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref146
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref146
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref147
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref147
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref147
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref147
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref148
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref148
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref148
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref149
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref149
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref150
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref151
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref151
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref151
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref152
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref152
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref152
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref153
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref153
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref153
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref154
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref154
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref155
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref155
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref155
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref155
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref156
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref156
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref156
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref156
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref157
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref157
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref157
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref157
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref158
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref158
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref158
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref159
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref159
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref160
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref160
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref160
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref161
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref161
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref161
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref161
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref162
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref162
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref162
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref163
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref163
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref164
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref164
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref165
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref165
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref165
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref166
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref166
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref166
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref167
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref167
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref167
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref168
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref168
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref168
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref169
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref169
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref169
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref170
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref170
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref170
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref170
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref171
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref171
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref172
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref172
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref172
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref173
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref173
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref173
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref174
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref174
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref174
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref174
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref174
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref175
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref175


[177] W.Y. Mark, J.C. Liao, Y. Lu, A. Ayed, R. Laister, B. Szymczyna, A. Chakrabartty,
C.H. Arrowsmith, Characterization of segments from the central region of
BRCA1: an intrinsically disordered scaffold for multiple protein–protein and
protein–DNA interactions? J. Mol. Biol. 345 (2005) 275–287.

[178] P.R. Romero, S. Zaidi, Y.Y. Fang, V.N. Uversky, P. Radivojac, C.J. Oldfield,
M.S. Cortese, M. Sickmeier, T. LeGall, Z. Obradovic, et al., Alternative splicing
in concert with protein intrinsic disorder enables increased functional
diversity in multicellular organisms, Proc. Natl. Acad. Sci. USA 103 (2006)
8390–8395.

[179] V.N. Uversky, Intrinsic disorder-based protein interactions and their mod-
ulators, Curr. Pharm. Des. 19 (2013) 4191–4213.

[180] R.J. Sims 3rd, S.S. Mandal, D. Reinberg, Recent highlights of RNA-polymerase-
II-mediated transcription, Curr. Opin. Cell Biol. 16 (2004) 263–271.

[181] R.D. Kornberg, Eukaryotic transcriptional control, Trends Cell Biol. 9 (1999)
M46–M49.

[182] V.E. Myer, R.A. Young, RNA polymerase II holoenzymes and subcomplexes,
J. Biol. Chem. 273 (1998) 27757–27760.

[183] K. McKune, N.A. Woychik, Functional substitution of an essential yeast RNA
polymerase subunit by a highly conserved mammalian counterpart, Mol. Cell.
Biol. 14 (1994) 4155–4159.

[184] K. McKune, P.A. Moore, M.W. Hull, N.A. Woychik, Six human RNA polymerase
subunits functionally substitute for their yeast counterparts, Mol. Cell. Biol.
15 (1995) 6895–6900.

[185] V. Khazak, P.P. Sadhale, N.A. Woychik, R. Brent, E.A. Golemis, Human RNA
polymerase II subunit hsRPB7 functions in yeast and influences stress
survival and cell morphology, Mol. Biol. Cell 6 (1995) 759–775.

[186] G.V. Shpakovski, J. Acker, M. Wintzerith, J.F. Lacroix, P. Thuriaux, M. Vigneron,
Four subunits that are shared by the three classes of RNA polymerase are
functionally interchangeable between Homo sapiens and Saccharomyces
cerevisiae, Mol. Cell. Biol. 15 (1995) 4702–4710.

[187] R.B. Lanz, N.J. McKenna, S.A. Onate, U. Albrecht, J. Wong, S.Y. Tsai, M.J. Tsai,
B.W. O'Malley, A steroid receptor coactivator, SRA, functions as an RNA and is
present in an SRC-1 complex, Cell 97 (1999) 17–27.

[188] S.M. Bilinovich, C.M. Davis, D.L. Morris, L.A. Ray, J.W. Prokop, G.J. Buchan,
T.C. Leeper, The C-terminal domain of SRA1p has a fold more similar to PRP18
than to an RRM and does not directly bind to the SRA1 RNA STR7 region,
J. Mol. Biol. 426 (2014) 1753–1765.

[189] S. Lefebvre, L. Burglen, S. Reboullet, O. Clermont, P. Burlet, L. Viollet,
B. Benichou, C. Cruaud, P. Millasseau, M. Zeviani, et al., Identification and
characterization of a spinal muscular atrophy-determining gene, Cell 80
(1995) 155–165.

[190] L. Li, K. Roy, S. Katyal, X. Sun, S. Bleoo, R. Godbout, Dynamic nature of
cleavage bodies and their spatial relationship to DDX1 bodies, Cajal bodies,
and gems, Mol. Biol. Cell 17 (2006) 1126–1140.

[191] A.K. Gubitz, W. Feng, G. Dreyfuss, The SMN complex, Exp. Cell Res. 296 (2004)
51–56.

[192] L. Pellizzoni, J. Yong, G. Dreyfuss, Essential role for the SMN complex in the
specificity of snRNP assembly, Science 298 (2002) 1775–1779.

[193] J. Yong, L. Pellizzoni, G. Dreyfuss, Sequence-specific interaction of U1 snRNA
with the SMN complex, EMBO J. 21 (2002) 1188–1196.

[194] L. Pellizzoni, J. Baccon, B. Charroux, G. Dreyfuss, The survival of motor
neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and
GAR1, Curr. Biol. 11 (2001) 1079–1088.

[195] L. Pellizzoni, B. Charroux, J. Rappsilber, M. Mann, G. Dreyfuss, A functional
interaction between the survival motor neuron complex and RNA polymer-
ase II, J. Cell Biol. 152 (2001) 75–85.

[196] K.L. Sarachan, K.G. Valentine, K. Gupta, V.R. Moorman, J.M. Gledhill Jr.,
M. Bernens, C. Tommos, A.J. Wand, G.D. Van Duyne, Solution structure of
the core SMN-Gemin2 complex, Biochem. J. 445 (2012) 361–370.

[197] K. Tripsianes, T. Madl, M. Machyna, D. Fessas, C. Englbrecht, U. Fischer,
K.M. Neugebauer, M. Sattler, Structural basis for dimethylarginine recogni-
tion by the Tudor domains of human SMN and SPF30 proteins, Nat. Struct.
Mol. Biol. 18 (2011) 1414–1420.

[198] L.M. Iakoucheva, P. Radivojac, C.J. Brown, T.R. O'Connor, J.G. Sikes,
Z. Obradovic, A.K. Dunker, The importance of intrinsic disorder for protein
phosphorylation, Nucl. Acids Res. 32 (2004) 1037–1049.

[199] V. Pejaver, W.L. Hsu, F. Xin, A.K. Dunker, V.N. Uversky, P. Radivojac, The
structural and functional signatures of proteins that undergo multiple events
of post-translational modification, Protein Sci.: Publ. Protein Soc. 23 (2014)
1077–1093.

[200] V.N. Uversky, I.M. Kuznetsova, K.K. Turoverov, B. Zaslavsky, Intrinsically
disordered proteins as crucial constituents of cellular aqueous two phase
systems and coacervates, FEBS Lett. 589 (2015) 15–22.

[201] R.D. Phair, T. Misteli, High mobility of proteins in the mammalian cell
nucleus, Nature 404 (2000) 604–609.

[202] T. Pederson, Protein mobility within the nucleus—what are the right moves?
Cell 104 (2001) 635–638.

[203] C.P. Brangwynne, C.R. Eckmann, D.S. Courson, A. Rybarska, C. Hoege,
J. Gharakhani, F. Julicher, A.A. Hyman, Germline P granules are liquid droplets
that localize by controlled dissolution/condensation, Science 324 (2009)
1729–1732.

[204] C.P. Brangwynne, T.J. Mitchison, A.A. Hyman, Active liquid-like behavior of
nucleoli determines their size and shape in Xenopus laevis oocytes, Proc. Natl.
Acad. Sci. USA 108 (2011) 4334–4339.

[205] P. Li, S. Banjade, H.C. Cheng, S. Kim, B. Chen, L. Guo, M. Llaguno,
J.V. Hollingsworth, D.S. King, S.F. Banani, et al., Phase transitions in the
assembly of multivalent signalling proteins, Nature 483 (2012) 336–340.

[206] S. Aggarwal, N. Snaidero, G. Pahler, S. Frey, P. Sanchez, M. Zweckstetter,
A. Janshoff, A. Schneider, M.T. Weil, I.A. Schaap, et al., Myelin membrane
assembly is driven by a phase transition of myelin basic proteins into a
cohesive protein meshwork, PLoS Biol. 11 (2013) e1001577.

[207] M. Feric, C.P. Brangwynne, A nuclear F-actin scaffold stabilizes ribonucleo-
protein droplets against gravity in large cells, Nat. Cell Biol. 15 (2013)
1253–1259.

[208] F. Wippich, B. Bodenmiller, M.G. Trajkovska, S. Wanka, R. Aebersold,
L. Pelkmans, Dual specificity kinase DYRK3 couples stress granule condensa-
tion/dissolution to mTORC1 signaling, Cell 152 (2013) 791–805.

[209] C.P. Brangwynne, Phase transitions and size scaling of membrane-less
organelles, J. Cell Biol. 203 (2013) 875–881.

[210] C.D. Keating, Aqueous phase separation as a possible route to compartmen-
talization of biological molecules, Acc. Chem. Res. 45 (2012) 2114–2124.

[211] D.C. Hooper, The nucleus and sub-nuclear domains, Abcam Discov. More
(2006).

T. Frege, V.N. Uversky / Biochemistry and Biophysics Reports 1 (2015) 33–51 51

http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref176
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref176
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref176
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref176
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref177
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref177
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref177
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref177
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref177
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref178
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref178
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref179
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref179
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref180
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref180
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref181
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref181
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref182
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref182
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref182
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref183
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref183
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref183
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref184
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref184
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref184
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref185
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref185
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref185
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref185
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref186
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref186
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref186
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref187
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref187
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref187
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref187
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref188
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref188
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref188
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref188
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref189
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref189
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref189
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref190
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref190
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref191
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref191
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref192
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref192
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref193
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref193
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref193
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref194
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref194
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref194
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref195
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref195
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref195
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref196
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref196
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref196
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref196
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref197
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref197
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref197
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref198
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref198
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref198
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref198
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref199
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref199
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref199
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref200
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref200
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref201
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref201
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref202
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref202
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref202
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref202
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref203
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref203
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref203
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref204
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref204
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref204
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref205
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref205
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref205
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref205
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref206
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref206
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref206
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref207
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref207
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref207
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref208
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref208
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref209
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref209
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref210
http://refhub.elsevier.com/S2405-5808(15)00004-7/sbref210

	Intrinsically disordered proteins in the nucleus of human cells
	Introduction
	Materials and methods
	Data collection
	Data processing
	PONDR-FITreg processing
	Binary classification based on the CH-CDF analysis
	Disorder analysis with MobiDB
	Focused look on some human nuclear proteins
	Finding potential disorder-based binding sites

	Data analysis

	Results
	Discussion
	Disorder in cleavage body (average disorder score 83%)
	Disorder in OPT domains (average disorder score 80%)
	Disorder in SAM68 nuclear bodies (average disorder score 72%)
	Disorder in nuclear speckles (average disorder score 65%)
	Disorder in chromatin and heterochromatin (average disorder scores 60% and 51%)
	Disorder in PcG bodies (average disorder score 59%)
	Disorder in the nuclear pore (average disorder score 55%)
	Disorder in Cajal body (average disorder score 54%)
	Disorder in perinucleolar compartment (average disorder score 52%)
	Disorder in nucleolus (average disorder score 44%)
	Disorder in PML body (average disorder score 37%)
	Disorder in RNA polymerase II transcription machinery (average disorder score 27%)
	Disorder in gems (average disorder score 25%)
	Intrinsically disordered proteins as critical constituents of nuclear domains and major controllers of assembly and...

	Supplementary material
	Transparency document
	References




