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ABSTRACT
We use natural language processing (NLP) to retrieve location data for cheilostome
bryozoan species (text-mined occurrences (TMO)) in an automated procedure.
We compare these results with data combined from two major public databases
(DB): the Ocean Biodiversity Information System (OBIS), and the Global
Biodiversity Information Facility (GBIF). Using DB and TMO data separately and in
combination, we present latitudinal species richness curves using standard estimators
(Chao2 and the Jackknife) and range-through approaches. Our combined DB and
TMO species richness curves quantitatively document a bimodal global latitudinal
diversity gradient for extant cheilostomes for the first time, with peaks in the
temperate zones. A total of 79% of the georeferenced species we retrieved from TMO
(N = 1,408) and DB (N = 4,549) are non-overlapping. Despite clear indications that
global location data compiled for cheilostomes should be improved with concerted
effort, our study supports the view that many marine latitudinal species richness
patterns deviate from the canonical latitudinal diversity gradient (LDG). Moreover,
combining online biodiversity databases with automated information retrieval from
the published literature is a promising avenue for expanding taxon-location datasets.

Subjects Biogeography, Ecology, Marine Biology, Zoology, Data Mining and Machine Learning
Keywords Marine invertebrates, Bryozoa, Geographic distribution, Latitudinal diversity gradient
(LDG), Public data repositories, Natural langauge processing (NLP), Text-mining, Bimodality,
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INTRODUCTION
Biogeography
Global biogeographical and macroecological studies require data on aggregate entities,
such as location-specific occurrences of taxa and regional species assemblages, in order to
understand emergent patterns at global and/or temporal scales (McGill, 2019). Assembly of
such detailed yet broad-scale data is highly labor-intensive; the sampling effort required for
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a specific research question can be daunting for any one researcher or single research team.
This is one reason why collaborative and often public databases have gained traction (Klein
et al., 2019; Heberling et al., 2021). For instance, empirical global biogeographic analyses
(Costello et al., 2017; Rivadeneira & Poore, 2020; Chaudhary et al., 2021; Hughes et al.,
2021) are increasingly based on public databases of georeferenced taxonomic occurrences,
such as the Ocean Biodiversity Information System (OBIS, www.obis.org) and the Global
Biodiversity Information Facility (GBIF, www.gbif.org). Analyzing such georeferenced
databases with tools that partially alleviate incomplete or biased sampling (Edgar et al.,
2017; Kusumoto et al., 2020; Zizka et al., 2020; Grenié et al., 2022), allows us to address
questions on large-scale distributions of clades, especially those that are well-represented
in such databases. For less well-studied clades, however, prospects for obtaining large
amounts of such data are lower. Answering pattern-based questions such as ‘how many
species of clade z are found in location y’ and more process-oriented questions such as
‘how did the current latitudinal diversity gradient form’ both require location-specific
taxonomic data in substantial volume. In addition, generalized biogeographic hypotheses
have the potential to be supported more robustly if they include a greater diversity of
clades.

Automated information retrieval
Automated information retrieval (Hirschberg & Manning, 2015) is one recent approach to
complement the time-consuming manual activity of data compilation from the scientific
literature. We seek to advocate for the enormous interdisciplinary potential of automated
information retrieval, while acknowledging that it is a rapidly developing area at an early
stage of development whose capabilities are just beginning to be realized. Automated
text-mining is well-established in the biomedical realm (Percha, Garten & Altman, 2012;
Christopoulou et al., 2020), but has only recently been adopted for biodiversity studies
(Peters, Husson & Wilcots, 2017; Kopperud, Lidgard & Liow, 2019). As far as we are aware,
automated text-mining has never been applied to the literature for extraction of taxon
occurrences in given locations for the purpose of understanding biogeography (but see
Page, 2019). Natural language processing is primarily concerned with understanding
human language. This can involve a range of simple tasks, for example sentence
delimitation and tagging part-of-speech (identifying nouns, verbs, adjectives etc.), to more
complex tasks such as language translation, text generation, or text-to-speech. We use
natural language processing tools (De Marneffe et al., 2014; Bojanowski et al., 2017) to
facilitate a task known as relation extraction (Wang et al., 2022), which involves
understanding relations among words in a sentence. We use these extracted relations to
compile cheilostome text-mined occurrence data (TMO), which we compare with data
from DB.

Cheilostomes
Cheilostome bryozoans, though less well-studied than several metazoan clades of similar
size, are ubiquitous in benthic marine habitats. They are the most diverse order of Bryozoa
with a conservatively estimated 4,921 extant described species (Bock & Gordon, 2013), or
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83% of all Bryozoa. Bryozoans are ecologically important habitat builders (Wood et al.,
2013) and are vital components of the marine food chain (Lidgard, 2008). Despite
important analyses of regional species distributions (Clarke & Lidgard, 2000; López Gappa,
2000; Barnes & Griffiths, 2008;Hirose, 2017, Boonzaaier-Davids, Florence & Gibbons, 2020;
Denisenko, 2020), their global species richness distribution has never been quantified.
We argue that even with concerns about the incompleteness of public records for the
purpose of inferring regional to global diversity patterns (e.g., Klein et al., 2019; Chollett &
Robertson, 2020, Moudrý & Devillers, 2020; Hughes et al., 2021), it is worth exploring
cheilostome data in such public databases. We do so in order to identify spatial gaps in
sampling but also to ask if automated information retrieval can enhance the species
occurrence data available in public databases, specifically OBIS and GBIF (henceforth
shortened as DB).

Taxon occurrence
Taxon occurrence data from DB and TMO are not expected to be the same. DB records are
comprised of diverse sources, but the bulk of contributions come from research institutes
that are willing to digitize and organize field notes and collections (Saran et al., 2022).
The bulk of TMO data are, on the other hand, based on published taxonomic literature.
We ask if they could, separately or in combination, shed light on a long-standing
biogeographic hypothesis in the bryozoological literature. Many different groups of
organisms show the canonical LDG, a species richness peak in tropical regions and
decreasing species richness towards the temperate and polar zones (Hillebrand, 2004;
Menegotto, Kurtz & Lana, 2019). Despite being common across marine and terrestrial
realms, and among diverse eukaryote clades, the LDG is not universal (Chaudhary et al.,
2021). Marine extratropical bimodal species richness peaks have been observed, for example
in brittle stars (Woolley et al., 2016), polychaetes (Pamungkas, Glasby & Costello, 2021),
crustaceans (Rivadeneira & Poore, 2020), fishes (Lin et al., 2021), and brown macroalgae
(Fragkopoulou et al., 2022), among other groups. Bimodality has also been suggested for
cheilostome bryozoans (Schopf, 1970; Clarke & Lidgard, 2000; Barnes & Griffiths, 2008).

The TMO and DB data in combination support the view that the latitudinal diversity
pattern of living cheilostomes is bimodal. These data reveal highest levels of estimated
species richness in temperate latitudes, but TMO species richness has a peak in the
northern hemisphere while DB has a peak in the temperate south. Moreover, two datasets
differ significantly in the geographic richness patterns in Atlantic vs. Pacific ocean basins
(Schopf, 1970; Barnes & Griffiths, 2008). We discuss the pros and cons of TMO and public
databases such as OBIS and GBIF and how their differences can help us understand the
uncertainties of the retrieved spatial diversity patterns, beyond what is estimated within the
confines of each dataset.

METHODS
DB data retrieval
We used the R-package robis (Provoost & Bosch, 2021) to access OBIS (2022), and the web
interface of GBIF to retrieve latitude/longitude occurrence records of cheilostomes (GBIF

Kopperud et al. (2022), PeerJ, DOI 10.7717/peerj.13921 3/22

http://dx.doi.org/10.7717/peerj.13921
https://peerj.com/


dataset; DOI 10.15468/dl.58pd9h). Both databases were accessed on 21.02.2022.
We removed records without species epithets. For taxonomic ambiguities such as cf., aff.,
we disregard the uncertainty; for instance, Microporella cf. ciliata becomes Microporella
ciliata. Records with genus names that are not accepted according to either the Working
List of Genera and Subgenera for the Treatise on Invertebrate Paleontology (DP Gordon,
2019, personal communication), World Register of Marine Species (WoRMS Editorial
Board, 2022) or www.bryozoa.net (Bock, 2022) were also removed. For all unaccepted
species names that are found in WoRMS, we translated the species name to the accepted
species name according to WoRMS. We also dropped all Linnean binomials that were not
found in WoRMS. The result is 831 unique genus names and 4,549 unique genus-species
combinations (henceforth simply species) in 149,042 retained OBIS and GBIF records.

TMO (Text-Mined Occurrence) data retrieval
We follow a previously detailed text-mining procedure (Kopperud, Lidgard & Liow, 2019)
with modifications. We extracted text from two collections of published works, our own
corpus (3,233 pdf documents) and the GeoDeepDive archive (GDD, https://geodeepdive.
org/), which contains full-text contents of journal articles. Only English language
publications and those likely to feature extant bryozoans were used for information
extraction (see Appendix S1). The natural language processing steps are detailed in the
following sections, but we summarize them here. First, we perform a linguistic annotation
task on the sentences of the text. Second, we extract so-called “candidates”, that is, pairs of
location names and species names that co-occur in the same sentence. Third, we develop a
location-name verifier to remove several mis-identified location names. Finally, we use a
relational classifier that tells us whether the sentence actually said that the species was in
the location.

Linguistic annotation
We used CoreNLP (Manning et al., 2014) for an initial natural language analysis, including
tokenization, named-entity recognition, and dependency grammar annotation (Hirschberg
& Manning, 2015). Tokenization splits text into tokens, which are words and punctuation,
after which sentences can be demarcated. In order to recognize bryozoan species names,
we first assembled a list of known species names, based on the online compendia www.
bryozoa.net and WoRMS. We used these names to assemble a set of rules (TokensRegex,
Chang & Manning, 2014) that recognize relevant names of species. Finally, we applied
CoreNLP to assign dependency grammar (i.e., relations among words in a sentence,
De Marneffe et al., 2014), which we used as a feature for the relation classifier explained
later. We used a generic, pre-trained machine-learning model (Finkel, Grenager &
Manning, 2005) to recognize location names in the text. We found that this generic
named-entity recognition was prone to detect false positives such as author names (e.g.,
“Hincks” or “Darwin”). In order to remedy this, we trained a machine-learning classifier to
verify whether the tagged entities were indeed proper location names (see section
“Location name verification”).
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Candidate extraction
Consider the sentence below, as an illustration (from Tilbrook, Hayward & Gordon, 2001,
p. 50):

“The avicularia resemble those seen in B. intermedia (Hincks, 1881b), from Tasmania
and New Zealand, but this species is only just over half the size of B. cookae.”

This sentence contains two species names (“B. intermedia” and “B. cookae”) and two
location names (“Tasmania” and “New Zealand”). Each species-location pair is a candidate
relation. The sentence implies that B. intermedia is found in New Zealand (a positive
relation), but does not say anything about where B. cookae is found (a negative relation).

Whenever we found an abbreviated genus name, such as “B.”, we searched for genus
names in the current and 14 previous sentences. In reverse chronological order, we looked
for any span (i.e., one or more consecutive tokens) tagged as being a taxon that starts with
the same capital letter, and chose the first genus name for the de-abbreviation (here
“Beania”).

Neural network
Two of our classifiers are implemented as neural networks, and so we give a brief
introduction for readers who are not familiar with this topic. A neural network can be
thought of as a computational graph, with inputs, outputs, and several operations in the
middle. For organizational purposes, we refer to sections of these operations as “layers”.
Each layer has a set of associated coefficients or weights that are either set a priori or
initialized randomly. For a set of inputs and labels, it is possible to evaluate a loss function
that estimates how much the output diverges from the assigned label. Next, one can
employ a back-propagation technique (Rumelhart, Hinton & Williams, 1986) to compute
partial derivatives or gradients for the loss value with respect to each coefficient in the
network. These gradients, coupled with an algorithm for gradient descent, can be used to
learn the coefficients, and consequently minimize the loss of the network during training.
We split the annotation data in three parts: training-, validation- and test sets (roughly 80,
10, 10% candidates per set, respectively). We used the training data to learn the coefficients
of the network. We used the validation data to fit the hyperparameters (e.g., learning rate,
layer dimensions) and to decide when to stop training. By evaluating the trained network
on the test data we get an estimate of how well the classifier performs on out-of-sample
sentences. In order to remove possible confounding effects of similar sentences in a
publication, we made sure that all candidates from a single publication were contained
within only one of the training, validation or test datasets.

Location-name verification
The generic named-entity recognition was prone to detecting false positives. To reduce
false positives here, we evaluated 6,000 candidates and annotated whether the assigned
location name was indeed a location name or a false positive. We used these annotations to
train a machine-learning classifier; a neural network implemented in Keras (Chollet et al.,
2015). For the previously mentioned classifiers, we used reference implementations and
did not change the default settings considerably.
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Our location-name classifier received two inputs: the sequence of tokens in the
candidate’s sentence, and a sequence of indicator variables denoting where the location
name was in the sentence. The inputs enter into embedding layers: the tokens were
embedded in a 300-dimensional vector space using a pre-trained fastText model
(Bojanowski et al., 2017), and the indicator variables were embedded as two orthogonal
unit vectors. The coefficients for the embedding layers were constrained to be static during
training. After concatenation, the embedded values were fed to a Long Short-Term
Memory (LSTM, Hochreiter & Schmidhuber, 1997) recurrent layer, with dropout values of
0.2. Since the sentences were of variable length, we padded the shorter sentences and used
masking to avoid any processing of the padded features during training. We used the final
time step of a second recurrent layer as input to a final two-dimensional hidden layer, with
a softmax activation function. Since the softmax function maps all real inputs to outputs of
[0,1], while ensuring that they sum to one, we interpreted the output as a probability mass.
We used cross entropy as the loss function, and the ADAM algorithm (Kingma & Ba,
2014) for gradient descent. Unless otherwise stated, we used default settings in Keras for
other parameters and options.

We used a test data set comprising 10% of the labelled candidates to evaluate several
aspects of our machine-classifier: (i) accuracy, the ratio of correct predictions to all
predictions; (ii) precision, the ratio of true positive predictions to all positive predictions;
(iii) recall, the ratio of true positive predictions to all positive labels; (iv) false positive rate
(FPR), the ratio of false positive predictions to all negative labels; and (v) F1, the harmonic
mean of precision and recall. Each of these metrics yielded different information on the
reliability of the extracted data.

For each epoch (an iteration in which the classifier sees the entire training set), we
computed the F1 metric. We trained the classifier for 50 epochs, and saved the coefficients
whenever the validation F1 was better than the previously best validation F1, effectively
conditioning the learning on maximizing the F1 metric. The location-name classifier
achieved an F1 of 94.7%, accuracy of 93.2%, recall of 97.4%, precision of 92.2%, and a false
positive rate of 14.0% (see Fig. S6a) when evaluated on the test set.

Relation classifier
We manually annotated 4,938 unique candidates (species-location pairs) to form our
training dataset. If the sentence explicitly stated or strongly implied that the taxon was
found in the mentioned location, we labelled the candidate as ‘positive’. If not, we labelled
the candidate as ‘negative’. These annotations were made by two persons, with intra- and
inter-annotator accuracies of 91% (n = 200) and 85.6% (n = 211), respectively. This
classifier is analogous to the location-name classifier (see previous section “Location-name
verification”), except we used neither the indicator variables, nor the entire sentence.
Instead, we used the sequence of tokens along shortest path in dependency grammar
between the two spans in the sentence (see Xu et al., 2015; Kopperud, Lidgard & Liow,
2019). We trained our machine-classifier using the training set of these sequences to
evaluate the classifier. This relation classifier achieved an F1 of 76.8%, accuracy of 73.1%,
precision of 74.8%, recall of 78.9% and false positive rate of 34.3% (see Fig. S6b).
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The estimated false positive rate of 34.3% is better than a random classifier baseline, but
not as good as the false positive rates between human annotators at 14% and 16% (n = 200,
assuming annotator A is correct, then evaluating annotator B, and vice versa). Similarly,
the classifier accuracy of 73.1% is better than a weighted coin random classifier. If we use a
random classifier that is as unbalanced as the labelled candidates (60% positives), this
classifier gives an accuracy baseline of 52% (0.62 + 0.42 = 0.52). Yet, this is not as good as
the intra- and inter-annotator accuracies at 91% and 85.6%, respectively. Incidentally,
applying the relation classifier from Kopperud, Lidgard & Liow (2019) trained on relating
taxon spans and geologic time interval spans, yielded virtually the same performance
(evaluated on the same test data), despite not being trained on the specific task or having
“seen” any location-name spans.

The relation classifier could potentially be improved by increasing the amount of
training data, and/or using a more complex classifier, such as taking into account
context-dependent word embeddings (Peters et al., 2018; Devlin et al., 2019). However, we
believe that the major bottleneck is not lack of natural language understanding. Rather, the
candidates themselves are not always linguistically sound, coherent and self-contained
sentences. Specifically, much of the information that relays the relation between the two
spans in the taxonomic literature of interest is coded in titles, sub-titles, variation in font
type, font size, and spatial layout of the paragraphs. This introduces errors for the sentence
splitting procedure in CoreNLP. The feature that we used to capture the relation
(dependency grammar) is inherently limited since it is designed to work on relatively
coherent, self-contained and complete sentences. Standard natural language processing
tools are flexible and relatively easy to adopt, but for this particular problem it could be
advantageous to use other, non-linguistic features to facilitate the information extraction,
as has been suggested in the knowledge base creation literature (e.g., Schlichtkrull et al.,
2018) but is outside the scope of our study.

We treat taxonomic ambiguities within TMO data in the same manner as OBIS and
GBIF records (see section “DB data retrieval”).

From TMO location names to spatial data
Location names (e.g., New Zealand, Tasmania) are submitted to the Google geocoding
service (https://developers.google.com/maps/documentation/geocoding/) to acquire a
bounding box with four latitude-longitude coordinates and a centroid, based on Google’s
defaults (Fig. S1). We remove species occurrences in locations represented by bounding
boxes that are larger than about 2% of the Earth’s surface using area calculations assuming
a spherical globe. The location names and their bounding boxes vary extensively in terms
of their spatial resolution. The bounding boxes range from the scale of a few hundred
meters across (for example “Fort Pierce Inlet”, in Florida, see Fig. S1), to major ocean
basins like the “Mediterranean” or “Japan”. See Fig. S2 for how the bounding box sizes are
distributed, and Fig. S3 for how the range-through diversity is affected when alternative
cutoffs for the location size (lower or higher than ≈ 2%) are used.

Kopperud et al. (2022), PeerJ, DOI 10.7717/peerj.13921 7/22

https://developers.google.com/maps/documentation/geocoding/
http://dx.doi.org/10.7717/peerj.13921/supp-1
http://dx.doi.org/10.7717/peerj.13921/supp-1
http://dx.doi.org/10.7717/peerj.13921/supp-1
http://dx.doi.org/10.7717/peerj.13921/supp-1
http://dx.doi.org/10.7717/peerj.13921
https://peerj.com/


Estimating latitudinal species richness
We initially evaluate species richness in thirty-six 5� latitudinal bands using two standard
richness estimators that perform relatively well under a suite of conditions (Walther &
Moore, 2005): Chao2 and Jackknife using the function specpool in the R package vegan
(Oksanen et al., 2015). We treat these latitudinal bands as independent. We then repeat the
procedure using thirty-six equal area bands, since areas represented within equal angle
bands decrease poleward. To apply these estimators, we divide each (equal angle or area)
latitudinal band into 5� longitudinal sampling units. We use the bias-corrected form of
Chao2 ¼ Sobs þ Q2

1ðN � 1Þ=ð2NQ2Þ, and incidence-based Jackknife = Sobs + Q1(N − 1)/N.
Here, Sobs is the number of observed species in each band, N is the number of
(longitudinal) sampling units, Q1 is the number of species observed in only one sampling
unit, and Q2 is the number observed in two sampling units. The quantities Q1 and Q2 are
to an extent sensitive to our choice of dividing the latitudinal bands into 5� units.
The larger the bands, the higher chance that there will be more singletons, since the
discrete state space is merged or reduced (see Fig. S7). Note that we measure incidence as
whether a species is either observed or not observed, for each geographical unit. Hence, any
duplicate records in OBIS and GBIF do not inflate richness. Because terrestrial regions are
not suitable habitats for marine cheilostomes, we mapped all landlocked longitudinal
sampling bins (Fig. S4) based on a 1:10 m map of global coastlines (Patterson, 2019).
We removed the landlocked bins prior to richness estimation. For DB data where spatial
coordinates are points, it is trivial to assign data to sampling units. For TMO, we assume
that a species occurs in all of the sampling units (latitudinal bands, and longitudinal bins)
that intersect the bounding box associated with the location. TMO bounding boxes vary in
size, but most are smaller in area than our sampling units (Fig. S2).

In addition to Chao2 and Jackknife estimators, we also determined range-through
species richness. Here, we assume that a species spans its southernmost and northernmost
occurrence record, regardless of whether it is observed in any intermediate latitudinal
band. We did not split the incidence data by hemispheres. If one species was present in the
southern and northern hemispheres, we would consider it present in all latitudinal bands
inbetween. We acknowledge that all richness estimators, including the ones we chose, have
different limitations (Gwinn et al., 2016). Confidence that the inferred patterns are real is
improved by the extent that different estimators making different assumptions yield
consistent results.

RESULTS
Capturing species richness: comparing DB and TMO
Applying the text-mining procedure to our corpora, we retrieved 1,408 species in 343
genera, and 1,400 unique location names among 7,204 TMO records. Only 23% of the
species in the DB data that we retained were also in TMO. On the other hand, 68% of
species in the TMO occurred in DB. 21% of the species richness is common to both
(Fig. 1). In combination with DB data, we have species-location information from 4,910
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species, almost tallying with the 4,921 described cheilostome species (Bock & Gordon,
2013).

Our machine-classifier achieved an accuracy of 73.1%, F1 of 76.8%, recall of 78.9%, FPR
of 34.3% and precision of 74.8% as estimated with our test set (Fig. S6b). These results are
substantially better than a random classifier baseline, but not as good as the human
annotator repeatability. Specifically, the FPR among annotators is about 15% (n = 200). A
random classifier that is as unbalanced as our training data (60% positive labels) would
yield 60% false positives, but a random classifier equaling our classifier’s recall of 78.9%
would have the same false positive rate of 78.9% (see Appendix S1).

Latitudinal species richness patterns
Combined TMO and DB data in plots of range-through species richness show a bimodal
pattern with species richness peaks in both hemispheres surrounding 40� and −40� (Fig. 1).
Inferred species richness in both of these peaks is about double that in the tropics (Fig. 2).
The two data sources contribute different latitudinal constituents, as suggested by the
limited overlap in their species composition (Fig. 1 inset).

Chao2 and Jackknife estimated species richness fromDB shows two peaks between −20�

and −45� that are more than double the next highest peak between 25� and 50� (Fig. 2A).
In contrast, TMO estimated richness shows a highest peak between 30� and 45� (Fig. 2B).
With minor exceptions in the Antarctic where spatial distortion is largest, equiangular and
equi-areal bands yield nearly identical inferences (compare Figs. 2A, 2C). The latitudinal
pattern appears smoother when using larger latitudinal band sizes (Fig. S7), but at the same
time inflated, while retaining a qualitatively similar picture. Longitudinal sampling bins of
varied sizes did not lead to notable variation for the Jackknife and Chao2 estimators
(Fig. S8).

The northern hemisphere peak in richness (Fig. 1) and reflects TMO records from the
Mediterranean and Japan, but also from the Atlantic Ocean (Figs. 3A, 3E), including the

Figure 1 Global range-through latitudinal species richness for cheilostome bryozoans. The black line
shows combined database (DB = OBIS and GBIF) and text-mined occurrence (TMO) richness, and
orange and green curves show range-through richness for DB and TMO separately. The inset is a Venn
diagram showing the global overlap in species between DB and TMO.

Full-size DOI: 10.7717/peerj.13921/fig-1
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British Isles. Note that we did not include the Mediterranean as part of the Atlantic basin
for Fig. 3. A portion of the TMO data are spatially imprecise, for example the location
names “France”, “Spain” or “Morocco” may be associated with Mediterranean endemics,
yet these records could contribute to the Atlantic richness counts in Fig. 3. The spatially
precise DB data show a much lower peak in the Eastern Atlantic (Fig. 3E, orange line
shifted slightly northward), reflecting data from the British Isles and northern Europe.
Conversely, DB data mainly from Australia and New Zealand contribute
disproportionately to the huge southern hemisphere peak. The richness captured by DB in
Australia and New Zealand is not reflected by TMO species richness (Figs. 3B, 3D).
The western Atlantic and eastern Pacific do not display such pronounced temperate zone
peaks (Figs. 3C, 3F). Looking at individual ocean basins, TMO and DB are sometimes
congruent and other times incongruent. For example, there is an absence of DB records in
Japanese waters, and there are similarly few TMO and DB records in the Indian Ocean
(Fig. 4).

Such varied regional species richness patterns are in part influenced by the geographic
occurrence of samples. Figure 4 summarizes the relative distribution of species-location
records for TMO and DB data as global heatmaps. For DB data, there are about one order

Figure 2 Global latitudinal species richness for cheilostome bryozoans, estimated using Chao2 and
Jackknife. The top panels (A & B) show richness for database (DB = OBIS and GBIF) and text-mined
occurrences (TMO) data in 5� equal-angle latitudinal bands. The lower panels (C & D) show the
equivalent in 5� equal-area latitudinal bands. Black lines show the observed richness, while blue and
orange lines show the Chao2 and Jackknife estimates, respectively. The shaded areas are 95% confidence
intervals. See Figs. S7 and S8 for alternative band and bin sizes.

Full-size DOI: 10.7717/peerj.13921/fig-2
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of magnitude fewer records in tropical regions than for subtropical and temperate ones
(Fig. S9a). While there are also fewer TMO records in tropical regions, the effect is not as
pronounced (Fig. S9b). Northern and southern hemisphere species richness peaks in the
two data sets (Figs. 3E, 3D) correspond with high regional densities of TMO and DB
records, respectively (Figs. 3E, 3D).

DISCUSSION
Causal hypotheses for a LDG and contrarian patterns are plentiful (Rivadeneira & Poore,
2020; García Molinos & Alabia, 2021). Such hypotheses can sometimes be tested in groups

Figure 3 Range-through latitudinal species richness for cheilostome bryozoans in the Atlantic and
Pacific Oceans. (A, C, D) Species richness in the Atlantic; (B, D, F) that in the Pacific. The panel
rows represent the eastern, western or the entire ocean basins. Orange and green lines represent database
(DB = OBIS and GBIF) and text-mined occurrences (TMO), respectively, and black lines are the joint
data. Note that in this figure, the Atlantic borders Greenland and Iceland in the north, and the Antarctic
in the south, but does not include the Gulf of Mexico, the Caribbean, the Baltic Sea or the Mediterranean.
The Pacific borders the Bering Strait in the north, and includes the South China Sea, the Java Sea, north
and east Australia, Tasmania as well as the Antarctic border.

Full-size DOI: 10.7717/peerj.13921/fig-3
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with rich and relatively unbiased spatial data from both extant and extinct taxa (Jablonski,
Roy & Valentine, 2006; Krug, Jablonski & Valentine, 2007; Jablonski et al., 2013) or those
with independent molecular phylogenetic evidence (Rabosky et al., 2018). We believe ours
is the first study to quantify global cheilostome species biogeographic patterns. Using a
combined TMO and DB perspective, and a bimodal latitudinal diversity gradient in
cheilostome species richness is quite apparent. Yet, at present, we can merely speculate
about what processes that may have led to their latitudinal pattern. Given the biases and
heterogeneity of the data we explored which are striking when comparing our two data
sources, we also need to consider (i) how this pattern coincides with previous observations,
and (ii) methodological, sampling, and taxonomic concerns.

Two patterns in our analyses are similar to Schopf ’s (1970) findings from then-scarce
available data: higher species richness on the eastern margin of the Atlantic and the
western margin of the Pacific compared to their opposite margins, and increasing richness
with latitude away from the equator. Our combined data conforms with the first finding,
but still does not capture the richness of the severely-understudied Philippine-Indonesian

Figure 4 Heatmaps for cheilostome bryozoan occurrence records per 5� latitude by 5� longitude
bins. The color axes are truncated for visualization purposes, to a maximum of 200, 200 and 2,000 in
(A), (B), (C), respectively. (B) and (C) show the same sampling data, but in (C) the upper limit of the
color axis is expanded by ten-fold. There are about 900 maximum records per bin in the Mediterranean
for the text-mined occurrences (TMO), and about 66,000 maximum records in the British Isles for the
Ocean Biodiversity Information System (OBIS) and Global Biodiversity Information Facility (GBIF) data
combined. The globe is plotted using the Robinson projection. See Fig. S11 for the same figure plotted
using the plate carrée projection. Full-size DOI: 10.7717/peerj.13921/fig-4
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region and its many archipelagoes (Okada & Mawatari, 1953; Gordon, 1999; Tilbrook &
De Grave, 2005). Changes to the second finding are more nuanced, and may partly reflect
relatively lower equatorial sampling density (Menegotto & Rangel, 2018) apparent in both
the datasets (Fig. S9). However, our observed peaks of species richness are at significantly
higher latitudes than those reported for bryozoans in Chaudhary, Saeedi & Costello (2016).

Fossil and modern patterns of bryozoan skeletal abundance in cool-water carbonate
sediments suggest that the lower tropical species richness is not merely a sampling artifact.
Modern bryozoan-dominated carbonate platforms are far more common on cool-water
temperate shelves than on tropical ones (Schlanger & Konishi, 1975; James & Clarke, 1997).
Cenozoic tropical bryozoan faunas are both less abundantly preserved and less diverse
than those from temperate latitudes, possibly reflecting biotic interactions, preservational
biases, and cryptic existence in shallower-water habitats dominated by corals, calcareous
algae, and other photobiont organisms (Winston, 1986; Taylor & Di Martino, 2014). A
far-reaching study by Taylor & Allison (1998) showed that 94% of bryozoan-rich post-
Paleozoic sedimentary deposits formed outside of the paleotropics, which may be
especially significant if regional species richness and skeletal abundance are linked. About a
third of all described bryozoan species occur south of −30�, and 87% of these are
cheilostomes (Barnes & Griffiths, 2008).

We chose to discretize the data in latitudinal bands and longitudinal bins that are larger
than those used previously (e.g., Rabosky et al., 2018). The choice of band- and bin sizes for
species richness estimation is somewhat arbitrary. Differing choices suggest quantitatively
dissimilar inferences, although the bimodality is still apparent in the cases we have
explored (Figs. S7 and S8). A range-through latitudinal diversity approach (Fig. 3) assumes
that any species that is not observed in a gap between two adjacent latitudinal bands should
contribute to species richness in that gap, but this assumption is quite easily broken
(Menegotto & Rangel, 2018). The bounding boxes used for TMO locations may also tend to
bleed range margins as opposed to DB point location data. Richness estimates may be
inflated via range-through estimates, particularly in the tropics, compared to estimating
richness independently in each latitudinal band which yields lower estimates (Fig. 2).
Regardless, both methods for estimating species richness give a picture of bimodality.

Global biogeographic studies such as ours are more prone to the issues of sampling and
taxonomic concerns than local or regional ones, simply due to their scope. Large sampling
gaps are apparent in both TMO and DB datasets. The development and application of
richness estimation models that distinguish true absences from non-observations (Iknayan
et al., 2014) may help improve inferences, but are likely insufficient to fully overcome acute
sampling gaps. Overall, there are relatively few records in the Indian Ocean, most of the
South Atlantic, and eastern margin of the Pacific. TMO records for the Arctic are sparse, as
are OBIS records for the northwest Pacific. Aside from a few extreme outliers from DB
British Isles locations, species richness and number of records per 5� latitudinal band have
a strong positive relationship (Fig. S10). Independent taxonomic surveys of
underrepresented regions in one or both datasets corroborate the existence of significant
gaps (López Gappa, 2000; Barnes & Griffiths, 2008; Liu, 2008; Vieira, Migotto & Winston,
2008; Hirose, 2017; Boonzaaier-Davids, Florence & Gibbons, 2020; Denisenko, 2020; Sanjay
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et al., 2020). The DB records may partly reflect recent histories of active bryozoan research
programs in the Antarctic (Barnes & Griffiths, 2008) and Australia and New Zealand
(Wood et al., 2013) as well as contributions to OBIS and GBIF that differ substantially
among research institutions. On the other hand, TMO extracted extensive species-location
information from the Mediterranean (27� to 50�) that are severely wanting in OBIS,
demonstrating that combining disparate data sources can help bridge gaps in global
biogeographic studies.

Taxonomic errors inevitably exist in large databases. Taxonomy is continuously subject
to revisions (Bock & Gordon, 2013), not all of which are accounted for in our datasets.
Many species await description; Gordon et al. (2019) suggest that there are over 6,400
known cheilostome species without commenting on nomenclatural status, suggesting that
there are up to 600 known species that need naming. Yet, a recent study, based on
bryozoans, comparing datasets with taxonomic synonyms and without, found that
synonymization does not contribute to qualitative changes in broad scale inferences
(Lidgard et al., 2021). Our machine-classifier is currently unable to extract location
information for 21% of the species that were detected in our corpus of published works
(Fig. S5). Our conversion of taxonomic ambiguities into certainties likely deflated species
richness estimates, while mistaken inclusion of fossil species names may have inflated
richness estimates. We have assumed these do not necessarily introduce spatial bias.
Additionally, many bryozoan species determined by traditional morphological methods
may actually consist of unrecognized species complexes (Lidgard & Buckley, 1994;
Fehlauer-Ale et al., 2014), although cheilostome bryozoan species are perhaps unusually
delimitable using morphological information preserved in the skeleton (Jackson &
Cheetham, 1990).

While the portion of TMO data that is derived from the taxonomic literature may be
less plagued by taxonomic misidentifications, the same cannot be easily argued for faunal
lists or ecological surveys, much of which DB data is based on. However, in our experience,
broad inferences based on synoptic, large-scaled databases tend to change significantly
with different models, more so than data updates (Sepkoski, 1993; Liow, Reitan & Harnik,
2015; Lidgard et al., 2021).

In terms of our text-mining task, we found that generating and classifying
species-location candidates here is more challenging than classifying species-age
candidates (Kopperud, Lidgard & Liow, 2019). An F1 result of about 77.5% is not
uncommon for relation extraction studies (Kim, Kim & Lee, 2019; Henry et al., 2020),
especially for datasets with low label assignment repeatability. While the accuracy of the
machine-classifier is less sensitive than human evaluation, its FPR is substantially lower
than a null model. Yet, it remains a fact that the number of false positives are substantially
higher than we would have liked. We can not exclude the possibility that the false positives
had a confounding effect on the diversity estimates in the northern hemisphere. It essential
to recognize that the classifier merely provides a probabilistic measure of whether the
sentence provides evidence that a species is present at a geographic location. In the event of
a false positive, it is still possible that the species is actually present in that particular
location. On the other hand, there is a wealth of species mentions for which we were not
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able retrieve any species-location candidates (Fig. S5). It is possible to extend our approach
by considering cross-sentence candidates (Gupta et al., 2019), although these methods are
usually less accurate.

One caveat of using natural language for information extraction, is that the available
tools are by far most developed for English. There is rudimentary support for widely used
languages such as Mandarin, Spanish and French, however it would be more difficult to
perform a relation extraction task for these. Using our approach, we would need to re-train
the classifiers specifically for each language. This entails a duplication of work, which
considering howmost modern articles in bryozoology are in English, is likely not worth the
effort. Language-agnostic approaches to relation extraction exist (Heist & Paulheim, 2017),
however these methods can be more challenging to apply for a specific domain problem
like ours. Nevertheless, the fact remains that we only looked at English literature, and this
may contribute to spatial or taxonomic biases in our understanding of the latitudinal
gradient. Alternatively, we could go beyond standard NLP tools, which are relatively
flexible and easy to adopt, and use non-linguistic features such as tables and spatial layout
common in primary diversity publications (e.g., Rosso & Sanfilippo, 2000; Gordon, 2016)
for information extraction, as has been suggested in the knowledge base creation literature
(Schlichtkrull et al., 2018). However, such methods for information extraction that
combine linguistic and non-linguistic features are still at an early stage of development.

The main advantage of automatic information retrieval over collaborative data-entry is
that of reduced time and resource investment. The information retrieval procedure is
largely independent of the size of the literature, or the taxonomic scope, say for
cheilostomes vs. all metazoans. Public biodiversity inventories such as GBIF and OBIS
require large consortia and networks of research factions to contribute their data.
Conversely, there is a wealth of biodiversity knowledge available in the published literature,
and it is feasible for one person or a small team to extract substantial amounts of data
quickly using automated information retrieval. We have used some supervised
classification methods, which require us to generate training data. However as NLP is
adopted in the biodiversity literature, it will become easier to use distantly supervised
relation extraction (Hirschberg & Manning, 2015).

Biodiversity inventories such as OBIS and GBIF are vital for supplying data for
inferences of global biogeographic patterns. While we strongly support the continued
development of these databases, we demonstrated that our automated information
retrieval approach can enhance such inventories when answering global-scale questions,
especially for under-studied taxa. To understand how the spatial diversity of cheilostomes
has come to be will require continued and concerted efforts in taxonomic investigations
(Bock & Gordon, 2013), compilation of more spatial data especially in areas currently
devoid of deposited information (Klein et al., 2019), tool-development in automated data
retrieval (Kopperud, Lidgard & Liow, 2019), and continued research in molecular
phylogenetics (Orr et al., 2021).
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