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How do T-type calcium channels control low-threshold exocytosis?
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Low-voltage-activated T-type calcium
channels act as a major pathway

for calcium entry near the resting mem-
brane potential in a wide range of
neuronal cell types. Several reports have
uncovered an unrecognized feature of
T-type channels in the control of vesi-
cular neurotransmitter and hormone
release, a process so far thought to be
mediated exclusively by high-voltage-acti-
vated calcium channels. However, the
underlying molecular mechanisms link-
ing T-type calcium channels to vesicular
exocytosis have remained enigmatic. In a
recent study, we have reported that
Cav3.2 T-type channel forms a signaling
complex with the neuronal Q-SNARE
syntaxin-1A and SNAP-25. This inter-
action that relies on specific Cav3.2
molecular determinants, not only modu-
lates T-type channel activity, but was also
found essential to support low-threshold
exocytosis upon Cav3.2 channel expres-
sion in MPC 9/3L-AH chromaffin cells.
Overall, we have indentified an unrecog-
nized regulation pathway of T-type
calcium channels by SNARE proteins,
and proposed the first molecular mecha-
nism by which T-type channels could
mediate low-threshold exocytosis.

Depolarization-evoked synaptic transmis-
sion relies on the calcium (Ca2+)-regulated
release of quantal packets of neuro-
transmitters following fusion of synaptic
vesicles with the presynaptic plasma mem-
brane.1 It is well established that neuronal
voltage-gated Ca2+ channels, by converting
electrical signals into intracellular Ca2+

concentration elevations, play a key role
in triggering evoked neurotransmitter
release.2-4 Hence, Ca2+ entry through

high-voltage-activated (HVA) channels
(N-, P/Q-, and in some extent and
particular cell populations, L- and R-type)
into presynaptic nerve terminals in
response to action potentials supports a
transient Ca2+ microdomain5 essential for
synaptic exocytosis. However, the obser-
vation that some neurons can release
functionally significant amounts of neuro-
transmitter below the threshold of action
potentials6 questioned the possible
involvement of another source of Ca2+

ions, independent of HVA channels
activation.

In contrast to HVA channels, low-
voltage-activated (LVA) T-type Ca2+

channels activate in response to subthres-
hold membrane depolarizations between
-65 mV and -50 mV and thus represent an
important source of Ca2+ entry near the
resting membrane potential. Hence,
besides controlling important physiological
processes by regulating neuronal excitabi-
lity, pacemaker activity and post-inhibi-
tory rebound burst firing, mounting
evidences from various neuronal cell types
suggest an efficient role of T-type channels
in fast and low-threshold exocytosis.7-10

Until now, however, the mechanism
whereby these channels support exocytosis
events at the molecular level remained
a mystery. In a recent study, we
provided compelling evidence of the
existence of a Cav3.2/syntaxin-1A mole-
cular complex essential for T-type-depend-
ent exocytosis.11

In mammalian synapses, interaction of
several members of the vesicle-docking /
release machinery (including syntaxin-1A/
1B and SNAP-25) onto a synprint (syn-
aptic protein interaction site) domain
located within the intracellular loop
between domains II and III of the
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Cav2.112 and Cav2.213 channels (Fig. 1A,
top panel) ensures a close localization of
the secretory vesicles near the Ca2+ source.
In turn, both synatxin-1A/1B and SNAP-
25 modulate calcium channel activity14,15

to fine tune Ca2+ entry and synaptic
strength. However, in contrast to HVA
channels, all of the three T-type channel
members (i.e Cav3.1, Cav3.2 and Cav3.3)
lack the consensus synprint site, making
the molecular understanding of the
involvement of these channels in the
exocytosis process quite difficult. Our
observation that Cav3.2 channels associate
with syntaxin-1A in central neurons
prompted us to investigate the possible
existence of specific Cav3.2 channel
molecular determinants other than the
consensus HVA synprint domain. Using
biochemical and cellular trafficking
approaches, we demonstrated that syn-
taxin-1A, as well as SNAP-25, interact
with the C-terminal domain of Cav3.2
channel (Fig. 1A, lower panel). Moreover,
using patch-clamp recordings performed
on tsA-201 cells expressing Cav3.2 chan-
nels, we demonstrated that co-expression
of a syntaxin-1A in its “closed” conforma-
tional state (i.e the conformation adopted
by the syntaxin-1A in isolation or in
interaction with Munc18)16,17 potently
decreases Cav3.2 channel availability by
shifting the voltage-dependence of inac-
tivation toward more hyperpolarized
membrane potentials, similarly to what
was previously reported for N- and P/Q-
type channels.14,15,18-20 Interestingly, this
regulation was abolished upon co-expres-
sion of SNAP-25, and not observed with a
constitutively “open” syntaxin-1A (i.e the
conformation adopted upon its association
with SNAP-25)18 (Fig. 1B). Given that
syntaxin-1A undergoes a conformational
switch from a “closed” to an “open”
conformation during the vesicle release
cycle,16,21,22 this suggests that syntaxin-1A
may be able to dynamically regulate T-type
channel availability during various stages of
exocytosis. Interestingly, although T-type
channels utilize distinct molecular determi-
nants to interact with SNARE proteins (the
C-terminal domain vs. the classical synprint
of the II-III linker), they are subjected to a
similar SNARE regulation. Does this obser-
vation question the molecular mechanism by
which binding of syntaxin-1A produces

changes in channel gating? Earlier reports
have shown that reorganization of intramo-
lecular interactions among the main intra-
cellular loops of Cav2 channels critically

influence channel inactivation.23-30 Mapping
the intramolecular interactions of T-type
channels along with the characterization of
the minimal sequence engaged in the

Figure 1. SNARE proteins modulate high- and low-voltage-gated calcium channels via distinct
molecular determinants. (A) Membrane topology of voltage-gated calcium channels highlighting
the localization of the synprint site located within the intracellular linker between domains II and III
of Cav2.1/Cav2.2 channels (top panel), and the “synprint like” domain of Cav3.x channels
(bottom panel) located within the C-terminal domain of the channel. (B) Voltage-dependence
of Cav3.x channel availability during the conformational switch of syntaxin-1A.
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interaction with SNARE proteins will
provide important structural information
on how syntaxin-1A modulates channel
gating.

It is well known that direct interaction of
SNARE proteins with Cav2.1 and Cav2.2
channels is critical for depolarization-evoked
neurotransmitter release. Hence, disruption
of the Ca2+ channel-SNARE proteins coup-
ling by deletion of the synprint domain or by
peptides derived from the synprint sequence,
alters synaptic transmission.31-34 We
revealed that similarly to HVA channels,
T-type channels-mediated exocytosis relies
on a channel-SNARE protein interaction.
Indeed, membrane capacitance recordings
performed on MPC 9/3L-HA chromaffin
cells expressing Cav3.2 channels revealed
robust voltage-dependent exocytosis which
was totally prevented by co-expression of
the Cav3.2 C-terminal domain (i.e the
synaptic protein interaction site of
Cav3.2). Ablation of Cav3.2-dependent
exocytosis most likely results from the
specific uncoupling of the channel with
SNARE proteins and not from a side
alteration of the exocytosis machinery by

itself because no alteration was observed
when exocytosis was induced by direct
intracellular Ca2+ elevation. Hence, we
showed that similarly to HVA channels, a
physical coupling between SNARE proteins
and T-type channels is critical for T-type-
dependent exocytosis. Considering the rel-
ative small conductance of T-type chan-
nels35 and the restricted diffusion of Ca2+

due to the high Ca2+ buffering capacity of
neuronal cells,36 it is conceivable that this
interaction allows the close localization of
the vesicle-docking/release machinery in
close proximity to the Ca2+ source in order
to efficiently sense Ca2+ elevation. However,
we cannot exclude the possibility that
interaction of T-type channels with
SNARE proteins could form a macromole-
cular complex through which channel
conformational changes following mem-
brane depolarization would work as an on/
off molecular switch of secretion by con-
trolling the ultimate conformational change
of the releasing complex as previously
proposed for HVA channels.37,38 Although
this concept still requires further investiga-
tion, the use on a non-conducting channel

to investigate T-type-dependent secretion
would definitively provide
interesting information about the functional
importance of T-type channel interaction
with SNARE proteins.

Overall, we revealed an unrecognized
regulation of low-voltage-activated T-type
Ca2+ channels by SNARE proteins, and
provide the first evidence for a molecular
mechanism by which these channels could
mediate low-threshold exocytosis. We
revealed that, although T-type Ca2+ chan-
nels differ from HVA channels by their
molecular constituents, they possess the
same ability to functionally interact with
SNARE proteins, highlighting a key
evolutionary mechanism for specialized
fast and spatially delimited exocytosis.
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