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Abstract 16 

In a pivotal trial, a 5-day course of oral ritonavir-boosted nirmatrelvir, given early during 17 
symptomatic infection, decreased hospitalization and death by 89.1% and reduced nasal viral 18 
load by 0.87 log relative to placebo in high-risk individuals. Yet, ritonavir-boosted nirmatrelvir 19 
failed as post-exposure prophylaxis in a follow-up trial, and frequent viral rebound has been 20 
observed in the community. We developed a mathematical model capturing viral-immune 21 
dynamics and nirmatrelvir pharmacokinetics that recapitulated viral loads from this and 22 
another clinical trial. Our results suggest that nirmatrelvir’s in vivo potency is significantly 23 
lower than in vitro assays predict. A maximally potent agent would reduce the viral load by 24 
approximately 3.5 logs relative to placebo at 5 days. The model identifies that earlier initiation 25 
and shorter treatment duration are key predictors of post-treatment rebound. Extension of early 26 
symptomatic treatment to 10 days and post-exposure prophylaxis to 15 days, rather than 27 
increasing dose or dosing frequency, is predicted to significantly lower the incidence of viral 28 
rebound. 29 
 30 
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Introduction 32 

The SARS-CoV-2 main protease inhibitor nirmatrelvir is a drug plagued by 33 
contradictions. In a landmark, randomized, double-blinded, placebo-controlled clinical 34 
trial with 1364 analyzed individuals, 300 mg of nirmatrelvir boosted with 100 mg 35 
ritonavir was given twice daily for five days to high-risk individuals with SARS-CoV-2 36 
infection within 3 days of developing symptoms. Compared to placebo, nirmatrelvir 37 
reduced the combined outcome of hospitalization and death by 89%, eliminated death 38 
as an outcome, and reduced viral load by 0.87 log after 5 days of treatment(1). This 39 
critical result prompted the Food and Drug Administration (FDA) to issue an 40 
Emergency Use Authorization(2). The drug became the most widely prescribed 41 
antiviral for SARS-CoV-2 in the United States, likely preventing thousands of 42 
hospitalizations and many deaths(3). Ritonavir boosted nirmatrelvir was recently 43 
licensed by the FDA based on its continued effectiveness and safety(4) and has 44 
outperformed other antivirals in terms of hospitalization and viral load reduction(5).  45 

However, the use of nirmatrelvir/ritonavir in real-world cohorts has identified viral 46 
rebound as a significant issue. Viral rebound occurred in 14.2% of individuals in one 47 
large cohort and was usually associated with recrudescence of symptoms, though 48 
protection against hospitalization and death appeared to be maintained(6) and remains 49 
significant despite high rates of population immunity due to vaccination and prior 50 
infection(7). Similar rates of viral rebound were observed between molnupiravir and 51 
nirmatrelvir, suggesting the rebound effect is not drug-specific and may pertain to 52 
characteristics of SARS-CoV-2 infection and treatment duration(8). This high 53 
incidence of viral rebound exceeded the 2.3% rate observed in the proof-of-concept 54 
trial, which did not differ from placebo(9).  55 

Despite its high efficacy as an early symptomatic therapy for high-risk individuals, 56 
nirmatrelvir/ritonavir was not authorized for use as post-exposure prophylaxis (PEP). In 57 
a clinical trial of post-exposure prophylaxis, nirmatrelvir/ritonavir showed 32% and 58 
37% reductions in symptomatic COVID-19 relative to placebo when given for five or 59 
ten days respectively(10). However, neither of these results reached statistical 60 
significance. Notably, molnupiravir, another drug that reduced hospitalization when 61 
given during early symptomatic infection, also failed as post-exposure prophylaxis(11). 62 
Only long-acting monoclonal antibodies have demonstrated efficacy for post-exposure 63 
prophylaxis(12–14), but these are no longer active against prevalent circulating 64 
strains(15). 65 

Early during the COVID-19 pandemic, multiple groups employed mathematical models 66 
to predict the outcomes of clinical trials for SARS-CoV-2(16–22). These models all 67 
accurately predicted that antiviral therapy that was insufficiently potent or given too 68 
late during infection might fail to provide clinical benefit(16–19, 21). Our previous 69 
modeling results further suggested that viral rebound may occur and was more likely if 70 
a drug was dosed during the pre-symptomatic phase of infection when viral loads are 71 
still expanding, as occurs in a post-exposure prophylaxis scenario(23). The proposed 72 
mechanism of this effect was that reducing viral load may blunt early immune 73 
responses and preserve susceptible cells, allowing viral re-expansion upon cessation of 74 
treatment that was of insufficient potency to eliminate all infected cells(24). The model 75 
suggested that this phenomenon could theoretically occur during early symptomatic 76 
treatment as well. At the time, we downplayed the significance of model-generated 77 
rebound as the phenomenon had yet to be demonstrated clinically. However, models fit 78 
to rebound data now suggest a similar mechanism of action to explain viral 79 
rebound(25). 80 
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Here we use an updated model for SARS CoV-2 viral kinetics that was first validated 81 
against a much larger panel of untreated individuals to precisely simulate the virologic 82 
outcomes of two nirmatrelvir/ritonavir trials. We identify that the true in vivo potency 83 
of nirmatrelvir is approximately significantly less than its in vitro potency, such that 84 
drug levels are sub-therapeutic during a portion of the dosing interval. Viral rebound is 85 
observed in our simulations and is more likely when the drug is dosed early during 86 
infection and is not reduced with a higher dose or dosing frequency. Extended-duration 87 
treatment is identified as the best strategy to avoid viral rebound. 88 

 89 
Results  90 

Viral Dynamic, Pharmacokinetic, and Pharmacodynamic Mathematical models 91 

To derive parameters for simulating nasal viral loads in the absence of therapy, we used 92 
the mechanistic mathematical model that best recapitulated 1510 SARS-CoV-2 93 
infections in a cohort of 2678 SARS-CoV-2 infected individuals from the National 94 
Basketball Association cohort (Error! Reference source not found.a) (26). The model is 95 
target-cell limited due to a finite number of susceptible cells. An eclipse phase delays 96 
viral production by infected cells. In keeping with an early interferon-mediated innate 97 
immune response, susceptible cells can become refractory to infection based on the 98 
total number of productively infected cells but also revert to susceptible at a constant 99 
rate. Infected cells are cleared by cytolysis and early immune response at a constant rate 100 
and delayed acquired immunity, which is activated in a time-dependent fashion. We 101 
used a mixed-effect population approach implemented in Monolix to estimate model 102 
parameters (Fig S1, Table S1).  103 

To reproduce levels of nirmatrelvir, we used a two-compartment pharmacokinetic (PK) 104 
model (Error! Reference source not found.b). Using Monolix and the mixed-effect 105 
population approach, we estimated parameter values by fitting the model to the plasma 106 
concentration of healthy subjects. The model closely recapitulated observed drug levels 107 
following a single dose of 250mg/100mg of nirmatrelvir/ritonavir (Fig S2, Table S2). 108 
The effect of ritonavir as an inhibitor of nirmatrelvir’s metabolism is accounted for in 109 
the nirmatrelvir’s clearance rate in the PK model. We also fit the model to the 110 
population level plasma concentrations following a single dose of 250mg/100mg and 111 
750mg/100mg showing that the estimated parameters are dose-independent (Table S3). 112 

For the pharmacodynamic (PD) model, we assumed the efficacy of the drug follows a 113 
Hill equation with respect to the drug concentration. We parameterized the Hill 114 
equation using in vitro efficacy data collected at different concentrations of nirmatrelvir 115 
(details in Materials and Methods, Fig S3, Table S4). 116 

To estimate the in vivo potency of nirmatrelvir/ritonavir, we fit our model to the viral 117 
load drop from the baseline of the control and treatment arms of two randomized, 118 
controlled trials: the EPIC-HR trial with 1574 high-risk unvaccinated symptomatic 119 
individuals (trial 1)(1)and the PLATCOV trial with 144 low-risk, symptomatic 120 
individuals (trial 2) (5). To generate placebo arms for each trial with matched viral 121 
variants and vaccine status, we simulated the viral load of 400 randomly selected 122 
individuals from the unvaccinated symptomatic subgroup of the NBA cohort (for 123 
EPIC-HR) and symptomatic individuals with Omicron infection (for PLATCOV), 124 
using their estimated individual viral load parameters. For their symptom onset, we 125 
randomly assigned all individuals an incubation period selected from a gamma 126 
distribution with parameters associated with each participant’s variant reported in the 127 
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literature (27). The mean viral load drop from the baseline recapitulated the mean 128 
change from the baseline of the viral load observed in the control arms of both trials  129 
(Error! Reference source not found.a and 3a). 130 

To simulate the treatment arm, we combined viral dynamics, PK, and PD models. Sets 131 
of VL parameters for individuals were again drawn from the NBA cohort following the 132 
same criteria as in the control arm to match the cohort characteristics of each trial as 133 
closely as possible. The PK and PD parameters for all simulated individuals were 134 
randomly drawn from their estimated population distributions. The efficacy of the 135 
treatment was calculated from the Hill equation using plasma concentrations of the 136 
drug obtained from the PK model. The efficacy of the treatment was used to lower the 137 
viral reproduction rate (details in Materials and Methods, Fig 1).  138 

Reduction of in vivo nirmatrelvir potency relative to in vitro  139 

To obtain PD parameters of nirmatrelvir, we fit the Hill equation to the in vitro efficacy 140 
of the drug as a function of its concentration (Fig S3). However, the in vivo potency of 141 
a drug is known to be different from values measured in vitro(23, 28, 29). The potency 142 
reduction factor (prf) is defined as the ratio between the in vivo and in vitro IC50. Here 143 
the in vivo IC50 is the plasma drug concentration required to inhibit viral replication by 144 
50%. To identify the in vivo potency of nirmatrelvir, we estimated the prf that achieved 145 
the best fit between our VL+PKPD model and the average drop in viral load of the 146 
treatment arm of the two clinical trials (Figs 2b and 3b). 147 

To estimate the prf, we simulated the viral load of our virtual cohort of 400 individuals 148 
treated with 300 mg of nirmatrelvir twice per day for five days with prf ranging from 1 149 
(no reduction in potency) to 120. The treatment start day was randomly selected from a 150 
uniform distribution for each simulated individual to be within 3 days of symptom 151 
onset. We fit the average change from baseline in simulated viral load data of the 152 
treatment arm to the trial data. We then plotted the coefficient of determination, R2, of 153 
the fit against different prf values (Figs 2c and 3c). The best value (prf = 61 for the fit 154 
to EPIC-HR and prf=37 when fitting to PLATCOV) was determined by maximizing the 155 
R2 of the fit. Our model closely recapitulated viral load reduction in the treatment arm 156 
of both trials (Figs 2b and 3b). We repeated the simulation 10 times and used these 157 
replicates to estimate the standard error of the prf. Accordingly, the boxplot in the 158 
lower panel of Figs 2c and 3c represents the standard error of the prf average value and 159 
does not reflect individual variability.  160 

The reason for slight differences in estimated prfs between the two trials is unknown. 161 
Possible explanations include different sampling methods (nasal swabs in EPIC-HR 162 
versus oropharyngeal swabs in PLATCOV) or different participant characteristics 163 
(high-risk adults in EPIC-HR versus lower-risk adults without comorbidities in 164 
PLATCOV).  165 

Estimates of optimal viral load reduction with an optimal drug 166 

To illustrate the importance of estimating in vivo potency of the drug, we compared the 167 
PKPD projection and average change in viral load of treatment arms with prf = 1 (no 168 
reduction in potency) and prf = 61. With an approximately 61-fold weaker potency, the 169 
drug levels dropped below the therapeutic level shortly after each dose and antiviral 170 
effect subsided in less than a day after the end of treatment leading to an average 171 
efficacy of 82% over the first 5 days of treatment (Fig 2d, e). However, the plasma 172 
concentration of a perfectly potent drug (prf = 1) remained above therapeutic levels for 173 
the duration of the treatment with a 5-day average efficacy of 99.99% and the effect 174 
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persisted for nearly 10 days (Fig 2e). With the perfectly potent drug (prf =1), with 175 
assumed in vitro potency level, the same treatment regimen could reduce the viral load 176 
by approximately 3.5 logs at day 5 relative to the placebo compared to the 0.87 log 177 
reduction reported in the trial (Fig 2f).  178 

In estimating nirmatrelvir’s in vitro pharmacodynamic parameters, we assumed only 179 
the IC50 differs in vivo. To confirm the validity of this assumption, we repeated the 180 
simulation of the treatment arm of EPIC-HR with different combinations of the potency 181 
reduction factor and the Hill coefficient. Fig S4 shows that the best fit always happened 182 
for prf ~60 and was independent of the Hill coefficient.  183 

The potency reduction factor was more sensitive to certain PK parameters (Fig S5), 184 
particularly the drug’s clearance rate (���). If the drug is assumed to be cleared from 185 
the body more rapidly (larger ���), then it would need to be more potent (smaller prf) to 186 
provide the same effect observed in the clinical trial. However, this did not impact our 187 
simulations of different dosing regimens since PK parameters were independent of the 188 
dose (Table S3). In simulations of different dosing regimens, we therefore use 189 
estimated PK parameters and prf distributions from EPIC-HR for all dosing regimens.  190 

Model recapitulation of PLATCOV participant variability 191 

Our model accurately reproduced mean reduction in viral load on multiple post-192 
treatment days in EPIC-HR (Fig 2b) and PLATCOV (Fig 3b). However, it also 193 
predicted variable virologic responses at the individual level, including some instances 194 
of viral increase in the days following therapy. To test whether our model reproduced 195 
individual level heterogeneity within the trial, we compared simulated and actual 196 
distributions of viral load change in the control and treatment arms of the PLATCOV 197 
trial. On most post-treatment days, these distributions were not statistically dissimilar 198 
(Fig 3d, e). Wider distributions of observed versus simulated viral load change were 199 
noted on post-randomization days 1 and 2 in the control and days 1 and 4 in the 200 
treatment arm (Fig 3d, e) perhaps due to noise in viral load data from oral swabs: wide 201 
variability was noted between oral samples collected from PLATCOV participants at 202 
equivalent timepoints, particularly on day 1 and 2 (Fig S6).  203 

Frequent viral rebound on nirmatrelvir  204 

To assess whether our model generated viral rebound, we performed simulations 205 
assuming parameter values obtained from fitting the model to data from the EPIC-HR 206 
trial (Fig 2) and randomly drew individual prf values from the obtained distribution in 207 
Fig 2c. We performed simulations from the time of infection to 30 days after symptom 208 
onset and monitored viral load continually. We defined rebound in the control arm as 209 
any case with at least two peaks in the viral load trajectory with minimum heights of 3 210 
logs and a second peak higher than its minimum by at least 1 log (Fig S7a). We defined 211 
rebound in the treatment arm as any instance in which a post-treatment viral load 212 
exceeded the viral load at the end of the treatment by 1 log (Fig S7b).  213 

By this definition, we observed rebound in 21.6% of cases treated with the clinical trial 214 
dose and 3.78% of controls (Fig 4b).  When an equivalent definition of rebound was 215 
used as in the trial (1 log increase in viral load 5 days after treatment cessation), the 216 
probability of rebound was lower (6.65% if treatment was assumed to begin several 217 
days after symptoms), closer to that of the controls, and comparable to that observed in 218 
the trial (Fig S8). 219 

Limited impact of nirmatrelvir dose or dosing frequency on viral rebound 220 
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We next explored different treatment regimens to estimate their impact on lowering 221 
viral load and the chance of rebound. We simulated the therapy with 150, 300, 600, and 222 
900 mg doses administered twice per day for 5 days, starting within 3 days post 223 
symptom onset. A larger dose decreased viral load more significantly and quickly than 224 
300 mg twice daily. 900 mg of nirmatrelvir reduced the viral load by a mean of 2 logs 225 
on day 2 and a mean of 4 logs on day 5 compared to the control (Fig 4a).  226 

Individual viral loads were highly variable within each treatment group regardless of 227 
dose (Fig 4a). This was due to several factors including heterogeneous viral load 228 
trajectories (Fig S1) and different timing of treatment. Responses to treatment differed 229 
substantially according to viral load trajectory and treatment timing as well (Fig 4c). In 230 
nearly every case, the reduction in viral load was greater during the first 5 days of 231 
treatment with higher doses. However, this only impacted viral elimination in certain 232 
cases (Fig 4c,i). Sometimes viral load equilibrated to similar levels post-treatment 233 
regardless of dose (Fig 4c, ii), while in other cases, higher doses were associated with 234 
rebound (Fig 4c, iii & iv). By achieving a lower post-treatment viral load nadir, higher 235 
doses resulted in a greater likelihood of viral rebound in our simulations (Fig 4b). 236 

Increasing frequency of antiviral dosing had nearly equivalent effects to increasing the 237 
dose, leading to a more rapid reduction in viral load (Fig S9a), heterogeneous effects 238 
based on viral load trajectory and timing of treatment (Fig S9c), and increased chance 239 
of rebound (Fig S9b). 240 

Early treatment as a predictor of SARS-CoV-2 rebound  241 

We next simulated therapy with four different timings of treatment: post-exposure 242 
prophylaxis (PEP): 0-1 day after infection in the pre-symptomatic phase; early 243 
treatment: 0-1 day after symptom onset as often occurs in community settings; 244 
intermediate treatment: 1-5 days after symptom onset as in the clinical trial; and late 245 
treatment: 5-10 days after symptom onset. In all simulations, the administered dosage 246 
was 300mg twice per day for 5 days.  247 

Applying treatment as PEP or shortly after symptoms lowered viral load more 248 
substantially relative to control than intermediate or late therapy at days 2 and 5 post-249 
treatment, though intermediate and late strategies also significantly lowered viral load 250 
relative to control at these timepoints (Fig 5a). The boxplots for control groups in each 251 
panel in Fig 5a show the viral load at different points during the infection to match 252 
different timing of the treatment in the treatment arms. However, mean viral load was 253 
significantly higher in the PEP group versus the control group 10 days after the start of  254 
treatment (Fig 5a), due to the high probability of rebound (Fig 5b, c) when the virus is 255 
at its initial stages of expanding in the body and before the immune response is 256 
established in treated individuals.  257 

Prolongation of treatment to reduce the probability of SARS-CoV-2 rebound 258 

Next, we analyzed the impact of treatment duration on viral rebound. We simulated 259 
treatment regimens with 300 mg nirmatrelvir given twice per day for 2, 5, 10, 15, and 260 
20 days. The treatment was again initiated within 3 days after symptoms appeared. Fig 261 
6a demonstrates the continuous drop in viral load if treatment was maintained until the 262 
infection was effectively cleared from the body. The viral load distributions of the 263 
treatment arms with 15 and 20 days of treatment on days 2, 5, and 10 were the same as 264 
the viral load distribution of the treatment arm with 10 days of treatment duration and, 265 
therefore, are not shown. Prolonging treatment duration to 20 days almost completely 266 
eliminated viral rebound (Fig 6b,c). 267 
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We next explored the impact of treatment duration on different treatment timing. 268 
Prolonging treatment to 15 days for early treatment and 20 days for PEP lowered the 269 
viral load close to the limit of detection (2 log) at the end of treatment and significantly 270 
lowered the probability of rebound (Fig 7). 271 

Differing observed rebound rates resulting from varying timing of sampling and 272 
definitions 273 

Previous studies have defined rebound using criteria with varying virologic thresholds, 274 
timing, and sampling frequency (30). A rebound was sometimes defined when a 275 
positive test was observed after a negative test (31). In EPIC-HR, treatment was started 276 
within the first 5 days of symptoms (our intermediate treatment group) and rebound 277 
was defined as a 0.5 log increase on days 10 and/or 14. By this definition 2.3% of 278 
treated cases were classified as rebound (30). The probability of rebound in our 279 
simulation with a threshold of 0.5 log measured only on day 5 after the end of the 280 
treatment was 8.15% and decreased as thresholds for viral rebound increased (Fig S8). 281 
This percentage would be even lower if treatment started 3-5 days after symptoms 282 
(rather than 1-5 days) because the probability of rebound is very sensitive to the timing 283 
of treatment. We hypothesize that in EPIC-HR, participant enrollments were skewed to 284 
later during the first 5 day symptom window.  285 

In our simulations, we recorded viral load every 0.001 of a day and used a 1 log 286 
threshold to identify rebound cases. This would be a more sensitive method to observe 287 
rebound and suggests that in trial and real-world cohorts, rebound is likely more 288 
common in treated individuals than is detected with less frequent sampling (Fig S8).  289 

Immune and viral mechanisms for viral rebound 290 

To understand mechanisms that might explain the increase in rebound in the PEP and 291 
early treatment groups, we simulated four treatment arms with the treatment starting on 292 
days 1, 4, 7, and 10 after infection. The start day was fixed for all individuals in each 293 
arm to limit the added variability introduced by a variable incubation period and timing 294 
of treatment relative to symptoms in our previous simulations. The high frequency of 295 
rebound in day 1 and day 4 treatment starts was evident from the viral load trajectories 296 
after the end of the treatment on days 5 and 9, respectively (Fig 8a top row), in many 297 
individual trajectories (grey lines) and to a less dramatic extent in mean viral load (blue 298 
line). A second peak after the end of the treatment was also seen in the dynamics of 299 
infected cells (Fig 8a middle row, blue line) and the intensity of the innate immune 300 
response (the rate of production of refractory cells) (Fig 8a bottom row).  301 

Applying the treatment earlier during infection (day 1 and day 4 in the case of our 302 
simulations) lowered the viral load as well as the populations of infected and refractory 303 
cells, preserving susceptible cells. The ratio of susceptible to refractory cells in the two 304 
groups with earlier treatment starting points (day 1 and day 4) was significantly higher 305 
at the end of the treatment than in the control group at equivalent time points (Fig 8b). 306 
At each time point, innate immune responses were significantly diminished in treated 307 
individuals versus controls due to fewer infected cells (Fig 8c). Overall, a weaker 308 
innate immune response, higher availability of susceptible cells and persistence of 309 
infected cells after 5 days of treatment, allowed viral rebound after treatment cessation.  310 

In a parallel manuscript, we subset shedding groups in the NBA cohort according to 311 
shedding kinetics using k-means clustering. The groups were ordered based on the area 312 
under their viral load curve (AUC) with group 1 having the smallest AUC and group 6 313 
the largest (Fig S10a). We simulated treatment with different treatment start days using 314 
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these 6 groups and identified the highest rebound probability in the earlier treatment 315 
groups with the larger AUC (groups 5 and 6) and longer time to peak viral load (groups 316 
3, 5, and 6) prior to antiviral therapy (Fig S10b, c). This indicates that viral rebound 317 
may be more likely in individuals who were destined for more severe infections had 318 
they not received therapy. 319 

 320 
Discussion  321 

We previously demonstrated for herpes simplex virus-2(32), HIV(33), Ebola virus(28), 322 
and SARS-CoV-2(23), that it is vital to consider the timing and intensity of the immune 323 
response to accurately simulate clinical trials of antiviral agents. If a direct-acting 324 
antiviral therapy is given too late during infection, then efficacy is often low because 325 
the disease is driven by excess inflammation and cytokine storm. On the other hand, 326 
concurrent immune pressure can provide critical assistance for antiviral agents to 327 
eliminate viral replication, as confirmed in recent studies(7). Accordingly, our previous 328 
modeling suggested that extremely early treatment of pre-symptomatic SARS-CoV-2 329 
as occurs with PEP requires higher drug potency than treatment during early 330 
symptomatic infection because innate immunity is activated to a greater extent at this 331 
slightly later stage of infection and fewer susceptible cells remain(23). It is increasingly 332 
clear that the potency and duration of antiviral therapy required to achieve clinical 333 
benefit depends strongly on the stage of infection and the ongoing intensity of the 334 
immune response. 335 

Our prior work also demonstrated that in vitro antiviral drug potency measured in 336 
relevant cell culture lines often overestimates in vivo potency in humans(28, 29, 34). 337 
Specifically, the plasma drug level required to achieve 50% inhibition of cellular 338 
infections in vivo is higher than the level required to inhibit infection in vitro. The 339 
discrepancy between in vitro and in vivo potency can only be assessed by fitting viral 340 
dynamic / PKPD mathematical models to viral load data from clinical trials, as we have 341 
done here. Traditional PKPD models, which do not account for the dynamics of an 342 
immune response on observed viral loads, are not sufficient to estimate in vivo potency. 343 
Because in vivo potency reduction varies from 2 to 100 depending on the infection, 344 
antiviral agents(28, 32, 34), and population in vivo IC50 must be assessed separately in 345 
each case. 346 

Here by precisely fitting a combined viral-immune dynamic / PKPD model to viral load 347 
data from placebo and treatment groups in a randomized clinical trial as well as an 348 
open-label clinical trial of nirmatrelvir/ritonavir, we merge these two key concepts. We 349 
first identify that nirmatrelvir potency is reduced 60-70 fold in vivo relative to in vitro 350 
in the high-risk population and 30-40 fold in the healthy population. The difference 351 
between the estimated in vivo potency in these two populations can be explained by the 352 
differences in the demographics and sampling methods in the two trials. The 353 
mechanistic reasons for this reduction cannot be determined by the model but may 354 
include increased in vivo protein binding(35), inhibition of drug delivery from plasma to 355 
sites of infection, or differences in cellular uptake and drug metabolism in vivo(36). 356 
Nevertheless, our estimated in vivo IC50 provides a benchmark plasma level to target in 357 
future trials. The PK model also demonstrates that the drug’s relatively short half-life 358 
(t½) allows it to dip to subtherapeutic levels even when dosed twice daily. 359 

Our model also develops a viable hypothesis for why nirmatrelvir is highly effective 360 
when given during early symptomatic infection but less so when given as post-exposure 361 
prophylaxis. By preventing a high peak viral load approximately 3-5 days after 362 
infection, therapy preserves susceptible cells and blunts the immediate, likely innate 363 
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immune response to SARS-CoV-2, while not completely eliminating infected cells. If 364 
the virus is not eliminated by an early acquired response along with antiviral pressure, 365 
it rebounds to a peak level that is sometimes comparable to the initial peak. We 366 
hypothesize that viral rebound occurs more frequently in community settings relative to 367 
the clinical trial. Infected individuals in the community are often prescribed the drug 368 
very early after symptom development, whereas in the trial, there was a natural 1 to 2-369 
day delay based on the enrollment and consent process. Surprisingly, this short delay 370 
may have limited rebound while not affecting the primary endpoints of the trial, a 371 
finding supported by recent clinical studies(37), which nevertheless still suggest a clear 372 
benefit for earlier treatment in terms of preventing hospitalization in high-risk 373 
individuals(7). Notably, antiviral therapy is not a risk factor for rebound in our model or 374 
in clinical cohorts of individuals treated late during infection(38). High viral load 375 
shedding is also a risk factor for rebound in our model as has been suggested in other 376 
studies (39). 377 

Our model identifies optimal conditions for viral rebound, which counterintuitively 378 
include early treatment during pre-symptomatic infection, which can be exacerbated by 379 
higher or more frequent dosing. Both mechanisms occur by suppressing the amount of 380 
infection and preserving susceptible cells, limiting the development of refractory cells, 381 
and dampening the intensity of the early immune response. The best method to prevent 382 
viral rebound is prolonging treatment, with a longer course needed for PEP. This 383 
finding is consistent with trials of long-acting monoclonal antibodies, which 384 
demonstrated efficacy as post-exposure prophylaxis(12–14). 385 

Because the model is validated precisely against mean viral load reduction from two 386 
trials as well as individual viral kinetic distributions within each arm of one trial, it can 387 
be used as a tool to test various treatment strategies for future trials with the ability to 388 
vary therapeutic goals, timing of treatment, dose, dosing interval, and duration of 389 
therapy. Our prior PD modeling also allows testing of potentially synergistic 390 
combination agents and consideration of special hosts such as immunocompromised 391 
individuals with persistent infection who may be at risk of developing drug 392 
resistance(28, 40). We believe our approach provides a template for optimizing future 393 
trial designs with nirmatrelvir and other therapies. 394 

Our model has several limitations. First, nasal or oropharyngeal viral load may not be a 395 
perfect surrogate of disease activity. On the one hand, viral load reduction has been 396 
correlated with beneficial clinical outcomes for nirmatrelvir(1), molnupiravir(41), and 397 
monoclonal antibodies(42). A recent review shows that viral load reduction is a 398 
reasonably good surrogate endpoint(42). Moreover, the viral rebound appears to track 399 
very closely with the symptomatic rebound in multiple case series(30). Yet, early 400 
remdesivir treatment provided a profound reduction in hospitalization while not 401 
impacting nasal viral load, albeit 5 days after completion of therapy (43). Data from 402 
non-human primates suggests that the drug has a specific effect on viral loads in the 403 
lungs that is not observed in upper airways, a finding that we were also able to capture 404 
with models(23). Overall, there is a strong suggestion from early treatment trials that a 405 
reduction in nasal viral loads beyond that observed in placebo-treated individuals is 406 
associated with substantial clinical benefit(1). 407 

Another limitation is that the model does not account for drug resistance. While there 408 
has been limited evidence of de novo resistance during nirmatrelvir therapy, serial 409 
passage of virus suggests a relatively low barrier, and some viral rebound could, in 410 
theory, be with resistant variants. Studies to date suggest very little mutational change 411 
between the infecting and rebounding virus(44–47). 412 
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Our model does not capture immunity in literal terms. For instance, we do not 413 
distinguish innate interferon, antibody, and T-cell responses, as these have not been 414 
measured in sufficient longitudinal detail to precisely ascribe viral clearance to different 415 
components of the immune response. We structured the model for the early response to 416 
roughly map to innate responses, as the model term capturing the progression of 417 
susceptible cells to a refractory state diminishes with decreases in viral load and 418 
assumes no immune memory. The late immune response in our model has memory, 419 
leads to rapid elimination of the virus, and is likely to represent acquired immunity. 420 
While a more accurate model would discriminate different arms of the immune 421 
responses and fit to immune data, ours sufficiently captures the timing and intensity of 422 
immune responses for accurate clinical trial simulation. 423 

Finally, it is our opinion that models lacking a spatial component cannot capture the 424 
full dynamics of target cell limitation, which is influenced by the packing structure of 425 
cells, dynamics of viral diffusion, and infection within multiple concurrent micro-426 
environments(32).  For these reasons, ordinary differential equations may misclassify 427 
the relative impact of target cell limitation and innate immune responses in the period 428 
surrounding peak viral load. However, our differential equation approach provides 429 
accurate output for clinical trial simulation. 430 

In conclusion, our model identifies viable mechanistic underpinnings of the high 431 
efficacy of nirmatrelvir therapy for early symptomatic SARS-CoV-2 infection, lower 432 
efficacy for PEP, and high incidence of viral rebound in a real-world setting. The model 433 
can also be used to assess different treatment strategies and suggests prolonging therapy 434 
is the optimal method to avoid rebound and maintain potent early antiviral suppression. 435 

 436 

Materials and Methods 437 

Study Design 438 

We developed a viral dynamics model recapitulating the viral load data collected from 439 
symptomatic individuals in the NBA (National Basketball Association) cohort(48). We 440 
used a two-compartment model to reproduce the PK data of nirmatrelvir plus 441 
ritonavir(2). For the simulation, we constructed a virtual cohort by randomly selecting 442 
400 individuals from the NBA cohort, trying to match the trial populations regarding 443 
the vaccine status and history of infection, and assigning individual PK and PD 444 
parameters randomly drawn from their respective inferred distributions. We fit the 445 
combined viral dynamics and PK/PD model to the average change in viral load from 446 
the baseline of the control and treatment arms of the two previously published 447 
nirmatrelvir/ritonavir clinical trials (1, 5). By fitting our model to the control arms, we 448 
validated our viral dynamics model and how well the viral dynamics of our virtual 449 
cohort represent the trial control arms. We used the fit to the treatment arms to estimate 450 
the potency reduction factor (prf) by maximizing the R2 of the fit. With the estimated 451 
prf and in vivo IC50 of the drug, we explored different treatment regimens by changing 452 
dose, dosing frequency, treatment duration, and treatment timing, to find the best 453 
strategy to minimize the probability of rebound.  454 

Viral load data 455 

We used data from the symptomatic subpopulation of the NBA cohort published by 456 
Hay et al(48). The NBA cohort dataset consists of 2875 documented SARS-CoV-2 457 
infections in 2678 people detected through frequent PCR testing regardless of 458 
symptoms. 1510 infections in 1440 individuals had at least 4 positive quantitative 459 
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samples. We used the viral load data from the 1510 infections to estimate the viral load 460 
parameters.  461 

Clinical trial data 462 

We used viral load data from two nirmatrelvir/ritonavir clinical trials. EPIC-HR by 463 
Hammond et al. (1) included 682 and 697 symptomatic high-risk individuals in the 464 
control and treatment arms, respectively. We obtained the average change in viral load 465 
data of the control and treatment arms by digitizing Figure 3A of the manuscript(1). 466 
Nasal viral load was measured on days 0, 3, 5, 10, and 14 after the treatment start day 467 
and adjusted by the baseline viral load. PLATCOV by Schilling et al. (5) is an open-468 
label, randomized, controlled adaptive trial with 85 and 59 symptomatic, young, 469 
healthy individuals in the control and nirmatrelvir treatment arms, respectively. The 470 
viral load samples from each participant were collected on days 0 through 7 and day 14 471 
after treatment start day. We used the individual viral load data made available by the 472 
authors. From PLATCOV, we averaged over the two oral samples collected from each 473 
individual and calculated viral load drop from baseline. In both trials, the study 474 
participants were treated with 300mg/100mg nirmatrelvir/ritonavir within three days 475 
(EPIC-HR) or four days (PLATCOV) of symptoms onset. The treatment was 476 
administered twice per day, for five days. We used EPIC-HR’s lower limit of detection 477 
(2 log imputed as 1 log) in our simulations. However, when fitting to PLATCOV, we 478 
used the maximum LOD reported in the published data.  479 

PK data 480 

PK data of nirmatrelvir (PF-07321332) with ritonavir was obtained by digitizing Figure 481 
4 of the drug’s Emergency Use Authorization document(2). The data is from a phase I 482 
randomized trial by Singh et al.(49) where eight participants (4 fed, 4 not fed) took a 483 
single dose of 250mg/100mg nirmatrelvir/ritonavir. The plasma concentrations of the 484 
drug in participants were recorded in the next 48 hours after dosing.  485 

PD data 486 

The data on drug efficacy comes from five replicates per condition, pooled from 2 487 
independent technical experimental repeats (one experiment with triplicate conditions, 488 
one experiment in duplicate conditions) performed at the University of Washington. 489 
The efficacy of Nirmatrelvir in the presence of CP-100356 (an efflux inhibitor (50)) 490 
was measured against the delta variant of SARS-CoV2 in Calu-3 cells. The efflux 491 
inhibitor ensures consistent, adequate intracellular levels of drug. Briefly, Calu 3 cells 492 
human lung epithelial were treated with varying concentrations of nirmatrelvir in the 493 
presence of 2uM CP-100356 prior to infection with SARS-CoV-2 (delta isolate) at a 494 
multiplicity of infection of 0.01. Antiviral efficacy and cell viability (of non-infected 495 
cells treated with drugs) were assessed as described(51). 496 

Viral dynamics model 497 

We used our model of SARS-CoV-2 dynamics(26) to model the viral load dynamics of 498 
symptomatic individuals with SARS-CoV-2 infection. Our model assumes that 499 
susceptible cells (�� are infected at rate ��� by SARS-CoV-2 virions. The infected 500 
cells go through a non-productive eclipse phase ���� before producing viruses and 501 
transition to becoming productively infected ���� at rate ��� . When encountering 502 

productively infected cells, the susceptible cells become refractory to infection �	� at 503 
the rate 
���. Refractory cells revert to a susceptible state at rate �	. The productively 504 
infected cells are cleared at rate �� representing cytolysis and the innate immune 505 
response that lacks memory and is proportional to the amount of ongoing infection. If 506 
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the infection persists longer than , then cytotoxic acquired immunity gets involved, 507 
which is represented in our model by the rate ��� . Finally, free virions are cleared at 508 
the rate �. Of note, this model, previously proposed by Ke et al. (52), was selected 509 
against other models in(26) based on superior fit to data and parsimony. The model 510 
written as a set of differential equations has the form, 511 

 512 

 513 

��

��
� � βSV �  �I�S �  ρR   (1a) 514 

��

�	
� 
��� –  �	    (1b) 515 

�
�

�	
� ��� –���    (1c) 516 

�
�

�	
� �I� � δI�  �  m�����   (1d) 517 

��

�	
� π��  –  γV   (1e) 518 

where �  ���� � 0     � ! 
  ���� � �    � " #      (1f) 519 

 520 

To estimate parameter values, we fit the model to viral load data from the NBA cohort 521 
using a mixed-effect population approach implemented in Monolix.  522 

We start the simulations with 10 susceptible cells. The initial value of the refractory 523 
cells is assumed to be zero since the interferon signaling is not active prior to infection. 524 
We further assume there are no infected cells (eclipse or productive) at the beginning of 525 
the infection. We fix the level of inoculum ���� at 97 copies/ml for each individual.  526 

To resolve identifiability issues, we fixed two parameter values, setting the inverse of 527 

the eclipse phase duration to � � 4, the rate of clearance of virions to � � 15(26).  528 

PK model 529 

We used a two-compartmental PK model which includes the amount of drug in the GI 530 

tract ('�
), the plasma compartment ('�), and the lung ('�). The drug is administered 531 

orally, passes through the GI tract and gets absorbed into the blood at the rate ��. The 532 
drug then transfers from the blood into the peripheral compartment (or the lung) at the 533 
rate ���. The metabolized drug transfers back into the plasma at the rate ��� from 534 

where it clears from the body at the rate ���. The model in the form of ordinary 535 
differential equations is written as, 536 

����

�	
� ���'�
    (2a) 537 

���

�	
� ��'�
 � ���'� � ���� � ����'�   (2b) 538 

���

�	
� ���'� � ���'�   (2c) 539 

 540 

We used Monolix and a mixed-effect population approach to estimate the parameters 541 

and their standard deviations. With the initial condition of ('�
 � ()*+, '� � 0,  542 
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'� � 0); we fit -� � ��

���
 to the plasma concentration data where Vol  is the estimated 543 

plasma volume. 544 

PD model 545 

For the pharmacodynamics model we used Hill equation, .��� � ������	�
	

�
��	�
��
	 , where -��� 546 

is the drug’s concentration in plasma, /���  is the maximum efficacy, 0 is the hill 547 
coefficient, and �-�� is the drug concentration in plasma required to provide 50% 548 
efficacy. We used least-squared fitting to obtain the three parameters and their standard 549 
deviations. The average drug efficacy is measured using, 550 

/��� � �

	����� 	�	�
1 .���2�	�	�

	�����
     (3) 551 

Where �!	�"	 and ��#� are the treatment start day and end day respectively.  552 

 553 

Combined PKPD and VL models 554 

The plasma concentration of nirmatrelvir obtained from the PK model is used in the PD 555 

model to obtain time-dependent efficacy. .���, then, is used to reduce viral production 556 

rate, 3, with the factor of 41 � .���5.  Equation 1e is written as, 557 

��

�	
� 41 � 7�t�5π�� –  γV    (4) 558 

 559 

Construction of a virtual cohort 560 

To generate a cohort for our simulated clinical trials, we randomly selected 400 561 
individuals (for each arm of the simulated trial) from the unvaccinated symptomatic 562 
subpopulation of the NBA cohort and used their individual viral load parameters 563 
estimated by fitting our viral dynamics model to the data. For their incubation period, 564 
we drew randomly from gamma distributions with parameters associated with their 565 
variants of concern (27). PK parameters of each simulated individual were randomly 566 
drawn from the lognormal distributions with their estimated mean and standard 567 
deviation inferred from PK data. The PD parameters were also randomly drawn from 568 
the normal distribution with the estimated mean and standard deviation. The standard 569 
deviation of the PD parameters represents the accuracy of the assays and not the 570 
individual variability. The individual potency reduction factors were also drawn from a 571 
normal distribution with mean and standard deviation obtained from fitting ten 572 
simulations to the treatment arm of trial 1.  573 

Potency reduction factor (prf) 574 

The potency reduction factor (prf) is defined as,  575 

                     9:; � 
��,�	 ����


��,�	 �����
                            (5) 576 

 577 

We estimated the prf by maximizing R2 when fitting the change in viral load of the 578 
treatment arm of our simulation to the data from the treatment arm of the clinical trial.  579 

Measuring rebound probability 580 
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A viral load rebound in the treatment arm was defined when the viral load at any time 581 
after treatment ended exceeded the viral load at the end of the treatment by 1 log. In the 582 
control group, viral rebound was defined in patients who had at least two peaks with 583 
maximum height of 1000 copies/ml in their viral load trajectories and the second peak 584 
was 1log higher than its local minimum (Fig S7).  585 
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Figures and Tables 848 
 849 

850 
Fig. 1. Schematics of the viral dynamic model and nirmatrelvir PK-PD two 851 

compartmental model. (A) The viral dynamic model follows the dynamics of 852 
susceptible cells (S), refractory cells (R), eclipse infected cells (IE), productively 853 
infected cells (IP), and virus (V) and includes the early and late cytolytic T-cell immune 854 
responses with rates  and m(t).  is the infection rate,  is the rate of reversion of 855 

refractory cells to susceptible cells. Infected cells produce viruses at the rate , and the 856 
free viruses are cleared at the rate . (B) Two-compartmental PK model with oral 857 
administration of the drug which models the amounts of the drug in gut tissue (AGI), 858 
plasma (AP), and the tissue (AL). Ka is the rate of absorption of the drug from gut to 859 
plasma. KPL and KLP are the rates of transfer of the drug from plasma to the tissue and 860 
back, and KCL is the rate at which the drug clears from the body. V is the estimated 861 

plasma volume and CP is the drug concentration in plasma. is the drug efficacy 862 

that blocks viral production and is calculated using the Hill equation:  863 

where Emax is the maximum efficacy, n is the Hill coefficient, IC50 is the 864 
concentration of drug in vitro at which viral replication rate is reduced by 50%, prf is 865 
the potency reduction factor translating the in vitro potency to in vivo potency.         866 

  867 
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 868 
Fig. 2. Lower in vivo potency of nirmatrelvir relative to in vitro potency in EPIC-869 

HR. (A-B) mean (blue), individual (gray), and ranges (labeled dashed lines) of 870 
log10 viral load drop from the baseline of individuals randomly selected from 871 
the NBA cohort treated with (A) placebo or (B) five days of nirmatrelvir / 872 
ritonavir 300 mg twice daily. The red dots were obtained by digitizing Fig 3a of 873 
Hammond et al.(1) and model fit was noted by closeness of blue lines to the red 874 
dots. (C) R2 of the fit of the 10 model simulations per prf to the viral load drop 875 
data in light blue and their mean in dark blue. The best model fit was at a 876 
potency reduction factor of 61. The horizontal boxplot in the lower panel shows 877 
the distribution of prf values at which R2 is maximum (mean = 61.8, median 878 
=61, sd=3.5). (D) Drug efficacy when prf=61. Average efficacy was 82% over 879 
the 5-day interval, with notable drops in antiviral efficacy at drug troughs. (E) 880 
Average drug efficacy when prf = 1 vs prf = 61. The drug with no potency 881 
reduction has nearly perfect efficacy (average efficacy of 99.99%) over 5 days 882 
and has a prolonged post-treatment effect. (F) mean log10 viral load drop from 883 
baseline of the control arm, treatment arm with prf=61, and treatment arm with 884 
prf=1. 885 
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 887 

 888 
 889 

Fig. 3. Lower in vivo potency of nirmatrelvir relative to in vitro potency in 890 
PLATCOV. (A-B) mean (blue), individual (gray), and ranges (labeled dashed 891 
lines) of log10 viral load drop from the baseline of individuals randomly 892 
selected from the NBA cohort treated with (A) placebo or (B) five days of 893 
nirmatrelvir / ritonavir 300 mg twice daily. The empty and filled red circles are 894 
individual and mean viral load drop from baseline calculated from viral load 895 
data published by Schilling et al.(5). Model fit was noted by closeness of blue 896 
lines to the filled red dots. (C) R2 of the fit of the 10 model simulations per prf 897 
to the viral load drop data in light blue and their mean in dark blue. The best 898 
model fit was at a potency reduction factor of 37. The horizontal boxplot in the 899 
lower panel shows the distribution of prf values at which R2 is maximum (mean 900 
= 36.6, median =37, sd=2.15). (D-E) distribution of log10 viral load drop from 901 
baseline of simulated cohort and the 144 individuals in PLATCOV control arm 902 
(D) and treatment arm (E). Adjusted p-values (q-values) were calculated using 903 
Benjamini-Hochberg method and represent dissimilarity between observed and 904 
simulated distributions.  905 
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 907 
 908 

 909 
Fig. 4. Increasing nirmatrelvir dose lowers short term viral load but increases 910 

probability of viral rebound. In all scenarios, simulated treatment starts within 911 
the first 3 days post-symptoms. (A) log10 viral load at days 2, 5, and 10 after 912 
the treatment start day with different doses. p-values were obtained by 913 
performing Mann-Whitney U-test between the 300 mg group and the others, 914 
and only p-values <0.01 are shown. Viral loads were only reduced by higher 915 
doses at days 2 and 5, but not day 10. (B) The probability of rebound for 916 
different doses. The error bars on each column are 95% confidence intervals. 917 
(C) Examples of viral load trajectories assuming different doses on 4 modeled 918 
individuals with equivalent timing of therapy and untreated viral kinetics.  919 

  920 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 30, 2024. ; https://doi.org/10.1101/2023.08.23.23294505doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.23.23294505
http://creativecommons.org/licenses/by-nc/4.0/


Page 23 of 26 
 

 921 

 922 
 923 

Fig. 5. Early timing of therapy initiation is a key risk factor for viral rebound. In 924 
all simulations, the dose was 300 mg twice daily for five days. (A) log10 viral 925 
load at days 2, 5, and 10 after the treatment start day with different treatment 926 
durations. p-values were obtained by performing Mann-Whitney U-test. At day 927 
10, the treatment group had higher viral loads compared to placebo due to viral 928 
rebound in the PEP and early treatment simulations, despite lowering viral loads 929 
significantly at days 2 and 5. (B) The probability of rebound for different 930 
treatment timing. The error bars on each column are 95% confidence interval (C) 931 
Samples of viral load trajectories assuming different treatment timing on 4 932 
modeled individuals with equivalent untreated viral kinetics. 933 
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 935 
Fig. 6. Prolonging treatment duration limits rebound probability. In all 936 

simulations, treatment starts within the first 3 days post-symptoms and the dose 937 
was 300 mg twice daily. (A) log10 viral load at days 2, 5, and 10 after the 938 
treatment start day with different treatment durations. p-values were obtained by 939 
performing Mann-Whitney U-test and only values <0.01 are shown. At day 10, 940 
the control group had equivalent viral loads to 5 days of treatment while 10 days 941 
of treatment significantly lowered viral load. (B) The probability of rebound for 942 
different treatment durations. The error bars on each column are 95% 943 
confidence interval.(C) Samples of viral load trajectories assuming different 944 
treatment durations on 4 modeled individuals with equivalent timing of therapy 945 
and untreated viral kinetics. Prolonging therapy often avoids rebound. 946 
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 948 
 949 

Fig. 7. Post-exposure prophylaxis requires more prolonged therapy than early 950 
symptomatic therapy to avoid viral rebound.  (A) probability of rebound and 951 
(B) viral load at the end of the treatment as a function of treatment timing and 952 
duration. 953 
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 955 
 956 
Fig. 8. Early therapy preserves susceptible cells, limits refractory cells, does not 957 

eliminate all infected cells, and delays innate immune responses. 958 
Simulations are performed using time since infection as a variable rather than 959 
based on symptoms as in prior figures to eliminate the confounding impact of 960 
variable incubation period. (A) The top row shows the viral load of all 961 
individuals (in grey) and the average viral load (in blue). The middle row shows 962 
a less substantial depletion of susceptible cells (S), and lower generation of 963 
refractory cells (R) with earlier therapy. The bottom row shows the rate of 964 
production of refractory cells likely representing innate immune responses per 965 
day with biphasic, lower peak responses noted with early therapy and to a lesser 966 
extent in day 4 treated individuals. (B) Ratios of susceptible (S) to refractory 967 
cells (R) at the end of the 5-day treatment for different timings of treatment. (C) 968 
Per cell production rate of refractory cells at the end of the 5-day treatment for 969 
different timings of treatment. 970 
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