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Abstract

High-throughput spatial-transcriptomics RNA sequencing (sptRNA-seq) based on in-situ

capturing technologies has recently been developed to spatially resolve transcriptome-wide

mRNA expressions mapped to the captured locations in a tissue sample. Due to the low

RNA capture efficiency by in-situ capturing and the complication of tissue section prepara-

tion, sptRNA-seq data often only provides an incomplete profiling of the gene expressions

over the spatial regions of the tissue. In this paper, we introduce a graph-regularized tensor

completion model for imputing the missing mRNA expressions in sptRNA-seq data, namely

FIST, Fast Imputation of Spatially-resolved transcriptomes by graph-regularized Tensor

completion. We first model sptRNA-seq data as a 3-way sparse tensor in genes (p-mode)

and the (x, y) spatial coordinates (x-mode and y-mode) of the observed gene expressions,

and then consider the imputation of the unobserved entries or fibers as a tensor completion

problem in Canonical Polyadic Decomposition (CPD) form. To improve the imputation of

highly sparse sptRNA-seq data, we also introduce a protein-protein interaction network to

add prior knowledge of gene functions, and a spatial graph to capture the the spatial rela-

tions among the capture spots. The tensor completion model is then regularized by a Carte-

sian product graph of protein-protein interaction network and the spatial graph to capture

the high-order relations in the tensor. In the experiments, FIST was tested on ten 10x Geno-

mics Visium spatial transcriptomic datasets of different tissue sections with cross-validation

among the known entries in the imputation. FIST significantly outperformed the state-of-the-

art methods for single-cell RNAseq data imputation. We also demonstrate that both the spa-

tial graph and PPI network play an important role in improving the imputation. In a case

study, we further analyzed the gene clusters obtained from the imputed gene expressions

to show that the imputations by FIST indeed capture the spatial characteristics in the gene

expressions and reveal functions that are highly relevant to three different kinds of tissues in

mouse kidney.
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Author summary

Biological tissues are composed of different types of structurally organized cell units play-

ing distinct functional roles. The exciting new spatial gene expression profiling methods

have enabled the analysis of spatially resolved transcriptomes to understand the spatial

and functional characteristics of these cells in the context of eco-environment of tissue.

Due to the technical limitations, spatial transcriptomics data suffers from only sparsely

measured mRNAs by in-situ capture and possibly missing spots in tissue regions that

entirely failed fixing and permeabilizing RNAs. Our method, FIST (Fast Imputation of

Spatially-resolved transcriptomes by graph-regularized Tensor completion), focuses on

the spatial and high-sparsity nature of spatial transcriptomics data by modeling the data

as a 3-way gene-by-(x, y)-location tensor and a product graph of a spatial graph and a

protein-protein interaction network. Our comprehensive evaluation of FIST on ten 10x

Genomics Visium spatial genomics datasets and comparison with the methods for single-

cell RNA sequencing data imputation demonstrate that FIST is a better method more suit-

able for spatial gene expression imputation. Overall, we found FIST a useful new method

for analyzing spatially resolved gene expressions based on novel modeling of spatial and

functional information.

This is a PLOS Computational Biology Methods paper.

Introduction

Dissection of complex genomic architectures of heterogeneous cells and how they are orga-

nized spatially in tissue are essential for understanding the molecular and cellular mechanisms

underlying important phenotypes. For example, each tumor is a mixture of different types of

proliferating cancerous cells with changing genetic materials [1]. The cancer cell sub-popula-

tions co-evolve in the micro-environment formed around their spatial locations. It is impor-

tant to understand the cell-cell interactions and signaling as well as the functioning of each

individual cell to develop effective cancer treatment and eradicate all cancer clones at their

locations [2]. Conventional gene expression analyses have been limited to low-resolution bulk

profiling that measures the average transcription levels in a population of cells. With single-

cell RNA sequencing (scRNA-seq) [3–5], single cells are isolated with a capture method such

as fluorescence-activated cell sorting (FACS), Fluidigm C1 or microdroplet microfluidics and

then the RNAs are captured, reverse transcribed and amplified for sequencing the RNAs bar-

coded for the individual origin cells [6, 7]. While scRNA-seq is useful for detecting the cell het-

erogeneity in a tissue sample, it does not provide the spatial information of the isolated cells.

To map cell localization, earlier in-situ hybridization methods such as FISH [8], FISSEQ [9],

smFISH [10] and MERFISH [11] were developed to profile up to a thousand targeted genes in

pre-constructed references with single-molecule RNA imaging. Based on in-situ capturing

technologies, more recent spatial transcriptomics RNA sequencing (sptRNA-seq) [12–15]

combines positional barcoded arrays and RNA sequencing with single-cell imaging to spatially

resolve RNA expressions in each measured spot in the spatial array [12, 16–18]. These new

technologies have transformed the transcriptome analysis into a new paradigm for connecting

single-cell molecular profiling to tissue micro-environment and the dynamics of a tissue

region [19–21].

With in-situ capturing technology, RNAs are captured and sequenced in the spots on the

spatial genomic array aligned to the locations on the tissue. For example, spatial transcriptomics
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technology based on 10x Genomics Visium kit reports the number of copies of RNAs by count-

ing unique molecular identifiers (UMIs) in the read-pairs mapped to each gene [22]. There are

still significant technical difficulties. First, in-situ capturing has a low RNA capture efficiency.

The earlier spatial transcriptomics technology’s detection efficiency is as low as 6.9% and 10x

Genomics Visium has only a slightly improved efficiency [23]. In addition, the sample prepara-

tion requires highly specific handling of tissue sections. The spots in some tissue regions might

entirely fail to fix and permeabilize RNAs due to various possible issues in preparing tissue sec-

tions. A few examples of such regions are shown in S1 Fig. Thus, sptRNA-seq data often only

provides an incomplete profiling of the gene expressions over the spatial regions of the tissue.

Similarly, in scRNA-seq data analysis, the missing gene expressions are called dropout events,

which refer to the false quantification of a gene as unexpressed due to the failure in amplifying

the transcripts during reverse-transcription [24]. It has been shown in previous studies on

scRNA-seq data that normalizations will not address the dropout effects [22, 25]. In the litera-

ture, many imputation methods such as Zero-inflated factor analysis (ZIFA) [26], Zero-Inflated

Negative Binomial-based Wanted Variation Extraction (ZINB-WaVE) [27] and BISCUIT [25]

have been developed to impute scRNA-seq. While these methods are also applicable to impute

the spatial gene expressions, they ignore a unique characteristic of sptRNA-seq data, which is

the spatial information among the gene expressions in the spatial array, and do not fully take

advantage of the functional relations among genes for more reliable joint imputation.

To provide a more suitable method for imputation of spatially-resolved gene expressions,

we introduce FIST, Fast Imputation of Spatially-resolved transcriptomes by graph-regularized

Tensor completion. FIST is a tensor completion model regularized by a product graph as illus-

trated in Fig 1. FIST models sptRNA-seq data as a 3-way sparse tensor in genes (p-mode) and

the (x, y) spatial coordinates (x-mode and y-mode) of the observed gene expressions (Fig 1A).

As shown in Fig 1B, a protein-protein interaction network models the interactions between

pairs of genes in the gene mode, and the spatial graph is modeled by a product graph of two

chain graphs for columns (x-mode) and rows (y-mode) in the grid to capture the spatial

Fig 1. Imputation of spatial transcriptomes by graph-regularized tensor completion. (A) The input sptRNA-seq data is modeled by a 3-way sparse

tensor in genes (p-mode) and the (x, y) spatial coordinates (x-mode and y-mode) of the observed gene expressions. H&E image is also shown to

visualize the cell morphologies aligned to the spots. (B) A protein-protein interaction network and a spatial graph are integrated as a product graph for

tensor completion. The spatial graph is also a product graph of two chain graphs for columns (x-mode) and rows (y-mode) in the grid. (C) After the

imputation, the CPD form of the complete tensor can be used to impute any missing gene expressions, e.g. the entry (k, j, i) can be reconstructed as the

sum of the element-wise multiplications of the three components ½Âp�k;:, ½Ây�j;: and ½Âx�i;:.

https://doi.org/10.1371/journal.pcbi.1008218.g001

PLOS COMPUTATIONAL BIOLOGY Imputation of Spatially-resolved Transcriptomes by Graph-regularized Tensor Completion

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008218 April 7, 2021 3 / 25

https://doi.org/10.1371/journal.pcbi.1008218.g001
https://doi.org/10.1371/journal.pcbi.1008218


relations among the (x, y) spots. The Cartesian product of these graphs with prior knowledge

of gene functions and the spatial relations among the capture spots are then introduced as a

regularization of tensor completion to obtain the Canonical Polyadic Decomposition (CPD) of

the tensor. The imputation of the unobserved entries can then be derived by reconstructing

the entries in the completed tensor shown in Fig 1C. In the experiments, we comprehensively

evaluated FIST on ten 10x Genomics Visium spatial genomics datasets by comparison with

widely used methods for single-cell RNA sequencing data imputation. We also analyzed a

mouse kidney dataset with more functional interpretation of the gene clusters obtained by the

imputed gene expressions to detect highly relevant functions in the clusters expressed in three

kidney tissue regions, cortex, outer stripe of the outer medulla (OSOM) and inner stripe of the

outer medulla (ISOM).

Materials and methods

In this section, we first describe the task of spatial gene expression imputation, and next intro-

duce the mathematical model for graph-regularized tensor completion problem. We then

present a fast iterative algorithm FIST to solve the optimization problem defined to optimize

the model. We also provide the convergence analysis of proposed algorithm in S1 File. Finally,

we provide a review of several state-of-the-art methods for scRNA-seq data imputation, which

are also compared in the experiments later. The notations which will be used for the deriva-

tions in the forthcoming sections are summarized in Table 1.

Imputation of spatial gene expressions by tensor modeling

Let T 2 Rnp�ny�nx
þ be the 3-way sparse tensor of the observed spatial gene expression data as

show in Fig 1A, with the missing gene expressions represented as zeros, where np denote the

total number of genes, nx and ny denote the dimensions of the x and y spatial coordinates of

the spatial transcriptomics array. Our goal is to learn a complete spatial gene expression tensor

T̂ 2 Rnp�ny�nx
þ from T as illustrated in Fig 1C. However, it is computationally expensive and

often infeasible to compute or store a dense tensor T̂ , especially in high spatial resolutions

with millions of spots. Therefore, we propose to compute an economy-size representation of

Table 1. Notations.

Notation Definition

Gx, Gy Spatial chain graphs of (x, y) coordinates

Gp Protein-protein interaction (PPI) network

nx, ny, np Number of vertices in Gx, Gy, Gp

Wx 2 R
nx�nx
½0;1� ;Wy 2 R

ny�ny
½0;1� ;Wp 2 R

np�np
½0;1�

Adjacency matrix of Gx, Gy, Gp

Lx 2 R
nx�nx ; Ly 2 R

ny�ny ; Lp 2 R
np�np Graph Laplacian of Gx, Gy, Gp

Gðx; y; pÞ Cartesian product of Gx, Gy, Gp

Wðx; y; pÞ 2 Rnxnynp�nxnynp
½0;1�

Adjacency matrix ofGðx; y; pÞ

Lðx; y; pÞ 2 Rnxnynp�nxnynp Graph Laplacian ofGðx; y; pÞ

T 2 Rnp�ny�nx
þ

Incomplete spatial gene expression tensor

T̂ 2 Rnp�ny�nx
þ

Complete spatial gene expression tensor

M 2 Rnp�ny�nx
½0;1�

Binary mask tensor

Âx 2 R
nx�r
þ

, Ây 2 R
ny�r
þ , Âp 2 R

np�r
þ CPD component matrices of T̂

vecðT Þ 2 Rnxnynp�1 Rearrange T to be a vector

https://doi.org/10.1371/journal.pcbi.1008218.t001
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T̂ via an equality constraint T̂ ¼〚Âp; Ây; Âx〛, which is called Canonical Polyadic Decomposi-

tion (CPD) [28] of T̂ defined below

T̂ ¼〚Âp; Ây; Âx〛¼
Xr

i¼1

½Âp�:;i � ½Ây�:;i � ½Âx�:;i; ð1Þ

where r is the rank of T̂ , and � denotes the vector outer product. Here, ½Âx�:;i is the i-th column

of the low-rank matrix Âx 2 R
nx�r

, which can be similarly defined for ½Ây�:;i and ½Âp�:;i. By uti-

lizing the tensor CPD form, we replaced the optimization variables from T̂ to Âp, Ây and Âx,

reducing the number of parameters from np ny nx to r(np + ny + nx). The advantage of the ten-

sor representation is to incorporate the 2-D spatial x-mode and y-mode such that the grid

structure is preserved within the columns and the rows of the spatial array in the tensor, which

contains useful spatial information. Next, we introduce the tensor completion model over Âp,

Ây and Âx.

Graph regularized tensor completion model

The key ideas of modeling the task of spatial gene expression imputation are i) the inferred

complete spatial gene expression tensor T̂ is regularized to integrate the spatial arrangements

of the spots in the tissue array and the functional relations among the genes; ii) the observed

part in T is also required to be preserved in T̂ as the completion task requires; and iii) the

inferred tensor T is compressed as the economy-size representation T̂ ¼〚Âp; Ây; Âx〛for

scalable space and time efficiencies. The novel optimization formulation is shown below in

Proposition 1,

Proposition 1. The complete spatial gene expression tensor T̂ 2 Rnp�ny�nx can be obtained by
solving the following optimization problem:

minimize
fÂp;Ây ;Âxg

1

2
jjM ⊛ ðT � T̂ Þjj2F þ

l

2
vecðT̂ ÞTL x; y; pð ÞvecðT̂ Þ

subject to T̂ ¼〚Âp; Ây; Âx〛

Âp � 0; Âx � 0; Ây � 0:

ð2Þ

where λ 2 [0, 1] is a model hyperparameter; ⊛ denotes the Hadamard product; and jj:jjF
denotes the Frobenius norm of a tensor.

There are two optimization terms in the model defined in Eq (2), consistency with the

observations (the first term) and Cartesian product graph regularization (the second term),

which are explained below,

• Consistency with the observations

We introduce a binary mask tensor M to indicate the indices of the observed entries in T .

The (i, j, k)-th entry Mi;j;k which is defined below, represents whether the (i, j, k)-th element

in T is observed or not.

Mi;j;k ¼

(
1 if T i;j;k is observed;

0 otherwise:

By introducing the squared-error in F -norm jjM ⊛ ðT � T̂ Þjj2F in the model, we ensure
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the inferred spatial gene expression tensor T̂ is consistent with its observed counterparts

in T .

• Cartesian product graph regularization

Two useful assumptions to introduce prior knowledge for inferring the tensor are 1) the spa-
tially adjacent spots should share similar gene expressions, and 2) the expressions of two genes
are likely highly correlated if they share similar gene functions [29, 30]. We introduce a spatial

graph and a protein-protein interaction (PPI) network into the model.

We first encode the spatial information in two undirected unweighted chain graphs Gx = (Vx,

Ex) and Gy = (Vy, Ey), where Vx and Vy are vertex sets and Ex and Ey are edge sets. There are

|Vx| = nx vertices in Gx where nx is the number of the spatial coordinates along the x-axis of

the spatial array. Two vertices in Gx are connected by an edge if they are adjacent along the x-

axis. The connections in Gy can be similarly defined to encode the y-coordinates of the tissue.

We also incorporate the topological information of a PPI network downloaded from Bio-

GRID 3.5 [31] to use the functional modules in the PPI network. We denote the PPI network

as Gp = (Vp, Ep) which contains |Ep| experimentally documented physical interactions among

the |Vp| = np proteins. We then use the Cartesian product graph [32]Gðx; y; pÞ ¼ ðV;EÞ of

the three individual graphs Gx, Gy and Gp to regularize the elements in T̂ , where |V| = nx ny

np. The (vx vy vp)-th vertex in V represents a triple of vertices {vx 2 Vx, vy 2 Vy, vp 2 Vp} from

each of the three graphs. The (ax, ay, ap)-th and (bx, by, bp)-th vertices in V are connected by

an edge iff for any i, j 2 {x, y, p}, (ai, bi) 2 Ei and aj = bj 2 Vj for all j 6¼ i. For a graph Gi = (Vi,

Ei) where i 2 {x, y, p}, we denote its adjacency matrix as Wi, degree matrix as Di, and graph

Laplacian matrix as Li = Di −Wi. The adjacency and graph Laplacian matrices ofGðx; y; pÞ
are obtained asWðx; y; pÞ ¼Wx �Wy �Wp and Lðx; y; pÞ ¼ Lx � Ly � Lp respectively,

where� denotes the Kronecker sum [33].

By introducing the term vecðT̂ ÞTLðx; y; pÞvecðT̂ Þ in Eq (2), the inferred gene expression val-

ues in T̂ are ensured to be smooth over the manifolds of the product graphGðx; y; pÞ, such

that a pair of tensor entries T̂ ap ;ay ;ax
and T̂ bp ;by ;bx

share similar values if the (ax, ay, ap)-th and

(bx, by, bp)-th vertices are connected inGðx; y; pÞ. A connection implies that the x-coordinate

ax and bx is adjacent or y-coordinate ay and by is adjacent or gene ap and gene bp are con-

nected in the PPI, with the two other dimensions fixed. Using Cartesian product graph is a

more conservative strategy to connect multi-relations in a high-order graph as we have shown

in [34] since only replacing one of the dimensions by the immediate neighbors is allowed to

create connections. Note that it also possible to use tensor product graph or strong product

graph [34] but there could be too many connections to provide meaningful connectivity in

the product graph for helpful regularization. It is known that genes’ connectivities in PPI net-

work correlate with their co-expressions. We also justified this hypothesis on the spatial tran-

scriptomics data by examining the relation between the connectivity in PPI network and the

co-expression in spatial locations among the genes in the 10 different 10x Genomics Visium

spatial genomics datasets used in this study. The results of this analysis are shown in S2 Fig.

We observed higher co-expressions between the genes that are connected with less hops in

the PPI, which clearly supports our assumptions.

FIST Algorithm

The model introduced in Eq (2) is non-convex on variables fÂp; Ây; Âxg jointly, thus finding

its global minimum is difficult. In this section, we propose an efficient iterative algorithm Fast

Imputation of Spatially-resolved transcriptomes by graph-regularized Tensor completion
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(FIST) to find its local optimal solution using the multiplicative updating rule [35], based on

derivatives of Âp, Ây and Âx. Without loss of generality, we only show the derivations with

respect to Âp, and provide the FIST algorithm in Algorithm 1.

We first bring the equality constraint T̂ ¼〚Âp; Ây; Âx〛in Eq (2) into the objective func-

tion, and rewrite the objective function as

J ¼ J 1 þ lJ 2

J 1 ¼
1

2
jjM ⊛ ðT � 〚Âp; Ây; Âx〛Þjj

2

F

J 2 ¼
1

2
vecð〚Âp; Ây; Âx〛Þ

T
Lðx; y; pÞvecð〚Âp; Ây; Âx〛Þ

ð3Þ

The partial derivative of J 1 with respect to Âp can be computed as

@J 1

@Âp

¼ ðMð1Þ⊛ T̂ ð1Þ � Mð1Þ ⊛ T ð1ÞÞðÂx � ÂyÞ; ð4Þ

where T ð1Þ 2 R
np�nxny denotes the matrix flattened from tensor T ;� denotes the Khatri–Rao

product [28]. Note that the term Mð1Þ⊛ T̂ ð1Þ in Eq (4) implies we only need to compute the

entries in T̂ which correspond to the non-zero entries (indices of the observed gene expres-

sion) in M. The rest of the computation in Eq (4) involves the well-known MTTKRP (matri-

cized tensor times Khatri-Rao product) [36] operation, which is in the form of X ð1ÞðÂx � ÂyÞ,

and can be computed in OðrjX jÞ if X is a sparse tensor with jX j non-zeros, and Âx and Ây

have r columns. Thus, the overall time complexity of computing Eq (4) is OðrjMjÞ.
Following the derivations in [34], we obtain the partial derivatives of the second term J 2 as

@J 2

@Âp

¼ ÂpðFx ⊛ Yy þ Fy ⊛YxÞ þ LpÂpðFx ⊛ FyÞ; ð5Þ

where Fi ¼ ÂT
i Âi, and Yi ¼ ÂT

i LiÂi, for all i 2 {x, y, p}. It is not hard to show that the com-

plexity of computing Eq (5) is Oð
P

i2fx;y;pgðr
2ni þ rn2

i ÞÞ.

Next, we combine
@J 1

@Âp
and

@J 2

@Âp
to obtain the overall derivative as

@J
@Âp

¼
@J 1

@Âp

þ l
@J 2

@Âp

 !

¼
@J 1

@Âp

" #þ

�
@J 1

@Âp

" #�

þ l
@J 2

@Âp

" #þ

�
@J 2

@Âp

" #� !

;

ð6Þ

where
J i
@Âp

h iþ
and

J i
@Âp

h i�
are non-negative components in

J i
@Âp

, which are defined below,

@J 1

@Âp

" #þ

¼ ðMð1Þ⊛ T̂ ð1ÞÞðÂx � ÂyÞ; ð7Þ

@J 1

@Âp

" #�

¼ ðMð1Þ ⊛ T ð1ÞÞðÂx � ÂyÞ; ð8Þ
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@J 2

@Âp

" #þ

¼ ÂpðFx ⊛ Y
D
y þ Fy ⊛Y

D
x Þ þ DpÂpðFx ⊛ FyÞ; ð9Þ

@J 2

@Âp

" #�

¼ ÂpðFx ⊛Y
W
y þ Fy ⊛Y

W
x Þ þWpÂpðFx ⊛ FyÞ; ð10Þ

whereY
D
i ¼ ÂT

i DiÂi and Y
W
i ¼ ÂT

i WiÂi, for all i 2 {x, y, p}. According to Eq (6), the objective

function J objective will monotonically decrease under the following multiplicative updating

rule,

½Âp�a;b  ½Âp�a;b

@J 1

@Âp

h i�

a;b
þl

@J 2

@Âp

h i�

a;b

@J 1

@Âp

h iþ

a;b
þl

@J 2

@Âp

h iþ

a;b

0

B
@

1

C
A; ð11Þ

where ½Âp�a;b denotes the (a, b)-th element in matrix Âp. Similarly, we can derive the update

rule for ½Âx�a;b and ½Âp�a;b as follows,

½Ây�a;b  ½Ây�a;b
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We then propose an efficient iterative algorithm FIST in Algorithm 1 to find the local opti-

mum of the proposed graph regularized tensor completion problem with time complexity

OðrjMj þ
P

i2fx;y;pgðr
2ni þ rn2

i ÞÞ. FIST takes the incomplete spatial gene expression tensor T ,

PPI network and spatial chain graphs as input (line 1-2 in Algorithm 1), and outputs the

inferred CPD representation of the complete spatial gene expression tensor T̂ (line 9 in Algo-

rithm 1), via solving the optimization problem defined in Proposition 1 with the multiplicative

updating rule (line 5-7 in Algorithm 1) based on the tensor calculus in Eqs (7)–(10). With the

efficient tensor computation in Eqs (7)–(10), the algorithm can avoid computing the full Car-

tesian product graph and tensors, and break down the calculus into the computation on the

individual graphs and the sparse tensors. Therefore, FIST is proven to be a scalable method,

which only requires the space OðjT j þ jMjÞ to store the sparse tensors, O(∑i2{x,y,p} |Ei|) to

store the graphs, and O(∑i2{x,y,p} rni) to store the factor matrices. Thus, the overall space com-

plexity is OðjT j þ jMj þ
P

i2fx;y;pgðjEij þ rniÞÞ. The theoretical convergence analysis of FIST

is also given in S1 File.

Algorithm 1 FIST: Fast Imputation of Spatially-resolved transcriptomes by graph-regular-

ized Tensor completion

1: Input: 1) spatial gene expression tensor T 2 Rnp�ny�nx
þ , 2) binary mask

tensor M 2 Rnp�ny�nx
½0;1� which indicates the observed part in T , 3) protein-

protein interaction (PPI) network Gp and 4) hyper parameter λ.
2: Construct the spatial chain graphs Gx and Gy as described in the
text.
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3: Randomly initialize Âp 2 R
np�r
þ , Ây 2 R

ny�r
þ and Âx 2 R

nx�r
þ

as non-negative
matrices.
4: while not converge do
5: update Âp by Eq (11).

6: update Ây by Eq (12).

7: update Âx by Eq (13).
8: end while
9: Output: the low-rank matrices Âp; Ây and Âx, which form the CPD
representation of the inferred spatial gene expression tensor

T̂ ¼〚Âp; Ây; Âx〛2 R
np�ny�nx
þ .

Related methods for comparison

To benchmark the performance of FIST, we compared it with three matrix factorization (MF)-

based methods (with graph regularizations) and a nearest neighbors (NN)-based method,

which have been applied to impute various types of biological data including the imputation of

dropouts in single-cell RNA sequencing (scRNA-seq) data. Note that NMF-based methods

have been shown to be effective for learning latent features and clustering high-dimension

sparse genomic data [37].

• ZIFA: Zero-inflated factor analysis (ZIFA) [26] factorizes the single cell expression data Y 2
RN�D

where N and D denote the number of single cells and genes respectively, into a factor

loading matrix A 2 RK�D
and a matrix Z 2 RN�K

which spans the latent low-dimensional

space where dropouts can happen with a probability specified by an exponential decay asso-

ciated with the expression levels. The imputed matrix can be computed as Ŷ ¼ ZAþ m,

where m 2 R1�D
is the latent mean vector.

• REMAP: Since ZIFA is a probabilistic MF model which does not utilize the spatial and gene

networks, we therefore also compare with REMAP [38], which was developed to impute the

missing chemical-protein associations for the identification of the genome-wide off-targets

of chemical compounds. REMAP factorizes the incomplete chemical-protein interactions

matrix into the chemical and protein low-rank matrices, which are regularized by the

compound similarity graph and protein sequence similarity (NCBI BLAST [39]) graph

respectively.

• GWNMF: Both ZIFA and REMAP are only applicable to the spot-by-gene matrix which is a

flatten of an input tensor T . Such flattening process assumes the spots are independent from

each other, and thus loses the spatial information. To keep the spatial arrangements, we

also apply MF to each nx × ny slice in tensor T . Specially, we adopt the graph regularized

weighted NMF (GWNMF) [40] method to impute each nx × ny gene slice. We let GWNMF

use the same x-axis and y-axis graphs Gx and Gy as described in the previous section to regu-

larize the MF.

• Spatial-NN: It has been observed that in sparse high-dimensional scRNA-seq data, con-

structing a nearest neighbor (NN) graph among cells can produce more robust clusters in

the presence of dropouts because of taking into account the surrounding neighbor cells [41].

Such rationale has be considered in the clustering methods such as Seurat [42] and shared

nearest neighbors (SNN)-Cliq [41], and can also be adopted to impute the spatial gene

expression data. We introduce a SNN-based baseline Spatial-NN using neighbor averaging

to compare with FIST. Specifically, to impute the missing expression of a target spot, Spatial-

PLOS COMPUTATIONAL BIOLOGY Imputation of Spatially-resolved Transcriptomes by Graph-regularized Tensor Completion

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008218 April 7, 2021 9 / 25

https://doi.org/10.1371/journal.pcbi.1008218


NN first searches its spatially nearest spots with observed gene expressions, then assign their

average gene expression to the target spot.

We used the provided Python package (https://github.com/epierson9/ZIFA) to experiment

with ZIFA, and the provided MATLAB package (https://github.com/hansaimlim/REMAP)

to experiment with REMAP. To apply both methods, we rearranged the data tensor T 2
Rnp�ny�nx to a matrix T 2 RN�np , where N = nx ny denotes the total number of spots. The spatial

graph of REMAP is constructed by connecting two spots if they are spatially adjacent. REMAP

adopts the same PPI network as the gene graph Gp as used by FIST. We used MATLAB to

implement GWNMF and Spatial-NN ourselves to impute each gene slice Ti 2 R
nx�ny in T . In

the comparisons, the graph hyperparameter λ of FIST is selected from {0, 0.01, 0.1, 1}. The

graph hyperparameters of REMAP and GWNMF are set by searching the grids from {0.1, 0.5,

0.9, 1} and {0, 0.1, 1, 10, 100} respectively as suggested in the original studies. Note that differ-

ent methods use different scales of graph hyperparameters since the gradients of their variables

with respective to the regularization terms are in different scales. The optimal hyper-parame-

ters are selected by the validation set for each method. For FIST, REMAP and GWNMF, we

applied PCA on matrix T 2 RN�np to determine the rank r 2 [200, 300] of the low-rank factor

matrices, such that at least 60% of the variance is accounted for by the top-r PCA components

of T. The latent dimension K of ZIFA is set to 10 since it is time consuming to run ZIFA with a

larger K. We also observed that increasing K from 10 to 50 does not show clear improvement

on the imputation accuracy.

Results

In this section, we first describe data preparation and performance measure, and then show

the results of spatial gene expression imputation. We also analyzed the results by the gene-wise

density of the gene expressions and regularization by permuted graphs. Finally, we analyzed

the imputed spatial gene expressions in the Mouse Kidney Section dataset to show several

interesting gene clusters revealing functional characteristics of the three tissue regions, cortex,

OSOM and ISOM.

Preparation of spatial gene expression datasets

We downloaded the spatial transcriptomic datasets from 10x Genomics (https://support.

10xgenomics.com/spatial-gene-expression/datasets/), which is a collection of spatial gene

expressions in 10 different tissue sections from mouse brain, mouse kidney, human breast can-

cer, human heart and human lymph node as listed in Table 2. All the sptRNA-seq datasets were

Table 2. 10x Genomics spatial transcriptome data from 10 tissue sections.

Dataset Tissue section Tensor dimensions Density

HBA1 Human Breast Cancer (Block A Section 1) 13, 426 × 60 × 77 0.093

HBA2 Human Breast Cancer (Block A Section 2) 13, 470 × 58 × 75 0.100

HH Human Heart 7, 487 × 63 × 70 0.049

HLN Human Lymph Node 12, 368 × 61 × 78 0.088

MKC Mouse Kidney Section (Coronal) 12, 264 × 41 × 56 0.103

MBC Mouse Brain Section (Coronal) 13, 570 × 49 × 74 0.110

MB1P Mouse Brain Serial Section 1 (Sagittal-Posterior) 15, 404 × 62 × 67 0.115

MB2P Mouse Brain Serial Section 2 (Sagittal-Posterior) 12, 497 × 63 × 65 0.077

MB1A Mouse Brain Serial Section 1 (Sagittal-Anterior) 12, 658 × 59 × 66 0.105

MB2A Mouse Brain Serial Section 2 (Sagittal-Anterior) 12, 295 × 63 × 66 0.082

https://doi.org/10.1371/journal.pcbi.1008218.t002
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collected with 10x Genomics Visium Spatial protocol (v1 chemistry) [14] to profiles each tissue

section with a high density hexagonal array with 4,992 spots to achieve a resolution of 55 μm

(1-10 cells per spot). To fit a tensor model on the spatial gene expression datasets, we organized

each of the 10 datasets into a 3-way tensor T 2 Rnp�ny�nx , where the (i, j, k)-th entry in T is the

UMI count of the i-th gene at the (k, j)-th coordinate in the array. Note that the spots are

arranged in a perfect grid in earlier spatial transcriptomic arrays and the rows and columns in

the grid can be used directly as the coordinates (nx,ny). In the Visium array slide, the spots are

arranged in a hivegrid. To map the spatial coordinates (nx,ny), we shifted the odd-numbered

rows by a half of a spot for a convenient arrangement of the spots in the tensor without loss of

generality. We set the entries in T to zeros if their UMI counts is lower than 3. We then

removed the genes with no UMI counts across the spots, and removed the empty spots in the

boundaries of the four sides in the H&E staining from T . The log-transformation is finally

applied to every entry of T as T i;j;k  logð1þ T i;j;kÞ. The sizes and densities of the 10 different

spatial gene expression tensors after prepossessing are summarized in Table 2. Finally, we

downloaded the full Homo sapiens and Mus musculus protein-protein interactions (PPI) net-

works from BioGRID 3.5 [31] as the gene network Gp to match with the genes in each dataset.

Evaluations and performance measures

We applied 5-fold cross-validation to evaluate the performance of imputing spatial gene

expressions by spatial spots or genes as follows:

• Spot-wise evaluation: We chose 4-fold of the non-empty spatial spots for training and vali-

dation, and held out the rest 1-fold non-empty spatial spots as test data. When evaluating the

expressions T :;j;k 2 R
np�1 in the (k, j)-th spatial spot, we set the vectors T :;j;k and M:;j;k in the

input tensor T and mask tensor M to zeros to indicate that the expressions in this spot are

unobserved; next, we use the learned low-rank matrices Âp; Ây and Âx to construct the pre-

dicted gene expressions T̂ :;j;k as described in Eq (1).

• Gene-wise evaluation: For each gene, we chose 4-fold of its observed expressions (non-zeros

in T ) for training and validation, and held out the rest 1-fold of observed expressions as test

data. When evaluating the 1-fold expressions in the i-th gene T i;:;: 2 R
ny�nx , we set the corre-

sponding entries in T i;:;: and Mi;:;: in the input tensor T and mask tensor M to zeros to indi-

cate the expressions in this fold are unobserved; next, we use the learned low-rank matrices

Âp; Ây and Âx to construct the predicted gene expressions T̂ i;:;: as described in Eq (1).

The hyper-parameter λ is optimized by the validation set for FIST and the baseline meth-

ods. Denoting vectors t 2 Rn�1
and t̂ 2 Rn�1

as the true and predicted expressions in the held-

out spatial spot T :;j;k or the held-out entries in gene T i;:;:, the imputation performance is evalu-

ated by the following three metrics,

• MAE (mean absolute error)¼ 1

n ð
Pn

i¼1
jti � t̂ ijÞ;

• MAPE (mean absolute percentage error)¼ 1

n ð
Pn

i¼1
j
ti � t̂ i
ti
jÞ;

• R2 (coefficient of determination)¼ 1 � ð
Pn

i¼1
ðti � t̂ iÞ

2
Þð
Pn

i¼1
ðti �

Pn

j¼1
tj

n Þ
2
Þ
� 1
:

We expect a method to achieve smaller MAE and MAPE and larger R2 for better

performance.
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FIST significantly improves the accuracy of imputing spatial gene

expressions

The performances of FIST and the baseline methods except for ZIFA in the spot-wise evalua-

tion are compared in Fig 2. ZIFA was excluded from this spot-wise evaluation as it does not

allow empty rows (spots) in the implementation of its package, and thus is not applicable to

the prediction of the held-out test spots. The average performances of all the spatial spots

using each of the 10 sptRNA-seq datasets are shown as bar plots. FIST consistently outper-

forms all the baselines with lower MAE and MAPE, and larger R2 in all the 10 datasets. We

further applied right-tailed paired-sample t-tests on R2 values to test against the alternative

Fig 2. Spot-wise cross-validation on 10x Genomics data. The performances of the four compared methods on the 10

tissue sections are measured by 5-fold cross-validation. Each bar shows the mean of the imputation performance of

one method on all the spatial spots. The result on each of the 10 datasets is shown in one vertical column separated by

dashed lines. The means are also compared between FIST and each of the baseline methods in S1 Table by paired-

sample t-tests.

https://doi.org/10.1371/journal.pcbi.1008218.g002
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hypothesis that the R2 produced by FIST has a larger mean than the mean of those produced

by each of the baseline methods; and we also applied left-tailed paired-sample t-tests on MAE

and MAPE values to test against the alternative hypothesis that the MAE and MAPE produced

by FIST have a smaller mean than the mean of those produced by each of the baseline meth-

ods. The p-values in S1 Table show that compared with the baseline methods, FIST has signifi-

cantly lower MAE and MAPE in each of the 10 datasets, and larger R2 in all comparisons but

one, in which FIST performed only slightly better than GWNMF on HB2P dataset by R2.

The performances of FIST and the baseline methods in the gene-wise evaluation are com-

pared in Fig 3. The average and standard deviation of the prediction performances across all

the genes are shown as error bar plots in Fig 3. Similar to the spot-wise evaluation, FIST clearly

outperforms all the baselines with more robust performances across all the genes, as the vari-

ances in all the three evaluation metrics are also lower than the other compared methods. To

examine the prediction performance more closely, we also showed the distributions of MAE,

MAPE and R2 of individual genes in the 10 datasets in S3–S5 Figs, respectively. The result is

consistent with the overall performance in Fig 3. The observations suggest that FIST indeed

performs better than the other methods in the imputation accuracy informed by the spatial

information in the tensor model. It is also noteworthy that GWNMF, the MF method regular-

ized by the spatial graph applied to each individual gene slice in tensor T , outperforms the

other baselines in almost all the datasets. This observation further confirms that the spatial pat-

terns maintained in each gene slice is informative for the imputation task. It is clear that FIST

Fig 3. Gene-wise cross-validation on 10x Genomics data. The performances of the five compared methods on the 10

tissue sections are measured by 5-fold cross-validation. Each error bar shows the mean and variance of the imputation

performance for one method on all the genes. The result on each of the 10 datasets is shown in one vertical column

separated by dashed lines.

https://doi.org/10.1371/journal.pcbi.1008218.g003
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outperformed GWNMF with better use of the spatial information coupled with the functional

modules of the PPI network Gp and the joint imputation of all the genes in the tensor T .

Cartesian product graph regularization plays a significant role

To demonstrate that the Cartesian product graph regularization in FIST significantly improves

the imputation accuracy, we show in Fig 4 the performance of FIST in each of the 10 datasets

by varying the graph hyper-parameter λ in the spot-wise evaluation. By increasing λ from 0 to

0.1 to put more belief on the graph information, we observe an appreciable reduction on the

MAE and MAPE, and increase on R2 across all the 10 datasets. The observation strongly sug-

gests that the predictions by FIST are improved by leveraging the information carried in the

CPG topology, and the belief on the graph information can be effectively optimized by using a

validation set in the cross-validation strategy.

To further understand the associations between the CPG regularization and characteristics

of the expressions of the genes, we analyzed the genes that are benefiting most from the regu-

larization by the CPG in the gene-wise evaluation. In particular, in the grid search of the opti-

mal λ weight on the CPG regularization term by the validation set, we count the percentage of

the genes with optimal λ = 0.01 rather than 0, which means completely ignoring the regulariza-

tion. To correlate the improved imputations with the sparsity of the gene expressions, we

divided all the genes into 4 equally partitioned groups (L1-4) ordered by their densities in the

sptRNA-seq data, where L1 and L4 contain the sparsest and the densest gene slices, respec-

tively. For each of the four density levels, we count the percentage of gene slices that benefit

from the CPG regularization and plot the results in Fig 5A. In the plots, there is a clear trend

that the sparser a gene slice, the more likely it benefits from the CPG regularization in all the

10 datasets. In the densest L4 group, as low as 20% of the genes can benefit from the CPG regu-

larization versus more than 50% in the sparest L1 group. This is understandable that there is

less training information available for sparsely expressed genes (with more dropouts) and the

spatial and functional information in the CPG can play a more important role in the imputa-

tion by seeking information from the gene’s spatial neighbors or the functional neighbors in

the PPI network. This observation is also consistent with the fact that the performance of

Fig 4. Analysis of Cartesian product graph regularization with varying network hyper-parameter in spot-wise evaluation. The plots

show the imputation performance of FIST on the ten 10x Genomics datasets with varying network hyper-parameters in {0, 0.1, 1} by MAE,

MAPE and R2.

https://doi.org/10.1371/journal.pcbi.1008218.g004
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tensor completion tends to degrade severely when only a very small fraction of entries are

observed [43, 44], and therefore those sparser gene slices tend to benefit more from the side

information carried in the CPG.

We also compared the performance of FIST using the CPG of Gx, Gy and Gp with the one

using a randomly permuted graph from the CPG. To generate the random CPG, we first gen-

erated three random graphs by permute Gx, Gy and Gp individually which also preserves the

degree distributions of the original graphs, by randomly swapping the edges in each graph

while keeping the degree of each node. Then we measured the performances of FIST using the

original CPG and the CPG obtained from the permuted graphs by MAE reduction, which is

the total reduction of MAE on all the genes by varying hyperparameter λ from 0 to 0.01 mean-

ing not using the graph versus using the graph. The comparisons across all the 10 datasets are

shown in Fig 5B. We observe that the FIST using the original graphs receives much higher

MAE reduction than the FIST using the permuted graphs. This observation suggests that the

topology in the original CPG carries rich information that is helpful for the imputation task

beyond just the degree distributions preserved in the random graphs.

FIST imputations recover spatial patterns enriched by highly relevant

functional terms

To demonstrate that imputations by FIST can reveal spatial gene expression patterns with

highly relevant functional characteristics among the genes in the spatial region, we performed

comparative GO enrichment analysis of gene clusters detected with the imputed gene expres-

sions. We conducted a case study on the Mouse Kidney Section data to further analyze the

associations between the spatial gene clusters and the relevance between their functional char-

acteristics and three kidney tissue regions, cortex, outer stripe of the outer medulla (OSOM)

and inner stripe of the outer medulla (ISOM).

To validate the hypothesis that the imputed sptRNA-seq tensor ~T given below

~T ¼ ð1 � MÞ⊛ T̂ þ T

can better capture gene functional modules than the sparse sptRNA-seq tensor T does, we first

rearranged both sptRNA-seq tensors into matrices ~T 2 RN�np and T 2 RN�np , where N = nx ny

Fig 5. Analysis of Cartesian product graph regularization on gene-wise evaluation. (A) The percentages of genes

benefit from the CPG are plotted by their densities in four different ranges. Each colored line represents one of the 10

datasets. (B) The total reduction of MAE using the original and permuted graphs are compared across the 10 tissue

sections.

https://doi.org/10.1371/journal.pcbi.1008218.g005

PLOS COMPUTATIONAL BIOLOGY Imputation of Spatially-resolved Transcriptomes by Graph-regularized Tensor Completion

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008218 April 7, 2021 15 / 25

https://doi.org/10.1371/journal.pcbi.1008218.g005
https://doi.org/10.1371/journal.pcbi.1008218


denotes the total number of spots. We then applied K-means on each matrix to partition the

genes into 100 clusters. Next, we used the enrichGO function in the R package clusterProfiler

[45] to perform the GO enrichment analysis of the gene clusters. The total number of signifi-

cantly enriched gene clusters (FDR adjusted p-value < 0.05) in each of the 10 tissue sections

are shown in Fig 6, which clearly tells that K-means on the imputed sptRNA-seq data produces

much more significantly enriched clusters across all the 10 tissue sections than the sparse

sptRNA-seq data without imputation.

Finally, we conducted a case study on the Mouse Kidney Section and present the highly rel-

evant functional characteristics in different tissues in mouse kidney detected with the imputa-

tions by FIST. For each of the 100 gene clusters generated by K-means as described above, we

collapsed the corresponding gene slices in ~T into a nx × ny matrix by averaging the slices to

visualize the center of the gene cluster. The enrichment results of all the 100 clusters are given

in S2 Table. We focus on 3 kinds of representative clusters in Fig 7 which match well with

three distinct mouse kidney tissue regions: cortex, ISOM (inner stripe of outer medulla and

OSOM (outer stripe of outer medulla). By investigating the enriched GO terms by the clusters

(p-values shown in Table 3), we found their functional relevance to cortex, ISOM and OSOM

regions. We found that the spatial gene cluster 9 which is highly expressed in cortex specifically

enriched biological processes for the regulation of blood pressure (GO:0008217, GO:0003073,

GO:0008015 and GO:0045777) and transport/homeostasis of inorganic molecules

(GO:0055067 and GO:0015672). The spatial gene cluster 23 and 28 which are also highly

expressed in cortex enriched cellular pathways that are critical for the polarity of cellular mem-

branes (GO:0086011, GO:0034763, GO:1901017, GO:0032413 and GO:1901380) and the

transport of cellular metabolites (GO:1901605, GO:0006520, GO:0006790 and GO:0043648),

Fig 6. Enrichment analysis on the sparse and imputed sptRNA-seq data. The total number of significantly enriched

clusters (with at least one enriched GO term with FDR adjusted p-value< 0.05) in the 10 tissue sections are shown.

https://doi.org/10.1371/journal.pcbi.1008218.g006
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respectively. These observations are consistent with previous studies reporting the regulation

of kidney function by the above listed biological processes in cortex [46–49]. In contrast, the

pattern analysis of spatial gene expressions in cluster 4, 8, 25 and 52 which are highly expressed

in OSOM in kidney showed that catabolic processes of organic and inorganic molecules are

specifically enriched such as GO:0015711, GO:0046942, GO:0015849, GO:0015718,

GO:0010498, GO:0043161, GO:0044282, GO:0016054, GO:0046395, GO:0006631,

GO:0072329, GO:0009062 and GO:0044242. These cellular processes are known to be active in

renal proximal tubule which exists across cortex and OSOM [50–55]. Distinctively, the spatial

gene clusters highly expressed in ISOM enriched pathways for nucleotide metabolisms

(GO:0009150, GO:0009259 and GO:0006163) in cluster 3 and renal filtration (GO:0097205

and GO:0003094) in cluster 5. Collectively, these observations demonstrate that FIST could

identify physiologically relevant distinctive spatial gene expression patterns in the mouse kid-

ney dataset. Further, it suggests that FIST can provide a high-resolution anatomical analysis of

organ functions in sptRNA-seq data.

Experiments on additional low-resolution spatial gene expression

datasets

To demonstrate that FIST is broadly applicable to impute the spatial gene expression data gen-

erated with different platforms, we performed additional experiments on spatial transcrip-

tomics datasets from 3 replicates of mouse tissue (olfactory bulb) provided from an earlier

study [56]. Developed before 10x Genomics Visium Spatial protocol, the spatial transcrip-

tomics technology [56] applies an aligned array to profile tissue with both lower spot density

and larger spot size (1,007 spots in total, and 200 μm between spots). The design achieves a res-

olution of 100 μm (10-40 cells per spot). Similar to the experiments on the 10x Genomics data,

we organized each of the 3 tissue replicates into a tensor T 2 Rnp�ny�nx , where nx = 33 and ny =

35 in all the 3 replicates, and np is 14,198, 13,818 and 138,40, respectively in replicate 1,2 and 3.

The (i, j, k)-th entry in T is the RPKM value of the i-th gene at the (k, j)-th coordinate in the

array.

We performed the spot-wise 5-fold cross-validation as we did in the 10x Genomics data to

compare the performances of FIST and the same baseline methods. The distributions of MAE,

MAPE and R2 on all the spatial spots in each of the 3 tissue replicates are shown in Fig 8.

Fig 7. FIST recovers spatial gene expression patterns on Mouse Kidney Section. The H&E image of the mouse

kidnesy section is shown in the middle with circles roughly separating the tissue area of Cortex, the outer stripe of the

outer medulla (OSOM) and the inner stripe of the outer medulla (ISOM) from outer to inner regions. The gene

expression patterns of the clusters in each of the three regions are grouped in the same box labeled by the region.

https://doi.org/10.1371/journal.pcbi.1008218.g007
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Table 3. Functional terms enriched by spatial gene clusters (most significantly relevant functions).

Region Cluster Significantly Enriched GO terms

Cortex Cluster 9 GO:0003073—regulation of systemic arterial blood pressure (p = 9.1 × 10−6)

GO:0008217—regulation of blood pressure (p = 1.0 × 10−4)

GO:0055067—monovalent inorganic cation homeostasis (p = 4.3 × 10−4)

GO:0008015—blood circulation (p = 5.3 × 10−3)

GO:0045777—positive regulation of blood pressure (p = 5.8 × 10−3)

GO:0015672—monovalent inorganic cation transport (p = 2.3 × 10−2)

Cluster

23

GO:0086011—membrane repolarization during action potential (p = 2.2 × 10−3)

GO:0034763—negative regulation of transmembrane transport (p = 2.2 × 10−3)

GO:1901017—negative regulation of potassium ion transmembrane transporter activity

(p = 2.4 × 10−3)

GO:0032413—negative regulation of ion transmembrane transporter activity (p = 2.7 × 10−3)

GO:1901380—negative regulation of potassium ion transmembrane transport (p = 3.4 × 10−3)

Cluster

28

GO:1901605—alpha-amino acid metabolic process (p = 4.8 × 10−10)

GO:0006520—cellular amino acid metabolic process (p = 6.4 × 10−9)

GO:0006790—sulfur compound metabolic process (p = 3.1 × 10−6)

GO:0043648—dicarboxylic acid metabolic process (p = 8.4 × 10−6)

OSOM Cluster 4 GO:0015711—organic anion transport (p = 7.7 × 10−7)

GO:0046942—carboxylic acid transport (p = 1.1 × 10−4)

GO:0015849—organic acid transport (p = 1.1 × 10−4)

GO:0015718—monocarboxylic acid transport (p = 5.0 × 10−3)

Cluster 8 GO:0010498—proteasomal protein catabolic process (p = 1.3 × 10−3)

GO:0006497—protein lipidation (p = 1.3 × 10−3)

GO:0042158—lipoprotein biosynthetic process (p = 1.3 × 10−3)

GO:0043161—proteasome-mediated ubiquitin-dependent protein catabolic process

(p = 1.3 × 10−3)

Cluster

25

GO:0044282—small molecule catabolic process (p = 5.5 × 10−19)

GO:0016054—organic acid catabolic process (p = 1.0 × 10−18)

GO:0046395—carboxylic acid catabolic process (p = 1.0 × 10−18)

GO:0006631—fatty acid metabolic process (p = 2.9 × 10−16)

GO:0072329—monocarboxylic acid catabolic process (p = 9.6 × 10−14)

GO:0009062—fatty acid catabolic process (p = 1.0 × 10−13)

GO:0044242—cellular lipid catabolic process (p = 4.7 × 10−11)

Cluster

52

GO:0006732—coenzyme metabolic process (p = 1.2 × 10−10)

GO:0006520—cellular amino acid metabolic process (p = 1.6 × 10−10)

GO:1901605—alpha-amino acid metabolic process (p = 2.3 × 10−9)

GO:0044282—small molecule catabolic process (p = 2.1 × 10−8)

GO:0000096—sulfur amino acid metabolic process (p = 2.3 × 10−7)

ISOM Cluster 3 GO:0009150—purine ribonucleotide metabolic process (p = 7.4 × 10−5)

GO:0009259—ribonucleotide metabolic process (p = 7.4 × 10−5)

GO:0006163—purine nucleotide metabolic process (p = 7.4 × 10−5)

GO:0019693—ribose phosphate metabolic process (p = 7.4 × 10−5)

GO:0072521—purine-containing compound metabolic process (p = 7.4 × 10−5)

Cluster 5 GO:0048872—omeostasis of number of cells (p = 4.5 × 10−5)

GO:0030218—erythrocyte differentiation (p = 3.2 × 10−3)

GO:0034101—erythrocyte homeostasis (p = 3.2 × 10−3)

GO:0003094—glomerular filtration (p = 3.2 × 10−3)

GO:0097205—renal filtration (p = 3.2 × 10−3)

https://doi.org/10.1371/journal.pcbi.1008218.t003
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Consistent with the observations in the previous Figs 2 and 3, FIST clearly outperforms all the

baselines with lower MAE and MAPE, and larger R2 in all the 3 replicates. The results suggest

that FIST has a potential to be applied to various spatial transcriptomics datasets of different

resolution and sparcity to achieves better imputation performance by modeling the spatial

data as tensors, and including the prior knowledge with the CPG regularization.

To confirm that the imputation accuracy of FIST is significantly improved by the CPG reg-

ularization, we showed in Fig 9 the performance of FIST in each of the 3 replicates by varying

the graph hyper-parameter λ in the spot-wise evaluation. It is also consistent with the observa-

tion in the previous Fig 4, in which we can observe remarkable reduction on the MAE and

MAPE and improvement on R2 by increasing λ to 0.1. The observation also verifies that the

CPG topology is informative for the imputation task.

Discussions

In this study, we propose to apply tensor modeling of multidimensional structure in spatially-

resolved gene expression data mapped by the 2D spatial array. To the best of our knowledge,

this is the first work to model the imputation of spatially-resolved transcriptomes as a tensor

completion problem. Our key observations in the experiments with the ten 10x Genomics

Visium spatial transcriptomic datasets are that 1) the imputation accuracy is significantly

improved by leveraging the tensor representation of the sptRNA-seq data, and 2) by incorpo-

rating the spatial graph and PPI network, the accuracy the imputation and the content of the

Fig 8. Spot-wise imputation performance on mouse tissue replicates. The performances of the four compared

methods on the 3 replicates are measured by 5-fold cross-validation. The performance on each spatial spot is denoted

by one dot in the box plots. The performances of different methods are shown in different colors.

https://doi.org/10.1371/journal.pcbi.1008218.g008
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functional information in the imputed spatial gene expressions can be further improved

significantly.

We observed that the genes that are more sparsely expressed can benefit more from the

adjacency information in the spatial graph and the functional information in the PPI network.

These genes can be empirically detected with a validation set to tune the only hyper-parameter

λ for deciding if the regularization by the product graph is needed for the imputation of a

gene. Thus, we expect a low risk of overfitting in applying FIST to other datasets. In addition,

the functional analysis of the spatial gene clusters detected on the Mouse Kidney Section data

further confirms that FIST detects gene clusters with more spatial characteristics that are con-

sistent with the physiological features of the tissue.

Overall, we concluded that FIST is an effective and easy-to-use approach for reliable impu-

tation of spatially-resolved gene expressions by modeling the spatial relation among the spots

in the spatial array and the functional relation among the genes. The imputation results by

FIST are both more accurate and functionally interpretable. FIST is also highly generalizable

to other spatial transcriotomics datasets with high scalability and only one hyper-parameter

needed to tune.

Although our experiments mainly focused on medium density 10x Genomics Visium kit

array (5000 spots or 1000 spots), we also plan to further develop variations of FIST for high-

resolution spatial transcriptomics datasets with millions of spots generated by high-defini-

tion spatial transcriptomics (HDST) [14]. The HDST datasets from the study includes 3

mouse tissue sections from olfactory bulb and 3 human tissue sections from breast cancer

using hexagonal array to profile tissue with a high density (1,467,270 spots in total) to achieve

a resolution of 2 μm. The imputation tasks on the HDST datasets are quite different for two

reasons: First, each cell spans multiple spots. Simple imputation of each spot is not a

Fig 9. Imputation performance of FIST on mouse tissue replicates by varying network hyper-parameters.

https://doi.org/10.1371/journal.pcbi.1008218.g009
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well-defined learning problem. Thus, the segmentation of the spots into each individual cell

might be necessary as a pre-processing step. Second, the capture efficiency of HDST is as low

as 1.3%, which leads to much sparser data for imputation. Our preliminary analysis indicate

that the gene expression on the spots are too sparse to be meaningful unless they are aggre-

gated among the spots in a larger region. We plan to develop variations of FIST to overcome

these additional challenges.

Another interesting future direction is to develop a variation of FIST for imputing spatial

gene expressions with additional information from matched single-cell RNA sequencing data.

For example, probabilistic graphical models have been introduced for imputing spatial gene

expressions by integration with scRNA-seq data [57]. With the integration of PPI network and

tensor modeling, FIST has a great potential to achieve better scalability as well as better accu-

racy for imputation of transcriptome-wide spatial transcipromics data.

Supporting information

S1 Fig. Spatial regions with failed RNA fixing and permeabilization. The H&E images are

shown on the left, and the heatmaps of the total RNA count at each spot are shown on the

right. The regions with irregularly low RNA count are annotated by the circles.

(PDF)

S2 Fig. PPI co-expression analysis. The Pearson correlation coefficients between expression

values of k-hop gene pairs from PPI network are shown as box plots. The Pearson correlation

coefficients of different hops are shown in each column.

(PDF)

S3 Fig. Gene-wise imputation performance by MAE. The performances on the imputations

of each gene are shown as box plots. The MAE of every gene slice is denoted by one dot. The

performance of each method is shown in each colored box plot.

(PDF)

S4 Fig. Gene-wise imputation performance by MAPE. The performances on the imputations

of each gene are shown as box plots. The MAPE of every gene slice is denoted by one dot. The

performance of each method is shown in each colored box plot.

(PDF)

S5 Fig. Gene-wise imputation performance by R2. The performances on the imputations of

each gene are shown as box plots. The R2 of every gene slice is denoted by one dot. The perfor-

mance of each method is shown in each colored box plot.

(PDF)

S1 Table. p-values of paired-sample t-tests. The means of performance (measured by MAE,

MAPE and R2 as in Fig 2) for predicting all the spot fibers are compared between FIST and

each of the baseline methods, using paired-sample t-tests.

(XLSX)

S2 Table. Enriched GO terms of spatial gene clusters. The GO terms significantly enriched

by the genes in each spatial gene cluster (FDR adjusted p-value <0.05) are shown in the

spreadsheet tables.

(XLSX)

S1 File. Convergence of FIST.

(PDF)
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