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Interpretable EEG seizure 
prediction using a multiobjective 
evolutionary algorithm
Mauro Pinto1,3*, Tiago Coelho1,3, Adriana Leal1, Fábio Lopes1,2, António Dourado1, 
Pedro Martins1 & César Teixeira1

Seizure prediction might be the solution to tackle the apparent unpredictability of seizures in patients 
with drug-resistant epilepsy, which comprise about a third of all patients with epilepsy. Designing 
seizure prediction models involves defining the pre-ictal period, a transition stage between inter-
ictal brain activity and the seizure discharge. This period is typically a fixed interval, with some 
recent studies reporting the evaluation of different patient-specific pre-ictal intervals. Recently, 
researchers have aimed to determine the pre-ictal period, a transition stage between regular brain 
activity and a seizure. Authors have been using deep learning models given the ability of such models 
to automatically perform pre-processing, feature extraction, classification, and handling temporal 
and spatial dependencies. As these approaches create black-box models, clinicians may not have 
sufficient trust to use them in high-stake decisions. By considering these problems, we developed 
an evolutionary seizure prediction model that identifies the best set of features while automatically 
searching for the pre-ictal period and accounting for patient comfort. This methodology provides 
patient-specific interpretable insights, which might contribute to a better understanding of seizure 
generation processes and explain the algorithm’s decisions. We tested our methodology on 238 
seizures and 3687 h of continuous data, recorded on scalp recordings from 93 patients with several 
types of focal and generalised epilepsies. We compared the results with a seizure surrogate predictor 
and obtained a performance above chance for 32% patients. We also compared our results with a 
control method based on the standard machine learning pipeline (pre-processing, feature extraction, 
classifier training, and post-processing), where the control marginally outperformed our approach 
by validating 35% of the patients. In total, 54 patients performed above chance for at least one 
method: our methodology or the control one. Of these 54 patients, 21 ( ≈38%) were solely validated 
by our methodology, while 24 ( ≈44%) were only validated by the control method. These findings may 
evidence the need for different methodologies concerning different patients.

Medication cannot effectively suppress seizures in patients with Drug-Resistant Epilepsy (DRE). These comprise 
a third of all patients with epilepsy. In addition to being harmful, often leading to severe injuries, seizures also 
bring social and psychological consequences, such as stress and stigma1–4. Additionally, less than 1% of patients 
with DRE are referred to a multidisciplinary epilepsy centre to confirm the diagnosis and evaluate whether they 
are candidates for epilepsy surgery5. An alternative to that treatment option could be the prediction of seizures 
to allow for an intervention, such as a warning device that timely warned patients to take rescue medication or 
avoid accidents6–8.

Epileptic seizure prediction has been studied for roughly 50 years using electroencephalographic (EEG) 
signal9–11. Researchers typically divide EEG signals into four periods: pre-ictal, preceding the seizure; ictal, 
corresponding to the seizure; post-ictal, a refractory period after the seizure; and inter-ictal, a seizure-free 
interval found between the post-ictal and the pre-ictal of consecutive seizures. It is essential to acknowledge 
that there is no clinical annotation of the pre-ictal period. Authors have not found a recurrent pattern among 
patients, but instead, they identified epileptic biomarkers specific for each patient9,12–15. Machine learning (ML) 
approaches are widely used in seizure prediction4,10,12,13,16–18. The standard ML study pipeline comprises modular 
and independent steps, including pre-processing, feature extraction, classifier training, and post-processing. 
Some studies also report the selection of a pre-ictal interval specific for each patient by performing a grid-search 
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over different intervals (e.g. 10, 20, 30, 60, or even 240 min)19,20. Recently, researchers started considering deep 
learning (DL) as: (i) it has an increased potential to deal with temporal and spatial dependencies, (ii) it might 
extract non-linear relations between features, and (iii) it may also perform pre-processing and feature extraction 
automatically15,21–27. Nevertheless, there is a significant disadvantage: DL creates black-box models. Although 
some authors have contributed with significant efforts towards deep learning explainability28,29, we still might 
be far from delivering human-comprehensible explanations with these. As a consequence, clinicians may not 
be willing to trust such models in a high-risk decision scenario30. Developing a model that delivers human-
comprehensible insights on its decisions may provide a higher degree of trust. Towards that end, using explainable 
models may be the solution to ensure that these models are stable, robust and possibly able to detect bias29,31. In 
other words, stressing the importance of explainability is a way to reinforce the highest priority of not compro-
mising patient safety32, i.e., by not performing unnecessary interventions that may be harmful.

To the best of our knowledge, there are two main seizure detection/prediction systems clinically approved 
and tested in real life for a considerable period, registered in ClinicalTrials.gov, the largest database of clinical 
trials. Cook et al.33 presented a clinically accepted warning device, the Neurovista Advisory System. Sun and 
Morrel34 presented the Responsive Neurostimulation (RNS) system, which is the only commercially available 
device designed to deliver electrostimulation. Please note that the distinction between prediction and detection 
may be blurred as it may not be precise when to distinguish between them. Also, from the Neurovista Advisory 
System clinical trial, a prediction challenge was conducted at kaggle.com using patients who had the lowest 
seizure prediction performances35.

A standard prediction study attempts to simulate real-time by using long-term continuous recordings, where 
test data must be unknown by the model during training9,14. Typically, EEG data is acquired when the patient is 
under pre-surgical monitoring to assess surgery eligibility. In these conditions, patients suffer sleep deprivation 
and medication tampering, and therefore, these are not representative of daily life. Due to this, these studies 
can only be seen as proofs of concept14,15, since confounding factors such as circadian effects, medication altera-
tions, stress, among others, induce alterations in brain dynamics which can modify the EEG signal. Also, from 
a classification point of view, a seizure is a rare event, which causes a significant class imbalance: the inter-ictal 
period is exceptionally long compared to the pre-ictal one9.

The study described herein follows our previous work36 where we proposed a seizure prediction model that 
provides highly interpretable decisions while searching for the optimal pre-ictal period. That approach was our 
first attempt to address the trust aspect when developing seizure prediction models. Additionally, the results from 
these models provided more information on the process of seizure generation. We can interpret our findings at 
lights of the bifurcation analysis37,38 while putting the pre-ictal state into a network perspective. In this analysis, 
when the dynamical system (brain activity) crosses a bifurcation, it can fall into the ictal state. The bifurcation 
concerns a point beyond which the inter-ictal state disappears, thus pushing brain activity inexorably towards 
the ictal state. This drift underlies the concept of measuring a pre-ictal tendency from EEG background analysis. 
This methodology also tackled the lack of synergy between all steps from the classical seizure prediction meth-
odologies while handling time dependencies. To do this, we searched for discriminative features (in different and 
simultaneous time windows) for each patient that best predicted seizures with a logistic regression classifier by 
developing a personalised Evolutionary Algorithm (EA). EAs are based on a population of individuals (points 
in the search space) and are inspired by natural evolution. They are helpful for direct search, optimisation, and 
ML problems39. In sum, the individuals, defined by a set of features that best performed in seizure prediction, 
survived and proliferated. The remaining died and did not propagate their genes39–41. With this first study, we 
also demonstrated that we could obtain patient-specific knowledge by studying the phenotype from the EA 
populations. However, there were some limitations: (i) the analysis comprised of EEG data collected from a 
small group of 19 patients exclusively with temporal lobe epilepsy; (ii) we considered a small set of features from 
the literature were considered; and (iii) the phenotype study only accounted for the presence of genes and the 
discriminative power from correspondent logistic regression coefficients.

We present here a considerably improved version of our work that addresses the shortcomings mentioned 
above: (i) we tested a new methodology using data from 93 patients with several types of focal (temporal, frontal, 
occipital, and central) and generalised epilepsy; (ii) we added more features, still widely used in the literature 
in order to not lose interpretability potential; (iii) in our phenotype study, we also assessed gene interaction by 
using the a priori algorithm, a classical association rule method42. We now provide higher trust in our models’ 
performance while deepening current knowledge about seizure generation mechanisms. We also studied the 
aspect of patient comfort by assessing the electrodes that are providing discriminative information. We assumed 
that we provide more comfort to the patient by promoting solutions that do not require many electrodes (mini-
mise the number of used electrodes) and focus on a particular brain region (minimise the number of analysed 
lobes). Towards that end, we replaced the single-objective EA reported in our first study36 into a multi-objective 
EA that searches for the best trade-off between seizure prediction performance and patient discomfort. Addition-
ally, we created a control method, which is an adaptation from previous seizure prediction studies17,33, to better 
compare our obtained performance.

This paper presents a seizure prediction model developed using pre-surgical monitoring data that attempted 
to simulate real-life by testing chronologically and iteratively in unseen data (pseudoprospective approach). The 
envisioned real-life application concerns a patient-specific EEG scalp system up to a maximum of five electrodes 
to ensure patient comfort. Its pre-ictal period ranges from 30 to 75 min, with an intervention time of 10 min for 
each prediction, and provides the patient with sufficient time to avoid accidents and/or for rescue medication 
intake43.
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Materials and methods
Since we developed a patient-specific approach, we applied the following procedure to each patient: data pre-
processing, feature extraction, training and testing, as depicted in Fig. 1. The raw EEG data of each patient was 
filtered and segmented into non-overlapping 5-second windows from which we extracted features. Next, we used 
the first three chronological seizures as input to the multi-objective EA (MOEA) and selected the individuals (set 
of five features and correspondent pre-ictal period) from the Pareto-front (made of three objectives) with the best 
trade-off between objectives (sample sensitivity, sample specificity, and patient comfort). Then, these five MOEA 
output features and correspondent pre-ictal periods were tested with the remaining seizures and compared with 
the seizure prediction method used as control. Since some parts of the MOEA are stochastic (initialisation and 
evolution operators), we can obtain, for each execution, a different set of Pareto-optimal solutions. Consequently, 
we repeated the MOEA execution 30 times. Then, a phenotype study was performed for all patients to under-
stand the predictors’ decision mechanisms and infer about the possible patients’ seizure generation processes.

Concerning the MOEA output features, note that these were based on the concept of feature construction44–46. 
In our work, first-level features concern the ones directly extracted from the EEG. Then, we computed the second-
level ones, which constitute the MOEA phenotype, by windowing and applying a mathematical operator to 
these features. Henceforth, we refer to first-level features as features and second-level features as hyper-features.

Database.  From the European Epilepsy Database, developed by the FP7 EPILEPSIAE project (www.​epile​
isiae.​eu)3,6, we selected 93 patients with DRE (53 males and 40 females, aged 35.60  ±  14.21 years) from the 
Universitätsklinikum Freiburg in Germany, from the Hôpital Pitié-Salpêtrière, Université Marie Curie, Paris, 
France, and from the Centro Hospitalar e Universitário, University of Coimbra, Portugal. In total, this dataset 
contains 518 seizures (279 for training and 238 for testing), 1116 h of training data and 3687 h of testing data 
( ≈ 5.12 months). For the training seizures, we only used the last recorded 4 h before each seizure to limit com-
putational time. For testing, we used all available inter-ictal data without removing any segments. Our patient 
selection criteria were: (i) patients having a minimum of 4 recorded seizures separated by periods of at least 
4.5 h; (ii) patients with EEG scalp recordings, placed according to the 10–20 system and using a sampling fre-
quency of at least 256 Hz; (iii) patients with no more than one hour of EEG data missing for each seizure. All 
the analysed data were collected while patients were at the clinic under pre-surgical monitoring. The use of this 
data for research purposes has been approved by the Ethical Committee of the three hospitals involved in the 
development of the database (Ethik-Kommission der Albert-Ludwigs-Universität, Freiburg; Comité consultatif 
sur le traitement de l’information en matière de recherche dans le domaine de la santé, Pitié- Salpêtrière Uni-
versity Hospital; and Comité de Ética do Centro Hospitalar e Universitário de Coimbra). All methods were 
performed following the relevant guidelines and regulations. Informed written patient consent from all subjects 
and/or their legal guardian(s) was also obtained. Table S1 in Supplementary Material provides more information 
regarding the selected patients.

Pre‑processing and feature extraction.  All patient data were downsampled to 256 Hz, segmented 
into 5-second non-overlapping windows, and filtered with: (i) a 50 Hz fourth-order notch filter (to remove the 
power-line interference) and (ii) a fourth-order Butterworth high-pass filter with a cut-off frequency at 0.5 Hz 
(to remove the DC component and minimise motion artefacts). For each time window in each electrode, we 
extracted 24 linear univariate features that were used in the literature10,13,17,18,47,48 and that are fast to compute. To 
understand each feature a priori expected added value, see Supplementary Material in the Feature Description 
section. It is also important to note that several features would be of interest10,13,49–53. We did not use them as 
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Figure 1.   Flowchart of the proposed seizure prediction MOEA for each patient, comprising data processing, 
feature extraction, training, testing, performance evaluation and phenotype study.

http://www.epileisiae.eu
http://www.epileisiae.eu


4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4420  | https://doi.org/10.1038/s41598-022-08322-w

www.nature.com/scientificreports/

they are not univariate (we would have to extract a considerably large number of features for each electrode) and 
are computationally heavier. In the time domain, we extracted the first four statistical moments (mean, variance, 
skewness and kurtosis) and the three Hjorth parameters (activity, mobility and complexity). As for the frequency 
domain, we extracted the relative spectral power of the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta 
(13–30 Hz), low-gamma (30–79 Hz), and high-gamma (79–128 Hz) bands, the spectral edge frequency at three 
different cut-off percentages (50%, 75%, and 90%) and the energy of each wavelet coefficient (D1 to A8, using the 
Daubechies 4 mother wavelet (db4)). As the frequency limit of gamma activity is not consensual among the sci-
entific community, and its division into high-gamma and low-gamma is not uncommon54, we decided to divide 
it. Additionally, the gamma band powers may likely contain muscle artefacts as these recordings are extracranial. 
Therefore, we may not fully consider gamma-band powers as EEG features since these may represent physiologi-
cal markers that predict seizures. Some authors55 report the difficulty of removing artefacts without eliminating 
good information; therefore, they may use raw signals.

Multi‑objective evolutionary algorithm.  Figure  2 depicts the employed MOEA, based on the Non-
dominated Sorting Genetic Algorithm II (NSGA-II)56. Firstly, we randomly initialise our MOEA with a fixed-
size population of 100 individuals. Each individual (set of five hyper-features and a pre-ictal period) is encoded 
by a chain of characters (genotype), which is further translated, from the problem context to the problem-solv-
ing space, leading to a possible solution (phenotype). Then, each individual is evaluated according to our fitness 
functions, which are two measures related to seizure prediction performance (sample sensitivity and sample 
specificity) and another representing patient comfort (based on the used electrodes and the used lobes). Based 
on the individuals’ fitness values and their spatial spread, two steps are performed: (i) ranking the individu-
als using non-dominated sorting along with the crowding distance56, and (ii) choosing half of the individuals 
(parents) to reproduce (variation operators) by using binary tournament selection (parent selection) until 100 
offspring are generated. As variation operators, we used recombination with a rate of 0.90 (90% of times, two 
parents produced an offspring) and mutation with a rate of 0.015 (1.5% of offspring suffered a mutation). This 
mutation rate was based on the number of genes per individual. We then select the individuals with the best rank 
and higher spread among parents and offspring. These comprise the next generation of individuals. Evolution 
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occurred over 50 generations. After the last generation, from the individuals with the best trade-off between 
the three fitness functions (Pareto-front or non-dominated individuals), we only keep the ones with a seizure 
prediction performance higher than a determined threshold (Decision Maker).

The Supplementary Material provides more information on the MOEA and a detailed explanation of the 
non-dominated sorting and crowding distance. Since a reduced computational time is needed to attain real-time 
applicability, we aimed for a fast convergence while achieving adequate solution diversity. Thus, that was the 
reason for opting for NSGA-II. Although this strategy may not usually produce an optimal solution, we believe 
that it approximates the global optimum within a reasonable amount of time56,57. Each execution lasted approxi-
mately 2 h on a machine equipped with an Intel Core i5-3230M 2.6 GHz processor, 8 GB of RAM, running on 
macOS Mojave 10.14.6 and using Python 3.7 on Spyder 4.0.1.

Encoding and variation operators.  Figure 3 depicts the idea behind genotype, phenotype decoding, and muta-
tion. A population is comprised of a group of individuals, where each is constituted by five hyper-features. Each 
hyper-feature is encoded with 13 genes: nine for the first-level feature (active feature group, active time feature, 
active frequency feature, active frequency band feature, statistical moment, Hjorth parameter, relative spectral 
power, wavelet coefficient energy, and spectral edge frequency), as well as a delay (minutes of a given feature 
before the pre-ictal period), electrode, mathematical operator, and window length (as depicted in Fig. 3a).

The mapping from genotype to phenotype consists of the same rationale as in Pinto et al.36: (i) finding the 
first-level feature that will be decoded to the phenotype for each hyper-feature, using the mentioned nine genes 
(as shown in Fig. 3b); (ii) constructing each hyper-feature by windowing the decoded first-level feature from 
the given electrode within the window length gene and, afterwards, by applying the respective mathematical 
operator; and iii) placing each hyper-feature chronologically in a timeline using the delay gene, according to the 
pre-ictal period. This allows us to analyse a sequence of events with a given interval instead of the traditional 
analysis of feature alterations in that same interval. Since the pre-ictal period is now included in the genotype, 
the MOEA also automatically searches for the optimal one. After constructing the five hyper-features and placing 
them chronologically, it is possible to evaluate a phenotype using the fitness function by performing a typical 
seizure prediction pipeline (sliding window analysis, classification, and regularisation).

Figure 3c shows all possible values for each gene, along with its neighbourhood. The latter is necessary to apply 
the variation operators, recombination, and mutation. The neighbourhoods were designed by considering the 
relationship between gene values (see Supplementary Material for more details on neighbourhood definition). 
The variation operators follow the same rationale as the ones in Pinto et al.36. The mutation operator concerns a 
unitary step that causes a random and unbiased change. Recombination is a stochastic operator that combines 
the genetic information from two parents (individuals) into one or more offspring39. It performs the recombi-
nation of all paired hyper-features (by order of similarity) and the recombination of the two pre-ictal periods.

Fitness functions and decision maker.  Figure 4 depicts the evaluation of each individual, which is performed 
iteratively (retraining the logistic regression classifier with new seizures) using the metrics typically used in sei-
zure prediction. The seizures evaluated by the MOEA are referred to as validation seizures. After the MOEA, the 
same procedure is used to test new seizures, referred to as testing seizures (Fig. 4a). Thus, for each validation/
testing seizure, we extract hyper-features and labels from the previous seizures through sliding-window analysis 
using a 1-min step. Lastly, we standardise the feature set with z-scoring.

We used the standardised features to train a classifier that balances samples according to a class weight which 
is inversely proportional to its frequency of occurrence. We opted for a logistic regression as it is an intrinsically 
interpretable model with low computational requirements29. Furthermore, it is computationally light. Next, we 
apply a similar process to the validation/testing seizure using all the parameters (mean and standard deviation 
for z-scoring) and models obtained from training. Then, we apply the Firing Power58 regularisation technique 
to smooth the classifier output and to make it more robust to noise. The latter works as a moving-average filter 
such that when a given threshold is exceeded, it triggers an alarm. We decided not to include the Firing Power 
threshold in the MOEA genotype as it would be another parameter to tune and increase computational time. 
Therefore, we defined a reasonable value of 0.736 without any tuning.

We evaluated the seizure prediction models using three metrics. Two of them are based on seizure predic-
tion performance: sample sensitivity Sss (ratio of samples classified as pre-ictal within all pre-ictal samples) and 
sample specificity Ssp (ratio of samples classified as inter-ictal within all inter-ictal samples). The third metric, 
Pcf, is related to patient comfort and concerns the number of different electrodes and their position on the scalp 
concerning lobes. We assumed that we provide more comfort to the patient (Pcf) by promoting solutions that do 
not require a large number of electrodes ( Nelectrodes ) and that focus on a particular region of the brain (minimise 
the number of analysed lobes Nlobes ). This last metric was computed according to Eq (1), where the term 1.25 is 
just a normalisation factor so that its range is [0, 1]:

This way, we obtain a Pcf = 1 when only one electrode is used ( Nelectrodes = 1 and NLobes = 1 ). When five elec-
trodes from different five lobes are used ( Nelectrodes = 5 and NLobes = 5 ), we get a Pcf = 0 . We try to minimise the 
number of electrodes and the number of used lobes to maximise comfort. It is worth noting that there were other 
possibilities to handle spatial closeness, such as computing the total distance of each electrode to the remaining 
ones in the form of a graph. Nevertheless, we wanted to understand a possible relation concerning brain lobes.

(1)Pcf = 1.25

(

1−
Nelectrodes × NLobes

Nelectrodes × 5features

)

.
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After each MOEA execution has been completed, we implemented a Decision Maker (DM) to select which 
individuals from the set of Pareto-optimal solutions will be used in the testing phase. The DM selects individuals 
with a sufficiently high fitness score for the seizure prediction objectives (sample sensitivity and specificity) to 
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use for testing. This restriction was implemented because even though the MOEA finds solutions corresponding 
to the analysis of a low number of electrodes/lobes, some of these Pareto-optimal solutions may present inad-
equate classification performance within the training set. Thus, we set a minimum fitness threshold of 0.9 for Sss 
and Ssp metrics. When no solutions could be selected within a run, the threshold was decreased further to 0.8 to 
guarantee the selection of at least one individual. We did not define any minimum threshold for patient comfort.

Training, testing, statistical validation, and performance comparison.  We would only run the MOEA once in a 
real-life application and select one individual from the Pareto-optimal set to predict new seizures. We are still in 
a research stage, so we need to understand how stochasticity affects performance. Thus, we executed each MOEA 
30 times for each patient and then tested the obtained hyper-features on unseen data. The testing phase was per-
formed using the same pipeline for the fitness function (see Fig. 4b) where we also included a refractory period 
that follows an alarm with the duration of the pre-ictal time. These periods were excluded from the False Positive 
Rate per Hour (FPR/h) metrics so that we consider only the period during which false alarms can be triggered9.

We measured our models’ performance with seizure sensitivity Ss (ratio of correctly predicted seizures), with 
FPR/h (ratio of false alarms raised until seizure onset excluding the refractory period). Then, we performed a 
Surrogate analysis36,59 to understand if the methodology is performing above chance level. We also computed 
these metrics for a control method inspired by standard machine learning prediction approaches, particularly in 
the work of Cook et al.33. Although the methods were built based on data from intracranial electrodes, it is the 
most relevant clinical trial that used an ML approach on a warning device. We refer to Supplementary Material 
for more details on the control method.

The obtained patient models were statistically validated as follows: a method performs above chance level 
when its seizure sensitivity is higher than the surrogate one, with statistical significance of α = 0.01 using a 
one-tailed t-test. We also verified if the set of validated patients had statistical significance in the same way as 
Alvarado Rojas et al.4. Considering a statistical significance of α = 0.05 , the probability of observing, for at least 
i of I (patient-models) executions that outperformed the surrogate predictor, is given by:

Phenotype study.  We performed a phenotype study to analyse the overall independent influence of each gene 
value on the population36. Thus, we assigned a binary value (0 or 1) for each gene value that corresponds to 
its presence in a hyper-feature. We computed the presence binary value for all hyper-features from selected 
Pareto-optimal individuals. However, these metrics cannot provide information on interaction, i.e., information 
regarding which features always appear in the presence of others. Therefore, we also implemented the apriori 
algorithm42 that aims at finding frequent patterns in the obtained phenotypes (association learning). By using 
association rules, we tried to find subsets of gene values that frequently appear together, and therefore, have a 
high probability of describing seizure generation processes.

Results
In one subsection, we present the results for the MOEA and control method and, in another subsection, the 
phenotype study.

MOEA and control method performance.  Figure 5 depicts the results for the testing seizures, both for 
the MOEA and the control method, along with patient stratification. Colour represents seizure sensitivity (0-1), 
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while the diamond-shaped marker represents the patient models that outperformed the surrogate predictor, or 
in other words, performed above chance. For 30 patient models (32%), we observed a performance above chance 
using the MOEA, whereas the control method validated 33 patients (35%). By inspecting Fig. 5 and the test 
results in full detail (Table S2 in Supplementary Material), we can see that the MOEA obtained lower sensitivities 
and lower FPR/h values when compared to the control method. Although the MOEA obtained six models that 
were statistically validated while presenting an adequate FPR/h (< 0.1560), we believe that high sensitivity is miss-
ing for claiming its use in real-life. However, the control method presented models for eight patients (202, 3300, 
6000, 8902, 21902, 26102, 1310803, 1322803) with maximum sensitivity and adequate FPR/h. Nevertheless, it is 
worth noting that seven of these patients only had one seizure for testing, while patient 8902 had two. It is impor-
tant to mention that our methods might be overfitted (overestimated) to the training seizures, as our training 
results are considerably higher than testing. While the average fitness in the validation seizures (Table S2 from 
Supplementary Material) was 0.97 ± 0.02 for sample sensitivity and 0.96 ± 0.02 for sample specificity, for test-
ing, we obtained an average seizure sensitivity of 0.16 ± 0.11 and an average FPR/h of 0.21 ± 0.08. Concerning 
the patient comfort (Table S2 from Supplementary Material), it is worth noting that the ideal scenario of having 
only one electrode was not achieved in any patient model. In fact, the patient comfort objective ranged from 
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0.50 ± 0.19 (patient 111902) to 0.86 ± 0.11 (patient 10962). Thus, in general, the MOEA opted for three to four 
electrodes to capture pre-seizure brain dynamics.

Table 1 shows test results for the set of patients and patient stratification. We based our stratification on sei-
zure classification (focal onset aware seizures (FOA) or focal onset impaired awareness seizures (FOIA) only), 
seizure activity (only rhythmic), vigilance state at seizure onset (awake only), seizure focus in one hemisphere/
more than one hemisphere (focal/generalised epilepsy), temporal lobe epilepsy, seizure focus not restricted to 
a single lobe, and concerning surgery decision (localised/not localised). Due to the small number of patients, 
we did not consider other stratified groups. For example, there were only seven patients available with frontal 
lobe epilepsy. In the stratification regarding seizure classification, activity, and vigilance state at seizure onset, a 
patient was selected if a given criterion was met both in the training and testing seizures. Seizure classification 
and the patients with a seizure focus in non-specific lobes were the only criteria that considerably improved the 
percentage of validated patient models (39% and 38%, respectively) for the MOEA. Moreover, in the FOA or 
FOIA seizures stratified groups, the ratio of validated patient models was higher on the MOEA methodology 
than on the control.

Phenotype study.  We analysed the patients ’ phenotype to demonstrate the MOEA potential to unravel 
pre-seizure knowledge. Here we present a phenotype study for all patients, which explores gene importance 
similarly to our previous study (refer to Figures S.1 and S.2 in Supplementary Material). The results indicate that 
most solutions were obtained from three electrodes across two lobes and localised in two regions (we considered 
three regions: left and right hemispheres and the central part). Additionally, we improved the phenotype study 
by providing an additional gene interaction study by showing which gene values appear along with other gene 
values and how to present them intuitively. We also performed an additional analysis (see Figure S.3 from Sup-
plementary Material): we inspected the most common solutions within each patient, particularly the obtained 
pre-ictal period and the number of different electrodes, lobes, regions, window lengths, and delays. With this 
analysis, we can confirm that most patients had a set of three electrodes, two lobes, and two regions as the most 
common solution. Moreover, no patient had the same window length for all features and used at least three 
delays. The most common pre-ictal periods were 50 and 55 min, despite some presenting a 60- or a 45-min one. 
Figure 6a represents the gene presence (red colormap) and gene interaction (gray colormap), and (b) represents 
brain connectivity. We calculated gene interaction using the a priori algorithm42: first, we found frequent associ-
ations between gene values, and then we used the association lift measure42 measure to map interaction strength. 
We searched for lift ratios larger than 1.00, which means that the two association items are more likely to appear 
together than separated. The larger a lift ratio is, the more significant is a given association rule. Brain connec-
tivity was computed based on association rules between electrodes and using association lifts higher than 1.0.

The most important features were Spectral Edge Frequency (SEF) 75, Hjorth Mobility/Variance, and skew-
ness. These features have the highest gene presence among all features and present the highest number of strong 
interactions. The same gene interaction study was also conducted for the electrodes (with a prevalence of C3, 
C4, CZ, PZ, and Fz) and pre-ictal periods (prevalence of 45 to 75-min intervals). Concerning window length, all 
windows were present in phenotype, with a higher frequency observed for the 10- and 15-min windows. We can 
also find gene interactions between feature-to-feature, electrode-to-electrode, and window-to-window genes. 
We highlight that the most robust relations were observed for the window-to-window gene interactions. These 

Table 1.   Test results for the overall set of patients (sensitivity, FPR/h, and ratio of patients performing 
above chance, both for the MOEA and the control method), and for stratified sets of patients. Stratification 
concerned patients the following criteria: (i) focal epilepsy patients (seizure focus in only one hemisphere), 
(ii) generalised epilepsy patients (seizure focus in more than on hemisphere), (iii) temporal lobe epilepsy 
patients (seizure focus only in temporal lobe), (iv) patients whose seizure focus is not lobe-specific, (v) patients 
suffering only from FOA/FOIA seizures, (vi) patients whose surgery was offered (localised focus), (vii) patients 
whose surgery was not offered (not localised focus), (viii) patients that only experienced seizures while they 
were awake., and (ix) patients with pre-seizure activity annotated as rhythmic by clinicians. The overall results 
and the best performing stratified groups are in [bold].

Stratification Number of Patients

MOEA Control

Sensitivity FPR/h
Patients performing above 
chance (0–1) Sensitivity FPR/h

Patients performing above 
chance (0–1)

Focal epilepsy 55 0.15 ± 0.12 0.21 ± 0.08 0.33 0.31 ± 0.39 0.67 ± 0.92 0.35

Generalised epilepsy 33 0.17 ± 0.11 0.21 ± 0.09 0.33 0.35 ± 0.37 2.18 ± 7.13 0.36

Temporal lobe epilepsy 61 0.16 ± 0.12 0.22 ± 0.09 0.30 0.32 ± 0.40 1.54 ± 5.30 0.33

Non-specific lobe 21 0.15 ± 0.08 0.21 ± 0.06 0.38 0.38 ± 0.37 1.01 ± 2.31 0.48

Only FOA or FOIA seizures 59 0.17 ± 0.12 0.22 ± 0.07 0.39 0.28 ± 0.38 0.82 ± 1.57 0.31

Localised focus 49 0.15 ± 0.10 0.22 ± 0.08 0.31 0.28 ± 0.36 0.66 ± 0.91 0.29

No localised focus 44 0.15 ± 0.12 0.20 ± 0.08 0.30 0.37 ± 0.39 2.18 ± 6.33 0.45

Awake-only onset seizures 29 0.16 ± 0.09 0.21 ± 0.07 0.31 0.33 ± 0.38 1.05 ± 2.04 0.38

Rhythmic activity only 59 0.15 ± 0.11 0.22 ± 0.09 0.29 0.32 ± 0.36 1.54 ± 5.45 0.37

Overall 93 0.16 ± 0.11 0.21 ± 0.08 0.32 0.32 ± 0.38 1.31 ± 4.43 0.35
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findings demonstrate the importance of simultaneously analysing different time windows. We can obtain a similar 
conclusion by inspecting Figure S2 in Supplementary Material, where the MOEA chose different delays about 

Figure 6.   Gene interaction study for all patients. (a) Gene presence (red colourmap) and gene interaction 
(grey colourmap) in a chord diagram plotted using MNE Python library61. Gene presence is the ratio of times 
a given gene is present. Gene interaction is given by summing the association lift measures calculated with the 
a priori algorithm and then normalised to a 0–1 scale. (b) Brain connectivity was plotted using Nilearn Python 
library, and the 10–20 system electrodes were converted to the MNI coordinates62. Node size corresponds to the 
electrode presence, while edge colour and thickness provide connection strength (association lift). Node colour 
represents brain lobes (blue: frontal, orange: central, green: parietal, black: occipital, and red: temporal). A priori 
algorithm parameters: minimum support of 0.07, minimum confidence of 0.10, and minimum lift of 1.00.
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99% of times and 99% of times concerning different window lengths. We also observed electrode-to-electrode 
interactions, which we interpret here as a manifestation of brain connectivity. Some connections arise across the 
central, frontal, and parietal lobes. The whole-brain state’s importance demonstrates the difficulty of finding a 
good set of predictive features while providing maximum patient comfort (minimising the number of electrodes 
and restricting electrode placement region). In our case, in addition to having patient comfort as an objective of 
the MOEA, we considered it pertinent to inspect brain activity across different lobes and hemispheres.

Discussion
We present the discussion in several subsections: (i) the MOEA performance along with a comparison with the 
control method, (ii) comparison with other studies, (iii) the added value of this work, and (iv) study limitations.

MOEA performance and control method.  Despite the control method being marginally better than our 
proposed MOEA in terms of validated patients, we believe the MOEA has potential and brings added value. It 
is interesting to verify that only nine patients had both methodologies (MOEA and control) performing above 
chance. In total, it was possible to find statistically validated models for 54 patients (58%). Of these 54 patients, 
21 ( ≈38) were only validated by the MOEA. We believe these results evidence that we may need to vary the 
selected features and classification models and use significantly different methodologies in a complementary 
way to capture patient-specific pre-seizure patterns. Moreover, from the 33 validated patients by the control 
method, six (1328603, 1325603, 1308503, 109602, 98102, 71802) presented an FPR/h > 1.50, and ten patients 
presented an FPR/h > 1.00 (1328903, 1328603, 1325603, 1308503, 109602, 98102, 73002, 71802, 71102, 50802). 
In our MOEA, no patient presented a mean FPR/h higher than 0.37, although the sensitivity values were signifi-
cantly lower. Lastly, the obtained model from the control methodology is a random forest with several features, 
ranging from 3 to 20 features. In fact, the average number of used features was 9.25 ± 6.26. Our MOEA only uses 
five features for computational reasons, limiting the number of electrodes to five.

Although the MOEA evaluation metrics are different from the testing ones, high sample sensitivity and high 
sample specificity lead to high seizure sensitivity and low FPR/h. This evidence can be explained due to confound-
ing factors, as our database concerns patients under pre-surgical monitoring submitted to medication withdrawal 
to study the epileptic focus. We found an interesting relation between the number of tested seizures and validated 
patient models when exploring our results. While we found a negative correlation coefficient ( ρ = −0.15 ) when 
analysing the control method, we obtained an almost null coefficient ( ρ = −0.01 ) for the MOEA. These results 
suggest that retraining the logistic regression after a new seizure occurs might improve seizure performance. 
By doing this, we are intrinsically assuming that the selected features by the MOEA can deal with new concept 
drifts, and that is why we constructed our fitness function based on iterative training. We believe these results 
would be more significant if we would iteratively run the MOEA to update the set of selected features instead of 
just training the logistic regression with upcoming tested seizures. By re-selecting new features, we would better 
handle concept drifts. We decided not to do it due to computational costs.

Nevertheless, performing MOEA update for each new upcoming seizure can be considered for real-time 
applications, as running one execution of the MOEA takes approximately 2 h, more than twice shorter than the 
analysed inter-seizure independence interval (4 h 30 min). We only tested this methodology once and did not 
try to improve results. We also decided to keep a 10-min intervention time60 to provide the patient sufficient 
time to prepare for a seizure. This period is also compatible with the intake of diazepam rectal gel (the only FDA 
drug approved for seizure cluster and which might be tested for prevention) that needs 5–10 min to take effect43.

Other studies comparison.  There are some studies presenting seizure prediction models developed that 
use EPILEPSIAE4,12,18,47. Some works12,18,47 cannot be directly compared to our methodology, as they developed 
several models and presented the best ones based on test results, which does correspond to real-life perfor-
mance. The study from Alvarado Rojas et al.4 is comparable with our methodology due to the following: (i) 
model selection was not based on testing performance but on training data only; (ii) it contains 53 patients (in 
total 531 days and 558 clinical seizures); and (iii) they used a threshold classifier, which is intuitive, despite the 
use of features that may be difficult to understand from a clinical point of view. Their results outperformed ours 
in seizure sensitivity ( ≈ 0.66 ), but the MOEA was better in terms of FPR/h ( ≈ 0.33 ) and performance above 
chance level for a higher ratio of patients ( 7/53 ≈ 0.13 ). We also consider our methodology more intuitive: each 
model uses a binary decision based on a threshold (logistic regression) and is comprised of a set of five widely-
used and intuitive features. Direito et al.17 also allows a good comparison, being the study reporting the analysis 
of the largest group of patients from EPILEPSIAE (218 patients). Their work also outperformed ours in sensitiv-
ity (0.39), but statistical validation was achieved for about 11% of the patients. Nevertheless, it is worth noting 
that they used a random predictor63 to perform statistical validation instead of the surrogate analysis.

We emphasise that our performance is still far from being ideal for a real-time application, despite the ratio 
of validated patient-specific prediction models remaining similar to our previous study64. It is worth noting that 
three patients (16202, 60002, 98202) of the previous work were discarded in this study, as the correspondent 
recordings presented significant gaps of missing data (over one hour). In terms of sensitivity, the results were 
also not satisfactory. Concerning FPR/h, the new results were better. Due to this, we believe our models do not 
fully capture the complexity of the seizure generation processes. Results also changed within the same patient 
when comparing both works. Patient 55202 is one example: it presented significant EA results, but not with the 
MOEA. We used the first 60% of seizures in the first EA to train the algorithm, and we tested the last 40%. In 
the MOEA, since we wanted to have more testing seizures, we used the first three seizures to train the algorithm 
and tested the remaining ones. Patient 55202 has eight seizures. Therefore, the previous EA was trained with five 
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seizures and tested with three seizures, while the MOEA was trained with three seizures and tested with five. 
Performance may increase from having more seizures as training data.

The use of deep learning may theoretically yield improved results by enabling more complex and hence less 
intrinsically interpretable models, however, at the cost of losing clinical interpretation15. Furthermore, our study 
comparisons with our study are limited by choice of the statistical validation method. All of the studies men-
tioned above use the random predictor63 while we used a surrogate predictor. The latter is flexible, and it adapts 
better to the data. Moreover, the choice of the surrogate predictor was bounded by the considerable number of 
models obtained for each patient and the small number of tested seizures per patient. Having a small number of 
seizures to test the models can significantly discourage the use of a random predictor9,59. We believe the surrogate 
predictor provided a more solid validation to our work for these reasons.

As previously mentioned, we put efforts into building models to be applied in a real-time scenario, where we 
used 10-min intervention time and extracranial recordings. We focused on scalp EEG as we wanted to understand 
the importance of the whole brain state and not only the seizure onset zone. This might explain that this study of 
many different types of epilepsy has the same outcome as the earlier study of temporal lobe epilepsy only. Like in 
the previous EA, we stress that iteratively re-selecting our features, by executing the MOEA periodically, would 
even consider that the epileptic network would imply considering a dynamic epileptic network, rather than a 
static one, which may produce more insights into the brain dynamics14.

Added value.  With this work, We aim to comply with current legislation, specifically with the 2018 Gen-
eral Data Protection Regulation (GDPR) for European citizens and the European economic space. The GPDR’s 
article 22 presents the first steps towards legislation on algorithm explainability for high-risk decisions based 
on personal data. It provides patients with the right to have an explanation for any algorithm decision and also 
gives them the right to question those decisions. One of the main advantages of our seizure prediction model is 
to explore the obtained phenotype to find patients’ pre-ictal patterns.

The inclusion of our patient comfort metric has allowed us to obtain more comfort EEG configurations for 
most patients theoretically. Since we obtained a set of three electrodes for 68 patients (73%) and a set that uses 
two lobes for 86 patients (92%), we can consider that patient comfort was relevant within our MOEA. Without 
this metric, we assume that we would get an ideal solution of 4/5 electrodes widespread across several lobes. 
However, we are aware that the optimal way to conclude the comfort relevance would be the following: (i) execute 
the MOEA for all patients without the comfort objective, (ii) by performing the phenotype same study on the 
number of the electrodes and lobes, and (iii) by comparing the obtained output. It is worth noting that not all 
MOEA solutions present the same set of electrodes within each patient. Thus, one can choose one configuration 
that was not the most common within the obtained solutions as long as it provides more comfort and maintains 
its performance levels. To better understand the relevance of the number of chosen electrodes and lobes, one can 
visualise a histogram for all solutions, for all patients, in this paper GitHub page. We also present five examples 
(patients 1200, 12702, 55202, 81402, and 1319203) in Supplementary Material in Electrodes and Lobes Discus-
sion section. An overall study can also be seen in Figure S.3 from Supplementary Material, developed using the 
mode operator (most frequent value) for each patient. We chose these five patients as these cases represent all 
found case scenarios concerning the electrode/lobe topic. Additionally, when analysing the number of occupied 
regions (left hemisphere, central part, right hemisphere), the majority of occupied regions is two. This is a limita-
tion that we must address in the future by including a factor that minimises the number of occupied regions in 
our patient comfort objective.

We analysed the impact of patient comfort on performance. For each patient, we made two scatter plots to 
access the patient comfort impact: (i) scatterplot(comfort, sensitivity) and (ii) scatterplot(comfort, FPR/h). We 
also computed the Pearson correlation coefficient between comfort and sensitivity and between comfort and 
FPR/h to assess this impact. We obtained null correlation values for sensitivity and FPR/h when analysing the 
overall correlation between all patients. However, by analysing each patient separately, we were able to find several 
case scenarios. For 33% of patients, overall performance increased with more comfortable electrode configura-
tions. For 32% of patients, overall performance was maintained, and for 35% of patients, overall performance 
decreased with more comfortable configurations. We considered a sensitivity increase/decrease with comfort 
when the correlation between sensitivity and comfort was higher/lower than 0.10/ − 0.10. When the absolute 
correlation value was lower than 0.10, we considered that performance was maintained despite the used electrode 
configuration. We applied a similar rationale to FPR/h: we considered a sensitivity increase/decrease with comfort 
when the correlation between sensitivity and comfort was higher/lower than − 0.10/0.10.

A decrease in performance was expected, and maintenance could be expected as well. Nevertheless, an 
increase in performance was not expected. This increase could be due to the overfitting of configurations using 
more electrodes. By using fewer electrodes, model generalisation may be more easily achieved. Thus, we may con-
clude that, for some patients, the most comfortable configurations may be used as performance is not negatively 
affected. The analysis for each patient separately can be found in our Github in the folder Impact of Comfort in 
Performance. In our Supplementary Material, one can also see some examples (patients 1500, 58602, and 21602).

Limitations.  Due to computational speed, we only used the last 4 h before each training seizure. We believe 
this is the most significant limitation of our methodology, as it is strongly advised9 to use all available data from 
training seizures. Using all available data would increase inter-ictal data representativity and identify and deal 
with reoccurring confounding variables. Also, the remaining parameters, such as the 1-min step and number 
of used features, were reasonably chosen based on the computation time, without any tuning on the test results. 
Even though our results may be low in terms of sensitivity and FPR/h, we worked with pre-surgical monitoring 
long-term data without pre-processing, except filtering.
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It is also essential to discuss the obtained pre-ictal periods. All patients presented a similar pre-ictal period 
of around 50 min. We analysed all solutions’ pre-ictal periods from all patients. We present in Supplementary 
Material some examples for patients 21602, 21902, 30802, and 32502, which had, as mean pre-ictal period, the 
following values, respectively: 49.91 ± 9.55, 51.40 ± 9.55, 51.73 ± 8.31, and 53.14 ± 8.70 min. We also present 
the most frequent pre-ictal period (the mode) for each patient. The MOEA can find solutions for many possible 
pre-ictal periods in all patients, but when we analyse the most frequent one (the mode) for each patient, it can 
range from 35 to 60 min (see Figure S.3 from Supplementary Material). An overall can also be seen in Figure S.3 
from Supplementary Material, developed using the mode operator (most frequent value) for each patient.

It may be desirable to have a clear pre-ictal period for each patient. However, it may also be helpful to choose 
an MOEA solution based on the patient preferences concerning a trade-off between performance and the pre-
ictal period. Longer pre-ictal periods may bring better performances but may also cause considerable stress. 
We believe these findings are a built-in bias. Our best hypothesis concerns that the pre-ictal period changes the 
number of samples belonging to each class (pre-ictal, inter-ictal) in problems with high-class imbalance (as is the 
case of seizure prediction), sensitivity and specificity might be significantly affected. As sensitivity and specificity 
are metrics used in our MOEA, it is very likely the existence of a built-in bias during the search procedure of the 
algorithm that drives the pre-ictal period towards values that optimise different trade-offs between sensitivity 
and specificity through class balancing.

Also, we have 31 patients with only one seizure for testing. We tried to make a good compromise between data 
quality and the number of patients, which resulted in 93 patients. It is difficult to perform a seizure prediction 
study, particularly patient-specific, with such a high number of patients due to data constraints. If we raised the 
minimum number of seizures to five, we would lose 31 patients, representing a third of all used patients. On 
average, we tested 2.57 seizures per patient.

Lastly, using five electrodes may result in a severe undersampling of the underlying cortex in several patients. 
However, this work is not the first to tackle patient comfort by limiting the number of electrodes, whereas other 
authors have used three to six electrodes to experiment with different configurations17,18,55.

Conclusion
This work concerns an extension and improvement of the application of EAs in seizure prediction. Our meth-
odology proposes patient-specific seizure prediction models that perform above chance for 32% of the patients 
and may be used when the classical ML approach does not perform above chance or when we intend to retrieve 
interpretable insights. Additionally, these findings may evidence the need for different methodologies for dif-
ferent patients. Although this study includes 93 patients with several types of focal epilepsies and generalised 
epilepsy, the data concerns pre-surgical monitoring conditions. In these, due to time constraints in the clinic, 
patients suffer medication reduction and may suffer from sleep deprivation, which may induce more seizures 
that may not be representative of daily-life events15. To truly access seizure prediction performance, we must 
replicate this study on ultra long-term recordings collected during the patients’ daily life, such as the collected 
data from the Neurovista prediction challenge35 and in a proper field test. These two steps would answer how far 
this methodology may perform and how to apply it to a medical device at home. Concerning patient outcomes, 
we are aware of its limitations. In the future, we need to engage with patients and caregivers and focus on available 
technology, such as UNEEG SubQ65,66 and the ByteFlies Sensor Dots67. Patient-related outcome measures require 
a health-technology assessment68,69 which must be performed. Also, new software should meet hardware in a 
Value Sensitive Design approach70. Nevertheless, our work contributes to epilepsy seizure prediction by provid-
ing a complete pipeline for patient-specific prediction while addressing concerns regarding patient comfort in 
terms of electrode placement in the scalp.

The access to more computational resources may improve our methodology, for example, by enabling the 
increase of the number of features and/or the test of more complex classifiers. However, one must be careful with 
publication bias by reporting higher performances, as these may result from a test set optimisation. Also, these 
improvements will increase the execution time of the MOEA, which should be kept to a reasonable period. A 
higher runtime may imply the redefinition of some parameters, such as the number of generations and popula-
tion size. Changing these aspects will not influence the application of the association rules, which can retrieve 
information about gene importance and gene interactions. We also believe our methodology may significantly 
benefit from information regarding concept drifts, such as medication intake and circadian cycles14.

Data availability
All code is available for public use in: https://​github.​com/​Mauro​Silva​Pinto/​Inter​preta​ble-​EEG-​epile​psy-​seizu​
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