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ABSTRACT

Direct drug targeting of mutated proteins in cancer
is not always possible and efficacy can be nullified
by compensating protein–protein interactions (PPIs).
Here, we establish an in silico pipeline to identify spe-
cific PPI sub-networks containing mutated proteins
as potential targets, which we apply to mutation data
of four different leukaemias. Our method is based on
extracting cyclic interactions of a small number of
proteins topologically and functionally linked in the
Protein–Protein Interaction Network (PPIN), which we
call short loop network motifs (SLM). We uncover a
new property of PPINs named ‘short loop common-
ality’ to measure indirect PPIs occurring via common
SLM interactions. This detects ‘modules’ of PPI net-
works enriched with annotated biological functions
of proteins containing mutation hotspots, exempli-
fied by FLT3 and other receptor tyrosine kinase pro-
teins. We further identify functional dependency or
mutual exclusivity of short loop commonality pairs in
large-scale cellular CRISPR–Cas9 knockout screen-
ing data. Our pipeline provides a new strategy for
identifying new therapeutic targets for drug discov-
ery.

INTRODUCTION

The use of reliably assembled Protein–Protein Interaction
Networks (PPINs) has become common practice in the last
two decades in the quest to identify biological pathways and
cellular mechanisms related to newly discovered genes or
disease related proteins (1–3). In recent years, the quality
and quantity of interactions shown to occur experimentally

has increased substantially, particularly due to large-scale
studies using yeast-two-hybrid (4) and a panel of different
protein purification/mass spectrometry methods (5–9). Ad-
ditionally, an increasing number of public protein interac-
tion data sources (10–12) and a collaborative effort through
the International Molecular Exchange (IMEx) consortium
(13) are now in place to improve coverage, quality and in-
tegrity of proteome data. However, accurate and compre-
hensive compilation of such heterogeneous databases is a
challenging task and the currently available information is
still incomplete. Therefore, we are far from having a com-
plete proteome map for any human cell type.

Concurrently with progress in the field of PPINs, whole
genome and exome sequencing projects have identified
disease-related mutations and population-related variants
in protein-coding regions (14,15). The former, disease-
related mutation information, includes data from cell
lines and samples from patients, and is collated in the
OMIM (16), COSMIC (17), TCGA (18) and ClinVar (19)
databases. The latter, population-related variation informa-
tion, is collected in dbSNP (20), 1000 Genomes (21), ExAC
and gnomAD (22). These shared resources have enabled the
discovery of disease associations of mutations in the human
genome, a subset of which affect protein sequences (23,24).
In establishing the impact of these mutations on protein sta-
bility and function in the cell, one possibility is to evalu-
ate the impact of disease-causing mutations on the protein
3D structure, when this is available. The 3D structure of a
protein is more conserved during evolution than its linear
sequence (14); therefore, these evaluations have been used
as a better proxy to predict the impacts of mutations on
the biological function(s) of the mutated protein (25–27).
Unfortunately, structural determination is still challenging
and therefore not available for all proteins and their inter-
actors, making a large-scale protein structure analysis of
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cellular PPINs unfeasible. As a consequence, the structure–
sequence gap is still large (28) and even the use of homol-
ogous sequence(s) cannot compensate for such missing in-
formation. Therefore, understanding the effects of many ge-
netic variants and mutations on biological functions and the
interplay among these in curated PPINs is still very chal-
lenging. Specifically, the prediction of these mutual effects is
an important challenge, as it has been suggested that many
complex traits are driven by large numbers of mutations,
each of which has a potentially small effect on cellular func-
tion, which is propagated through a PPIN to affect biolog-
ically important core functions (29).

Different approaches have been developed to analyse
such biological ‘Big Data’ effectively (30–32) and graph the-
ory based approaches have improved our understanding of
large-scale data networks in general, and PPINs (33–35) in
particular. In this case, proteins are nodes and their interac-
tions are edges. Various PPIN-wide (global) and PPI (local)
network properties have been suggested to measure connec-
tivity of the network and to identify sub-network modules
(36,37). Previously, we defined short-loop network motifs,
cyclic interactions of a small number of proteins, as an in-
trinsic feature of PPINs topologically and biologically (38).
We demonstrated that these loops not only contribute to de-
fine the wiring and topological properties of the network,
but also have a critical role in performing dedicated biolog-
ical functions. It was highlighted that short loop network
motif profiling is advantageous in assessing the quality of
the network and is useful in extracting biologically func-
tional sub-networks.

In the study presented here, we explore the effects of
genetic mutations on PPINs of four major Blood Can-
cers that affect the production of mature white blood
cells of myeloid and lymphoid lineages that are necessary
for normal immune responses (acute myeloid leukaemia
(AML), acute lymphocytic leukaemia (ALL), chronic lym-
phocytic leukaemia (CLL) and chronic myeloid leukaemia
(CML)) and investigate AML more closely. Acute myeloid
leukaemia is heterogeneous, and patients are sub-classified
according to cell morphology and genetic abnormalities by
the French–American–British (39) and World Health Orga-
nization working group (40) criteria. AML was the first can-
cer whole genome sequenced (41) and to date several thou-
sand mutations have been identified in patients with AML,
some of which are driver mutations that have been used as
genomic identifiers of patient sub-groups (42,43). Recent
single-cell RNA sequencing studies have shown that in in-
dividual AML patients, the blood cancer is comprised of
abnormal cell clones, each clone with a different combina-
tion of mutations, and selection and expansion of different
abnormal cell clones occurs during disease progression (44–
46). In spite of our knowledge of gene mutations in AML,
identifying key proteins for targeted drug therapies presents
a considerable challenge and currently there are no effec-
tive drug treatments for AML. Furthermore, the combined
effects of the mutated proteins present in this Blood Can-
cer, rather than the effects of individual mutations, have not
been identified. Drugs targeting a few mutated proteins, in-
cluding FLT3 and IDH1/2 have been tested in clinical trials
and trials of drugs targeting several other mutated proteins
are in progress (47–49). However there are reports of patient

relapses in trials of FLT3 and IDH inhibitors for reasons in-
cluding gene mutations and changes in gene expression that
overcome the effects of the drugs (47).

Our current study seeks to pinpoint functionally impor-
tant protein ‘modules’ containing proteins mutated in AML
to identify proteins other than the mutated protein that
could be drug targets (47). To clarify some of the under-
lying phenomena in Blood Cancer, we generated a unified
large-scale human PPIN (UniPPIN) from multiple reliable
sources. Mutations in leukaemias were mapped to the UniP-
PIN and our short-loop network motif profiling method
was applied to extract leukaemia, cancer and non-disease
related mutation sub-networks. The ratio of short loops
and the functional consensus across sub-networks was com-
pared to infer features of each network and biological func-
tions enriched in the short loops of different leukaemias.
Furthermore, we propose a novel module-based concept
to compare indirectly connected proteins that share pro-
tein interactions that we named ‘short loop commonality’.
This has enabled us to use proteins-of-interest as ‘seeds’
to identify neighbours in the network that represent func-
tionally important protein modules. In addition, their mu-
tual functions have been inferred by analysing CRISPR–
Cas9 gene-dependency screening data. We show here that
using the short loop profiling method, combined with in-
formation on pathogenic mutations, identifies enriched co-
functional units and intimate protein interaction compo-
nents with hotspot or driver mutations that could be ex-
ploited effectively for drug target screening.

MATERIALS AND METHODS

Protein–protein interaction datasets

PPIs are represented by graph models consisting of nodes
of proteins and edges of their interactions. We integrated
a data set of 10 different human protein–protein interac-
tion resources including collated databases (10–12,50,51)
and recent large-scale studies identifying PPIs. The stud-
ies include a broad binary proteome map by screening
pairwise combinations of over 10 000 human open read-
ing frames (52) with yeast-two-hybrid assays (4), collated
published evidence (String) (12), affinity purification/mass
spectrometry-based networks using different ‘bait’ proteins
(green fluorescent protein-tagged (GFP) for (6) and FLAG-
HA epitope tags for the BioPlex network (5)) and co-
fraction/mass spectrometry-based networks (7,53). Protein
interaction information from all datasets except for String
(12) is derived from direct experimental evidence from the
laboratory concerned and only high confidence scored in-
teraction information (above 0.5) is counted from the String
database (12). Those recent studies and the stringent crite-
ria applied supported the reliability of the UniPPIN dataset;
however, it could still include false positive information due
to limitations in current experimental procedures (54). The
UniProt Accession number (55) was used to amalgamate
different formats of each dataset and duplicate interactions
and self-loop interactions are removed in the UniPPIN. The
details of the resources are described in Supplementary Ta-
ble S1 and the data are available at https://github.com/suns-
chung/ShortLoopCommonality.

https://github.com/suns-chung/ShortLoopCommonality
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Resources of human genetic variations or single-nucleotide
polymorphisms and mutations in cancer

The Catalogue Of Somatic Mutations In Cancer (COS-
MIC) (17), the largest cancer mutation database deposited
from numerous research institutes worldwide, was used
to download cancer and leukaemia related variation in-
formation (v80 (Feb 2017)). The database contains infor-
mation on the somatic mutations present in samples iso-
lated from individual cancer patients. The methods used
include whole genome sequencing, exon sequencing, tar-
geted exon/codon sequencing and specific single nucleotide
change analyses. Protein mutations reported for several sub-
types of four common leukaemias were retrieved: acute
myeloid leukaemia (AML), chronic myeloid leukaemia
(CML), acute lymphoid leukaemia (ALL) and chronic lym-
phoid leukaemia (CLL). These four were chosen as they
affect different haematopoietic white cell lineages, namely
myeloid and T- and B-lymphoid cells. The histology terms
and their classification are listed in Supplementary Table
S2. Mutation types were selected which result in amino
acid changes: substitution nonsense, substitution missense,
insertion inframe, insertion frameshift, deletion inframe,
deletion frameshift and complex or compound mutation.
‘Whole gene deletion’ and ‘nonstop extension’ mutations
are included but both mutations were rarely observed (56
out of 69 334). In addition, only genes with these non-
synonymous mutations in at least two different patients
were included. The datasets with ENSEMBL Gene iden-
tifiers (56) were mapped into the UniProt Accession num-
ber (55) for the analyses in this project. The full lists of fre-
quently mutated proteins in each leukaemia are available in
Supplementary Table S3a–d.

The leukaemia related mutation datasets were compared
with somatic cancer mutation dataset or non-disease hu-
man genetic variation information collected from COSMIC
and dbSNP of which mutation types are point mutations
or single-nucleotide variants (SNVs) giving rise to non-
synonymous mutations.

We collected data from different public resources: for
disease-associated variant information, non-synonymous
SNVs from COSMIC (17); for non-disease related in-
formation, a subset of dbSNP (20) grouped as common
mutations. The details of each dataset and the criteria
are: (i) COSMIC exonic variants in variant call format
(VCF) (CosmicCodingMuts.vcf) downloaded (v80, Febru-
ary 2017) and (ii) ‘common’ variants from dbSNP defined
in the National Center for Biotechnology Information, U.S.
National Library of Medicine (NCBI) database, ‘germline
origin and a minor allele frequency (MAF) ≥ 0.01 in at least
one major population, with at least two unrelated individu-
als having the minor allele’ (57).

These variant datasets in variant call format (VCF) were
mapped to the ENSEMBL protein sequences (GRCh37)
(56) by using the Variant Effect Predictor (VEP) software
tool (58). The datasets were further filtered for missense
variants which map to canonical protein sequences. For
each protein, the frequency of localized variants was nor-
malized by the length of amino acid sequences in the protein
defined as

Frequency of (nsSNVnormalised) = Number of nsSNV
length of protein

based on the assumption that the mutability of a pro-
tein is primarily associated with its size and that differ-
ences in amino acid composition between proteins do not
have an impact on their overall mutability (nsSNV: non-
synonymous single-nucleotide variants).

Sub-networks of protein–protein interactions related to gene
mutations

Proteins of each variant dataset based on the UniProt Ac-
cession number (collected on 15 March 2017) were mapped
to the UniPPIN. Each dataset of mutated proteins was
mapped to the UniPPIN and then mapped proteins and
interactions between those proteins were extracted to con-
struct sub-networks related to specific leukaemias or vari-
ant datasets. As an example of the labelling used, ‘AML-
related protein–protein interaction network’ stands for pro-
tein interactions among proteins mutated in at least two
AML patients. However, the mutations do not necessarily
occur in the same patient.

Short loop network motif profiling

The short loop network profiling approach (38) was used
to analyse PPIN sub-networks containing mutations. The
numbers of short loops in each network were calculated and
the results were compared with randomized models. The
numbers of short loops in the variant specific PPINs and
randomly generated PPIN models were evaluated by sta-
tistical tests. The random sampling was conducted by se-
lecting proteins randomly and extracting their interactions
from the UniPPIN (n = 2000 samplings for short loops and
10 000 simulations for short loop commonality analysis).
Functional analyses using GO terms (59) were carried out
by measuring functional consensus, that is, the percentage
of GO terms shared by proteins in a short loop as previously
described (38). In addition, g:Profiler (60) and ClueGO (61)
were used to measure function enrichment of proteins in dif-
ferent sets. The methods can measure statistical significance
of given datasets (P-value ≤ 0.05) compared with their func-
tional term databases. As there was no significant difference
in the topology and ontology of proteins in short loops of
different lengths when we applied rigorous graph dynamics
and functional enrichment analyses throughout short loop
lengths 3–6 for the previously studied larger network (38),
only short loop interactions with length 3 were used in this
study.

Gene dependency analysis

Data source. CRISPR screen data from the depmap (Can-
cer Dependency Map, https://depmap.org) project were
taken for analysis (version 19Q4). These screens mea-
sure the viability of cell lines following the knockout
each gene, one by one, using a large CRISPR guide
RNA library (62). These measurements had been pre-
processed using CERES (63), then shifted and scaled per
cell line so that each gene in each cell line is repre-
sented with one score by depmap. The median score rep-
resenting a non-essential (knockout of which has no ef-
fect) gene is 0, and the median essential knockout effect
is –1. These normalized scores were directly downloaded

https://depmap.org
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for this analysis. Only cell lines marked ‘HAEMATOPOI-
ETIC AND LYMPHOID TISSUE’ were considered, to-
talling to 67 cell lines. Sequence and Copy Number vari-
ant data listed on depmap (version 2019Q4, identical to
that in the Cancer Cell Line Encyclopaedia [CCLE] (64))
were downloaded and mapped to the CRISPR screen
data.

Mapping gene dependency data to short loop common-
ality pair. For each short loop commonality pair
of proteins found in each of the leukaemia networks
(AML/ALL/CML/CLL), this set of protein pairs (‘dis-
ease set’), totalling 259, were looked up in the CRISPR
knockout data. We also compiled a ‘control set’ (totalling
560 protein pairs), made up of protein pairs where only
one of the proteins (here denoted A) overlapped with
the ‘disease set’. The other member of the pair instead
shares short-loop commonality with A, but could be
found only in the general UniPPIN without filtering for
leukaemia-specific-mutated proteins.

For each protein pair in both the ‘disease set’ and the
‘control set’, the normalised gene dependency scores (see
above) were categorized such that cell lines with scores <
–1 for a given gene are labelled to be ‘dependent’ on the
gene (65). To investigate the relationship between the de-
pendency profile of two proteins (hereafter named X and
Y), a two-way contingency table is then considered. Both
co-dependency (i.e. cell lines found to be dependent on both
X and Y) and mutual exclusivity (i.e. cell lines found to be
dependent on either X or Y) were evaluated, using a Fisher’s
exact test (R function fisher.test). Note that since gene de-
pendency is typically very sparse (i.e. for a lot of genes, the
cell lines are not dependent on any of them), and that certain
essential genes tend to have universal dependency across all
the examined cell lines, we avoided prioritizing gene pairs
using solely the resulting P-values from this independence;
instead we considered the following criteria: (i) <50% of
the examined haematopoietic cell lines were dependent on
each of the genes; this aims to eliminate essential, ‘house-
keeping’ genes on which cell lines will depend regardless of
their mutation status; (ii) >1 cell line was dependent on each
of the genes in cases of mutual exclusivity. For defining co-
occurrence of gene dependency, it was required to have >1
cell line where the co-occurrence was observed. With these
criteria, we identified, in the ‘disease set’ 13 pairs of gene de-
pendency mutual exclusivity and 3 pairs of co-occurrence.
For the ‘control set’, we identified 4 pairs of mutual exclusiv-
ity and no cases of gene dependency co-occurrence. These
data are tabulated in Supplementary Table S4.

Heatmaps were plotted to display the dependency and
mutational profiles of leukaemia cell lines for a given short-
loop commonality pair, as well as their shared neighbours in
the UniPPIN, using the R package ComplexHeatmap (66).

Software for data processing, analysis and visualization of
networks

Python (https://www.python.org/; ver. 3.6.0) scripts were
used for large-scale data processing such as UniPPIN es-
tablishment, sub-network analysis and short loop network
motif profiling and they are available at https://github.com/

suns-chung/ShortLoopCommonality. Gene dependency
analysis and plotting were implemented in R (https://www.
r-project.org/). PPINs were visualized by Cytoscape 3.6.0
(67).

RESULTS

Protein mutations in leukaemias reported in the COSMIC
database

Mutations in leukaemias were extracted from the COSMIC
database, the most comprehensive public resource for can-
cer mutation (68), and mapped to the UniPPIN and the
potential impact on the cellular functions affected was de-
termined as described below. Four major leukaemias, acute
myeloid leukaemia (AML), chronic myeloid leukaemia
(CML), acute lymphoblastic leukaemia (ALL) and chronic
lymphocytic leukaemia (CLL) were chosen as they affect
different haemopoietic cell lineages, lymphoid and myeloid.
The pathological mechanism of CML is generally under-
stood as it is dependent on one dominant gene fusion, BCR-
ABL (69), whereas each of the other leukaemias are more
complex as their mutations occur in many different genes.
Data were retrieved from the COSMIC database after filter-
ing to remove synonymous mutations and single-case obser-
vations. Mutations occurring in patients diagnosed with one
of the four leukaemias were first analysed together to ex-
tend potential associated disease information and increase
predictions of the cellular ontologies affected.

In the COSMIC database, mutation data for 32 330
leukaemia patients are available: 26 127 for AML, 2706
for CML, 1514 for ALL and 1983 for CLL. For each
leukaemia, there are different numbers of mutated genes
encoding proteins observed in at least two patients: 4141
proteins in AML, 318 proteins in CML, 1065 proteins in
ALL and 1802 proteins in CLL (Table 2 the first column
and Supplementary Tables S3 and S5). By comparing the
proteins with mutations in each dataset, there are only 46
proteins (0.8%) (based on the UniProt Accession number)
encoded by 42 unique genes that have mutations in all four
leukaemias of which half have been annotated as oncogenes
or tumour suppressor genes in the Cancer Gene Census
(70) (Table 1). 39 out of 42 genes encode a single protein
form but multiple isoforms were found for TP53, TTN (2
isoforms each) and SYNE1 genes (3 isoforms). Also, pro-
teins encoded by 27 out of 42 genes are involved in pro-
cesses highlighted as the ‘hallmarks of cancer’ (71,72) (Table
1 and Supplementary Table S6). Although the functions of
specific proteins have been discovered, for example in the
Jak–STAT pathway (73), the way that mutations in combi-
nations of these proteins affect the PPIN and cellular pro-
cesses affected has yet to be defined.

Comparison of sub-networks by short loop network motif pro-
filing

To investigate how proteins mutated in leukaemia may af-
fect the functions of other proteins and hence the associ-
ated pathways, we identified their interacting protein part-
ners in the human PPIN. In order to capture information
on as many PPIs as possible, multiple resources of protein
interaction information involving comprehensive databases

https://www.python.org/
https://github.com/suns-chung/ShortLoopCommonality
https://github.com/suns-chung/ShortLoopCommonality
https://www.r-project.org/
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Table 1. Proteins mutated in common in AML, CML, ALL and CLL and their functions in cancer. The mutated proteins in each of the four leukaemias,
based on the UniProt Accession number are listed with their gene names. They were compared with the Cosmic cancer gene census information (70)
(Acc: Accession number, TSG: tumour suppressor gene) and the processes related to the hallmarks of cancer (71,72) (the gene annotations are assigned
as described in (106): shaded green). 32 out of 42 genes have at least one of the cancer-associated annotations listed in this table and the whole list is in
Supplementary Table S6
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TP53 E7EQX7, P04637
oncogene, 
TSG, fusion

1 1 1 1 1 1

ATM Q13315 TSG 1 1 1 1 1 1
CDKN2A P42771 TSG 1 1 1 1 1 1
PTPN11 Q06124 oncogene 1 1 1 1 1

NOTCH1 P46531
oncogene, 
TSG, fusion

1 1 1 1 1

EP300 Q09472 TSG, fusion 1 1 1 1 1
KRAS P01116 Oncogene 1 1 1 1
CSF1R P07333 1 1 1
NRAS P01111 Oncogene 1 1 1

JAK2 O60674
oncogene, 
fusion

1 1 1

NF1 P21359 TSG, fusion 1 1 1
FLNA P21333 1 1 1
IDH1 O75874 Oncogene 1 1

BRAF P15056
oncogene, 
fusion

1 1

ATRX P46100 TSG 1 1
BIRC6 Q9NR09 1 1
POLD1 P28340 1 1

KMT2D O14686
oncogene, 
TSG

1

TET1 Q8NFU7
oncogene, 
TSG, fusion

1

ASXL1 Q8IXJ9 TSG 1
PTCH1 Q13635 TSG 1
CSMD1 F5GZ18 1
DNAH7 Q8WXX0 1
DST Q03001 1
NRXN1 Q9ULB1 1
PASK Q96RG2 1

TTN
A0A0A0MRA3, 
Q8WZ42

1

NSD1 Q96L73 Fusion
DNMT3A Q9Y6K1 TSG
FAT4 Q6V0I7 TSG
LRP1B Q9NZR2 TSG
BCOR Q6W2J9 TSG, fusion

and large-scale studies were employed to establish a Uni-
fied PPIN (UniPPIN), as described in ‘Materials and Meth-
ods’ section, containing 19 370 proteins with 385 879 inter-
actions. Protein mutations in all cancers including different
leukaemias were collected from the COSMIC database (17)
and non-disease related non-synonymous single-nucleotide
variants (nsSNVs) from several databases as described in
‘Materials and Methods’. The non-disease variations were
obtained from a subset of dbSNP labelled as ‘common’ for
variants without known pathogenic relevance, specifically
of germline origin and a minor allele frequency (MAF) ≥
0.01 in at least one of the 1000 Genomes Population as de-
fined in (20,57). All the proteins mutated in each leukaemia
were mapped to the UniPPIN. Although the UniPPIN is
a large-scale collection, there are gaps and more than one
third of the proteins mutated in leukaemias do not map
to the UniPPIN (Table 2). This is particularly true for hu-
man membrane proteins, for which protein interaction data
are sparse (14) and information we have is usually based
on biological studies of individual receptors. However, the

leukaemia-specific PPINs involve between half and two-
thirds (53–66%) of mutated proteins in each leukaemia (Ta-
ble 2).

In order to extract information from this large network
on the local interactions of mutated proteins and the cellu-
lar functions affected by such mutations, we used the Short
Loop profiling method computing cyclic interactions of a
small number of proteins (38) to investigate sub-networks
of proteins in the UniPPIN mutated in each of the four
leukaemias. The datasets were compared by two quantita-
tive analysis steps: (i) counting the number of short loops
(length = 3) that are present in each dataset and (2) mea-
suring the consensus of the functions of proteins in each of
the short loops. We also analysed short loops of length =
4 but found no significant differences with short loops of
length = 3 (data not shown).

The number of short loops correlates with the number of
proteins and PPIs in a network (Pearson correlation score
= 0.96 ± 0.02, P-value < 4E-05) and so these were nor-
malized by the number of PPIs, as described previously (38)
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Table 2. Short loop network motif (length = 3) profiling for each mutation dataset. The number of short loops (length = 3) was counted and assigned
with proteins having mutations in the four different leukaemias, two of which affect myeloid and two affect lymphoid cells. ‘Common mutation’ or non-
pathogenic mutation is obtained from dbSNP and filtered based on the definition in the NCBI database, ‘germline origin and a minor allele frequency
(MAF) ≥ 0.01 in at least one major population’. In each case, the mutated protein was mapped onto UniPPIN. Other network properties are also shown,
such as the number of proteins, the number of proteins in the UniPPIN with ratios from the original number of proteins in parentheses and PPIs in the
specific PPINs. In addition, the last column shows the functional consensus of the short loops, measured as the percentage of short loops having shared
functions among proteins in the same loop (FC: Functional consensus)

Number of
proteins

Number of proteins in
UniPPIN

Number of
PPIs

Number of
Loop3

Ratio
Loop3/PPIs

Loop3
FC (%)

AML 4 141 2 609 (63%) 14 119 17 443 1.24 88.17
CML 318 169 (53%) 367 228 0.62 100.00
ALL 1 065 667 (63%) 2 256 1 532 0.68 96.21
CLL 1 802 1 189 (66%) 4 364 3 088 0.71 97.77
COSMIC 18 459 15 759 (85%) 336 216 1 816 503 5.40 91.38
Common mutation
(non-pathogenic from dbSNP)

17 065 14 214 (83%) 233 470 714 033 3.06 87.68

UniPPIN 19 370 19 370 385 879 2 085 705 5.41 90.19

(Table 2). The short loops for leukaemia-specific mutations
in each of the four leukaemias were analysed. We find the
normalized ratio of short loops of length 3 in AML (1.24)
is significantly higher than that for all other leukaemias. It
is also slightly higher (z-score = 1.32) than the normalized
ratio of randomly generated PPINs (the number of random
samples = 2000, the average number of proteins in ran-
domly sampled networks = 2602, sample mean of loop3 ra-
tio = 0.95, sample standard deviation = 0.21, sample stan-
dard error = 0.0048) (Supplementary Figure S1). This fur-
ther confirms our findings that short loops are an intrin-
sic topological property of PPINs (38) and they represent
an additional network metric, similar to neighbourhood
connectivity (74) (Supplementary Table S7). These analyses
show that short loops of three proteins are particularly en-
riched in the AML dataset and therefore proteins mutated
in AML may have more inter-connections, which suggests
that they are involved in more cooperative functions. The
proteins frequently found in AML short loops include ATP-
dependent RNA helicases (DDX3X, DDX17, DHX15,
EIF4A1), splicing factors (U2AF2, PRPF8), heterogeneous
nuclear ribonucleoproteins (HNRNPU, HNRNPK, HN-
RNPL, HNRNPF), paraspeckle protein (PSPC1) and ri-
bosomal proteins (RPL6, RPS11, RPS16) (Supplementary
Table S8).

In addition, to compare collaborative functions of pro-
teins mutated in different leukaemias, the overall functional
enrichment of short loops was measured quantitatively by
calculating the percentage of shared GO Biological Process
terms among the short loop proteins, which we define as
‘functional consensus’ (38). This measures commonality of
the functions in a loop independently of the level in the GO
hierarchy and independently of the functional associations
of the overall network containing the short loops. The ra-
tio of the functional consensus in a network is calculated
by the ratio of short loops having a functional consensus to
all short loops ( = number of short loops with functional consensus

total number of short loops in a network ×
100 (%)). In the previous study, we highlighted that short

loops in human PPINs consist of proteins with a high de-
gree of functional consensus (i.e. >95% of short loops share
at least one function) (Figure 5 in (38)). In particular 45–
59% of the short loops in the high-confidence human PPIN
(53) have a higher functional consensus ratio (>75% func-

tional consensus). Here, we confirm these previous func-
tional consensus analysis results (38) and find that for hu-
man UniPPIN and all subnetworks being analysed, gener-
ally ∼90% of short loops share at least one GO Biological
Process term. Therefore, a short loop can be a ‘biological
functional unit’ of the protein interaction network (Table 2).
The biological functional units of short loop networks con-
taining mutated proteins in the four leukaemias were then
determined. The short loops of length 3 in CML, ALL and
CLL have a higher ratio of functional consensus than those
of the PPIN containing somatic mutations in all cancers
(Table 2). On the other hand, short loops in AML and non-
disease related ‘common’ variation PPINs have lower func-
tional consensus than short loops in the UniPPIN (90.19%)
and COSMIC (91.38%), indicating the enrichment of cellu-
lar functions as we discovered previously (38). The lower
functional consensus of short loops in AML indicates that
proteins mutated in AML play roles in a wide range of bi-
ological processes as GO classifications of the functions in
AML short loops tend to be general and less specific (Figure
1 and Supplementary Table S9) including metabolic pro-
cesses, signal transduction and gene expression. For exam-
ple, nucleophosmin (NPM1) is mutated in 50–60% of AML
patients with normal karyotype (75,76) and the interaction
between NPM1 and cellular tumour antigen p53 (TP53)
(77) makes short loop interactions with 25 different pro-
teins such as cell cycle related proteins (CDKN2A, RB1),
ribosomal proteins (RPL6, RPS16, RPS13), histone bind-
ing (EP300, RBBP4), actin binding (FLNA) and ubiquitin
(OTUB1) (78). Therefore, the results of the short loop net-
work motif profiling of the leukaemia-specific PPINs and
the functions affected by mutations not only reflect the com-
plexity of the diseases, but also show that mutations in AML
affect a wider range of cellular functions than those affected
by mutations in the other three leukaemias or in other can-
cers (pan-cancer analysis). Thus, such distinctness led us to
focus on proteins mutated in AML and their PPIs.

In-depth analysis of protein mutations in AML

In order to understand the implications of mutated residues
at the atomistic scale and the relationships with the func-
tional groups and active sites, we examined locations of fre-
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Figure 1. Enrichment of gene ontology in short loops of different leukaemias. Short loops in each leukaemia network were annotated using g:Profiler (60),
and the relative frequency (%) of loops enriched in each gene ontology (GO) biological process was quantified. These relative frequencies (in percentage
terms) were represented using a heat scale. Only GO terms represented in at least two leukaemia networks are included here. Heatmap produced using the
R pheatmap package (107).

quently occurring mutations in AML at the amino acid se-
quence and 3D structural levels. Based on the COSMIC
database (v80, February 2017), there are >7000 proteins
that are affected by mutations observed in AML patients
(including single patient occurrence) (Supplementary Ta-
ble S8). This is far larger than individual studies (42,79).
We pooled data of all AML patients to identify not only

predominant mutation types in proteins such as FLT3 (in-
frame insertion), NPM1 (frameshift insertion), CEBPA (in-
frame deletion), TET2 (nonsense, in-frame deletion) and
ASXL1 (frameshift, nonsense), which have been used as
genomic classifiers (42), but also the enrichment of muta-
tions in a single amino acid position or those which local-
ize in close vicinity in the 3D protein structure, defined as
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‘mutation hotspots’. Such hotspots are composed of amino
acid positions with a high mutation frequency as defined
in (80). In proteins frequently mutated in AML (34 pro-
teins having mutations observed in >100 patients), more
than half of these proteins (19 out of 34) have hotspot mu-
tations (Supplementary Table S10 and examples in Figure
2). Hotspot mutations account for between 50% and 99%
of the mutations in these proteins. Interestingly, these muta-
tion hotspots are located near protein binding or interaction
sites (<10 amino acid residues), when mapped on available
protein 3D structures (Supplementary Table S10 and Fig-
ures 2B and 5). In the case of FLT3, the FLT3-ITD mutation
is one of the most frequent primary mutations, but muta-
tions in position D835 of the FLT3-tyrosine kinase domain
(TKD) (9% of FLT3 mutations) are observed in 1328 sam-
ples (Supplementary Table S10), which we analyse in more
detail below. The propensity of hotspot mutations to local-
ize to protein interacting sites could alter the functions of
proteins by affecting their interactions. Therefore, we anal-
ysed protein structures further at the atomistic level.

The short loop similarity of a protein reveals functional com-
plementing roles

Short loop network motif profiling was applied to the PPIN
containing proteins mutated in AML and topological and
functional analyses were carried out on the short loops
identified that contain mutated proteins. Among the en-
riched short loops, we found some proteins do not directly
interact but participate in similar short loop interactions,
that is, they engage in PPIs with the same proteins which
in turn interact with each other (example shown in Figure
3A). We defined the term ‘short loop commonality’ (com-
monality: ‘The state of sharing features or attributes’: https:
//en.oxforddictionaries.com/definition/commonality) to de-
scribe such protein relationships. To reduce bias caused by
proteins having only a few short loop interactions, we there-
fore defined short loop commonality proteins based on two
criteria: (i) at least three short loops are shared between the
proteins in a commonality relationship and (ii) 95% of their
short loops are in common.

In the network containing proteins mutated in AML (to-
tal 2609 proteins with 14 119 PPIs), 183 proteins form 224
protein pairs that are in short loop commonality with each
other (Figure 3B,C and Supplementary Table S11a) and
there are six communities or clusters of the commonality
pairs involving >5 proteins in each. The average number
of neighbours in the AML commonality network (2.45)
is higher than those of the other three leukaemias and
simulated networks (z-score = 2.82) (Supplementary Table
S11b). In addition, the degree of connectivity of the short
loop commonality proteins in the PPIN (29.88 in AML
PPIN) is higher than the average of the network (10.82)
(Supplementary Table S7). This suggests that short loop
commonality can be used as a measure of the interconnec-
tivity of PPINs in addition to other topological properties
of the network (Supplementary Table S7). Proteins in each
cluster have enriched functions based on ClueGO analy-
sis (61), such as RNA splicing, keratinization, centrosome
organization and phosphatidylinositol 3-kinase (PI3K) sig-
nalling (Supplementary Tables S12 and S13), which may

play a role as a functional unit or ‘module’. Among these
clusters, a cluster of 25 proteins enriched in the PI3K path-
way consists of two sub-clusters, one being the receptor ty-
rosine kinase (RTK) family such as FLT3, KIT, PDGFRB,
ERBB2 and MET and the other with short loop interac-
tion partners of these RTK proteins involving PIK3R1,
PTPN11, PTPRJ, CBL and CBLB (Figures 3C and 4).
These two sub-clusters are connected by a short loop com-
monality pair of MPL and PIK3R1 that have short loop
PPIs with JAK2, SOCS1, SHC1 and PTPN11 (Supplemen-
tary Table S11a). These RTK commonality pair proteins
can be targeted by common tyrosine kinase inhibitors such
as Sorafenib (81) implying their co-functions in cellular pro-
cesses (Figure 3C and Supplementary Table S14). More-
over, the short loop interactions related to these RTK pro-
teins (Figure 4) are enriched with Src Homology 2 (SH2)
domains that are present in five out of six proteins. Thus,
such PPIs with predominant functional domains lead us to
the hypothesis that the functions of the RTK family are
shared or overlap in the underlying short loop protein–
protein interactions and therefore functional commonality
of frequently mutated proteins in cancers could be enriched
in such short loops.

FLT3 short loop commonality contains mutation hotspots in
cancers

Mutations in kinase proteins have been extensively stud-
ied to understand their roles in cancer mechanisms (82,83)
and mutation hotspots in these proteins are observed in
various cancers (84,85). We hypothesize that when mu-
tated members of the RTK proteins are in a short loop
commonality relationship, mutations will be in mutation
hotspots in multiple cancers. By investigating these RTK
proteins using mutation data from the COSMIC database,
we found that FLT3 and its short loop commonality RTK
proteins have frequently mutated amino acid positions or
mutation ‘hotspots’ in their kinase domain in various can-
cers (Supplementary Table S15) and in particular FLT3
is one of the most mutated genes in AML patients with
a hotspot mutation (Figure 2 and Supplementary Table
S10). By analysing the ratio of the occurrence of the muta-
tion hotspot to the total number of mutations in the cor-
responding RTK proteins in all cancer types (defined as
Mutation Hotspot Ratio Density (MHRD), (MHRD =
number of mutations on mutation hotspot in all cancer types

number of mutations in the protein from all cancer types )), we observe
this number to vary between 3 and 30%. All the ratios are
statistically significant (P-value < 0.05, z-score > 3), against
a null uniform distribution of mutations in the protein se-
quences (Supplementary Table S15). Since the effect of the
mutational hotspot will be dependent on its spatial position
in the protein structure, we analysed the specific location of
mutation hotspots in the kinase domains of FLT3, and its
short loop commonality proteins, in 3D structural space as
well as in the linear amino acid sequences (Figures 4B and
5). Figure 4B shows that the mutation hotspots are closely
aligned and located near the amino acid residues, Asp-Phe-
Gly (DFG) motif typical of protein kinases, known as a
‘gatekeeper’ of protein kinase activities (86). They are in the
activation loop of the kinase domain that is located near lig-
and or small molecule binding sites (87). Because of this 3D

https://en.oxforddictionaries.com/definition/commonality
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Figure 2. Mutation locations of frequently mutated proteins in AML patients mapped on protein domains. About 7000 proteins are mutated in AML
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spatial closeness between mutation hotspots and functional
sites, such mutations could interfere with protein–ligand in-
teractions.

Gene dependency screens corroborate topological ‘short loop
commonality’

The analysis above mainly focuses on annotating FLT3,
KIT and their common interactors from the protein struc-
tural perspective. Here we determined whether the FLT3-
KIT short loop commonality, as well as other cases we
identify in the leukaemia-specific networks, is supported by
cellular functional data. Specifically, we seek to determine
whether there are patterns of protein dependency within a
short loop commonality. We reason that in the case of FLT3
and KIT, the fact that their mutational hotspots overlap in
3D space and that they share common interacting partners
is evidenced that cells may be dependent on either FLT3 or
KIT but not both, since constitutive activation of FLT3 and
KIT would have invoked interactions of the same set of pro-
teins and therefore the same functional pathways. We ob-
serve that in clinical cohorts FLT3 and KIT hotspot muta-
tions are mutually exclusive (one-sided Fisher exact test P =

0.002) (Figure 6A). We next leverage large-scale CRISPR–
Cas9 screens of hematopoietic cancer cell lines with known
mutations, where genes are deleted one at a time and cells
are profiled for their viability, from which the dependency
of the cell line on the gene is determined (see ‘Materials
and Methods’ section). In these screens, cells are dependent
on either FLT3 or KIT, but not both (Figure 5B). By over-
laying the genomic profile onto these data, dependency on
FLT3 and KIT are exclusive to those cell lines harbouring
a FLT3/KIT hotspot mutation and/or copy number gain,
suggesting oncogenic addiction (88) to either FLT3 or KIT
(89,90). Surveying common interacting partners of the two
proteins, we further observe that cell lines dependent on
FLT3 or KIT are also dependent on PTPN11 and GRB2
(Figure 6B), suggesting that these two are common down-
stream signalling proteins of FLT3 and KIT. These data
suggest that PTPN11 and GRB2 are potential drug targets
in cells with activated FLT3 or KIT (91–93) and in vitro ex-
periments using PTPN11 or GRB2 inhibitors could be de-
signed to test such hypothesis.

We further ask whether other short loop commonality
identified in our leukaemia networks exhibit the same pat-
tern in the gene dependency screening data. By examining
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Figure 3. Schematic representation of short loop commonality and a landscape of short loop commonality among proteins with mutations in the AML
PPIN. (A) ‘Short loop commonality’ is defined as the association of proteins having the same or similar short loop interactions, but not involving direct
interaction of the proteins themselves. For example, X forms short loops with AB, BC and CD pairs and Y also forms short loops with AB, BC and CD
but there is no direct interaction between X and Y. The short loop commonality pair of X and Y is annotated with a symbol of a loop (∞). (B and C) Short
loop commonality, similarity of short loops between proteins, was calculated by comparing sets of protein interacting partner pairs for all proteins in the
AML PPIN. In total 183 proteins (shown in light blue circles) account for 224 pairs of short loop commonality, which are annotated as line edges with a
loop (∞) symbol. Functional enrichment of each cluster was measured by ClueGO (61) and nodes are coloured when proteins have enriched functional
terms in the cluster. Detailed protein pairs and enriched functional terms are listed in Supplementary Tables S11 and S12. (B) Among the commonality
pairs, a cluster consists of proteins involved in the PI3K pathway. This cluster can be divided into two subsets enriched with the RTK proteins (e.g. FLT3,
KIT, ERBB2, PDGFRB and MET (right)) and their short loop interacting partners (e.g. PIK3R1, PTPRJ, PTPN11, CBL and CBLB (left)). Nodes
with double border lines are druggable or potentially druggable proteins predicted by DGIdb (81) and edges are annotated in double red lines when a
commonality pair has common drug interactions. The whole short loop commonality networks in the AML PPIN are available in a Cytoscape file format
(ShortLoop Commonality leukaemia.cys) uploaded in (https://github.com/suns-chung/ShortLoopCommonality/).

statistical independence between pairwise dependency pro-
files, we identify additional pairs of proteins that share short
loop commonality and exhibit either mutual exclusivity (as
does FLT3 and KIT) or co-occurrence of dependency in
haematopoietic cancer cell lines. These protein pairs and
their common interacting partners have known functions
in common, including e.g. RBBP4 and MTF2 (Figure 6C),
both of which are involved in chromatin remodelling and
assembly complexes. Interestingly, dependencies of RBBP4
and its interacting partner SPDL1 are also mutually exclu-
sive; this is consistent with the fact that the MuvB complex,
of which RBBP4 is a member, represses SPDL1 gene ex-
pression (94). Thus, RBBP4 and SPDL1 knockouts confer
the same effect with respect to SPDL1 expression level. We
also observe cases where cells are dependent on both pro-
teins sharing short loop commonality. For example, cells

harbouring the BCR-ABL1 gene fusion are dependent on
BCR as well as STAT5B (Figure 6D), in line with previous
studies (95–97). In general, we were able to identify more
cases of mutual exclusivity and co-occurrence of gene de-
pendencies between commonality pairs in the leukaemia
networks (13 pairs of gene dependency mutual exclusivity
and 3 co-occurrence), in comparison to a ‘control set’ where
one member of each commonality pair was replaced with
another protein which do not record any leukaemia muta-
tions but still share common interacting partners (4 pairs
of mutual exclusivity and 0 co-occurrence). The complete
lists are in Supplementary Table S4. Altogether, this analysis
suggests that short loop commonality identified as a topo-
logical feature from interaction networks also harbours
functional significance that is supported by gene depen-
dency screening data. These functional dependencies also

https://github.com/suns-chung/ShortLoopCommonality/
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Figure 4. FLT3 short loop interactions and short loop commonality proteins. (A) The left side shows that FLT3 (pink octagon) has short loop protein–
protein interactions with PTPN11, PTPRJ, SOCS1, PIK3R1, CBLB and CBL proteins, annotated as circles. Their protein–protein interactions are drawn
as edges. Next to each protein, their functional domains are marked in round edged boxes. The right upper side in the blue area shows FLT3 short loop
(length = 3) commonality proteins KIT, MET, ERBB2, PDGRB in blue octagons having the same short loop protein interactions as FLT3. (B) Amino acid
sequences of FLT3 and its commonality proteins are aligned. The protein kinase domains of each protein were aligned by T-coffee (http://tcoffee.crg.cat/)
and visualized by Jalview (http://www.jalview.org/). DFG motifs are boxed in light green and the hotspot mutations of each kinase are circled in red.

bear therapeutic significance: for instance, in cases where
the mutated protein is not druggable, our analysis suggests
proteins sharing short loop commonality, or their common
interacting partners, could be alternative drug targets, as
they are involved in the same set of PPIs and therefore par-
ticipate in the same functional pathways.

DISCUSSION

Proteins and their interactions form the complicated intra-
cellular ‘machinery’ that carry out and regulate the func-
tions of cells in our body. Diseases are outcomes of mal-
functions in this machinery caused in part by genetic ab-
normalities that change the functions of the encoded pro-

teins. Cancer pathologies are the epitome example show-
ing the complexity of disease mechanisms affected, which
disrupt diverse cellular functions. Thus, building a compre-
hensive protein–protein interaction network of a cell is an
important step towards an understanding of the complexity
of molecular disease mechanisms, which could lead to the
development of more targeted therapies. Several databases
provide amalgamated information on protein interaction
data from multiple sources. However, each of these repre-
sent distinct subsets of the protein interaction landscape.
Data were collected using different experimental meth-
ods, stored in multiple locations and in disparate data for-
mats. These pose challenges to amalgamate them to form a
more complete human proteome map. The UniPPIN pre-

http://tcoffee.crg.cat/
http://www.jalview.org/
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Figure 5. A zoomed-in view of the structural alignment of FLT3 and KIT proteins with mutation hotspots of FLT3 short loop commonality proteins in
3D space. FLT3 (1RJB) and KIT(3G0E) kinase domain structure 3D superimposition. The mutation hotspots of other FLT3 short loop commonality
proteins are shown in beads representation and mapped onto this superimposition (FLT3: yellow, KIT: magenta, PDGFRA: light blue, MET: orange,
ERBB2: red). To show the vicinity of mutation hotspots and the known small molecule binding site, this site is annotated on the original KIT structure
and visualized as a green surface (top). Views from different angles are shown, rotating –30◦ in the y-axis (bottom left) and 30◦ in the x-axis (bottom right).

sented here, a unified human protein–protein interaction
network, integrates multiple resources of human PPIN cov-
ering 19 370 proteins with 385 370 interactions. This extends
the data in a recently curated large-scale human protein in-
teraction map integrating high-confidence mass spectrome-
try experiments, which covers >7700 proteins, and >56 000
unique interactions (98). The UniPPIN proteome map is de-

signed to deepen our understanding of human proteomes,
as well as the functional relationship between genotypes and
phenotypes, especially to extend protein coverage for dis-
eases such as AML. However, the extent of a large PPIN
poses challenges in extracting data of specific PPIs that are
relevant to a given disease. To acquire such information, we
applied our short loop network motif profiling method (38)
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to the amalgamated UniPPIN, annotated with data on pro-
teins mutated in four different leukaemias. We also develop
a new concept––‘short loop commonality’––and propose
that protein ‘modules’ that form short loops with different,
related proteins may select for a class of hotspot mutations
that affect protein–protein interactions.

In our previous study (38), short loops (cyclic protein in-
teractions) were shown to contain topological and biolog-
ical information about PPINs as they form a core of re-
silient interconnections with enriched biological functions.
This analysis method demonstrated its utility by retriev-
ing specific and unappreciated topological and biological
properties of the networks. Here we used this approach
to analyse PPINs containing mutated proteins in four dif-
ferent leukaemias. The high ratio of short loops in the
AML-related PPIN shows that mutations reported in AML
are more interconnected in the underlying proteome than
those in the other leukaemia PPINs; our analyses also in-
dicate that mutated proteins in AML play roles in a broad
range of biological processes (Figure 1). In addition, pro-
teins frequently found in AML short loops overlap with
resilient loops of a reliable human PPIN from our pre-
vious study (38). Resilient loops compose a highly con-
nected core of PPIs since they are preserved after random-
ization of the interactions based on Markov Chain Graph
Dynamics. Also, they contain proteins involved in essen-
tial cellular functions (38). This indicates that some AML
short loops are resilient, comprised of proteins involved
in essential functions including transcription, RNA pro-
cessing, hnRNA splicing and translation (Supplementary
Table S8).

Here, we extend the short loop profiling approach and
present a novel concept called ‘short loop commonality’ to
analyse indirectly connected proteins having the same short
loop interactions. The method can identify communities of
proteins or ‘modules’ related to particular functions. We
observe co-localization of hotspot mutations in the FLT3
kinase and other RTK commonality members, suggesting
that these mutations interfere with protein–ligand interac-
tions. Additionally, these short loop commonality proteins
show mutual exclusivity or dependency in gene knockout
screening data. Dependency means that cell survival is de-
pendent on an interacting partner of a mutated protein in a
short loop commonality, implying that the second protein
could be a relevant drug target if the mutated protein is not.
Exclusivity is inferred when cells are mutated in only one but
not both members of a short loop commonality pair. These
cases highlight the potential of the short loop commonality
topological measure in discovering functional redundancy
or synthetic lethality of proteins (99).

Network biology has improved our understanding of bi-
ological systems related to diseases by implementing mod-
els based on topological properties of intracellular net-
works (34,100,101). The aim has been to identify geno-
/phenotypic associations in diseases and ultimately to de-
velop novel translational approaches (100,101). Also, recent
efforts on human protein interactomes mapped with disease
associated proteins have been used to predict how protein
abnormalities can affect protein complexes (8,53). However,
mapping mutation information onto PPINs is still ham-
pered by proteome coverage and the sparsity of information

about the sub-networks affected by mutations. The con-
cept of short loop commonality is a promising method for
analysing PPINs, identifying functional dependency of pro-
teins and finding underlying proteins which affect disease-
related mechanisms. It supports a paradigm shift in the drug
discovery approach from a one-mutated target-one drug
model to a multiple-target strategy for the local PPIN of
a single mutated protein (102). Many mutated proteins are
not suitable currently for drug discovery and we propose
that our approach may be useful in identifying functional
protein modules affected by short loop commonality mu-
tations that are potential new drug targets. In addition, it
could also help in identifying repurposed drug candidates
(103), for instance, if one drug targets a protein within a
short loop commonality, the drug might be used to treat ma-
lignancies related to the commonality pair, that is, where the
interacting protein of the drug target is mutated. Examples
are common drugs targeting short loop commonality pairs
in leukaemias, such as tyrosine kinase inhibitors includ-
ing Sorafenib (81) and PI3K inhibitors including Pictilisib
(104) (Supplementary Table S14 and Figure 3C). Our anal-
ysis using CRISPR–Cas9 screening data suggests short-
loop commonality proteins do harbour functional depen-
dencies, which could be exploited in cases where knowledge
on ‘druggability’ of proteins is incomplete, or where target-
ing specific proteins proves ineffective. This could provide
twofold benefits by tailoring druggable targets to a robust
‘module’ complex, and by prioritizing interacting partners
which remain unperturbed by mutations as potential targets
for therapeutics. These targets would have been overlooked
solely using mutation data. For example, PTPN11, a protein
interaction partner of FLT3 and KIT short loop common-
ality pair, could be a therapeutic target for AML patients
with activating FLT3 or KIT mutations (92,93,105).

With the present study, we demonstrate that short loop
network profiling can be used to analyse genome-wide data
of mutations in cancers. This approach highlights the un-
derlying functional consensus of short-range protein inter-
actions in PPINs. Furthermore, proteins that do not neces-
sarily interact share short loop interactions that could be
used to identify essential PPI modules that affect impor-
tant cellular functions. Mutations in components of these
short loops contribute to cancer and we observe that the
short-loop components harbour mutational hotspots. This
knowledge can be exploited in the design of functional ex-
periments: by identifying components of short loops, this
helps in identifying proteins with measurable phenotypic
readouts that could be harnessed to study the effect of mu-
tations, especially if such mutations fall in proteins which
are difficult to be probed experimentally. A map of co-
dependency of proteins in short loops could also be helpful
in prioritizing interacting partners as new therapeutic tar-
gets in cases where a mutated protein is difficult to target
pharmacologically. These associations will ultimately stim-
ulate the investigation of new targets in protein modules of
the commonality for drug discovery and drug repurposing
in a disease such as AML where no targeted therapies have
proved effective (47). The terms ‘short loop network motif ’
and ‘short loop commonality’ defined here can be used in
the future when new experimental data of time- and scale-
dependent personalized PPINs are available that enable us
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to quantify the evolution of network changes in many dis-
eases.
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4. Rolland,T., Taşan,M., Charloteaux,B., Pevzner,S.J., Zhong,Q.,
Sahni,N., Yi,S., Lemmens,I., Fontanillo,C., Mosca,R. et al. (2014) A
proteome-scale map of the human interactome network. Cell, 159,
1212–1226.

5. Huttlin,E.L., Ting,L., Bruckner,R.J., Gebreab,F., Gygi,M.P.,
Szpyt,J., Tam,S., Zarraga,G., Colby,G., Baltier,K. et al. (2015) The
BioPlex Network: a systematic exploration of the human
interactome. Cell, 162, 425–440.

6. Hein,M.Y., Hubner,N.C., Poser,I., Cox,J., Nagaraj,N., Toyoda,Y.,
Gak,I.A., Weisswange,I., Mansfeld,J., Buchholz,F. et al. (2015) A
human interactome in three quantitative dimensions organized by
stoichiometries and abundances. Cell, 163, 712–723.

7. Wan,C., Borgeson,B., Phanse,S., Tu,F., Drew,K., Clark,G.,
Xiong,X., Kagan,O., Kwan,J., Bezginov,A. et al. (2015) Panorama
of ancient metazoan macromolecular complexes. Nature, 525,
339–344.

8. Huttlin,E.L., Bruckner,R.J., Paulo,J.A., Cannon,J.R., Ting,L.,
Baltier,K., Colby,G., Gebreab,F., Gygi,M.P., Parzen,H. et al. (2017)
Architecture of the human interactome defines protein communities
and disease networks. Nature, 545, 505–509.

9. Bludau,I. and Aebersold,R. (2020) Proteomic and interactomic
insights into the molecular basis of cell functional diversity. Nat.
Rev. Mol. Cell Biol., 21, 327–340.

10. Orchard,S., Ammari,M., Aranda,B., Breuza,L., Briganti,L.,
Broackes-Carter,F., Campbell,N.H., Chavali,G., Chen,C.,
del-Toro,N. et al. (2014) The MIntAct project–IntAct as a common
curation platform for 11 molecular interaction databases. Nucleic
Acids Res., 42, D358–D363.

11. Chatr-Aryamontri,A., Breitkreutz,B.-J., Oughtred,R., Boucher,L.,
Heinicke,S., Chen,D., Stark,C., Breitkreutz,A., Kolas,N.,
O’Donnell,L. et al. (2015) The BioGRID interaction database: 2015
update. Nucleic Acids Res., 43, D470–D478.

12. Szklarczyk,D., Franceschini,A., Wyder,S., Forslund,K., Heller,D.,
Huerta-Cepas,J., Simonovic,M., Roth,A., Santos,A., Tsafou,K.P.
et al. (2015) STRING v10: protein-protein interaction networks,
integrated over the tree of life. Nucleic Acids Res., 43, D447–D452.

13. Orchard,S., Kerrien,S., Abbani,S., Aranda,B., Bhate,J., Bidwell,S.,
Bridge,A., Briganti,L., Brinkman,F.S.L., Brinkman,F. et al. (2012)
Protein interaction data curation: the International Molecular
Exchange (IMEx) consortium. Nat. Methods, 9, 345–350.

14. Laddach,A., Ng,J.C., Chung,S.S. and Fraternali,F. (2018) Genetic
variants and protein-protein interactions: a multidimensional
network-centric view. Curr. Opin. Struct. Biol., 50, 82–90.

15. Lu,H.C., Fornili,A. and Fraternali,F. (2013) Protein-protein
interaction networks studies and importance of 3D structure
knowledge. Expert Rev. Proteom., 10, 511–520.

16. Hamosh,A., Scott,A.F., Amberger,J.S., Bocchini,C.A. and
McKusick,V.A. (2005) Online Mendelian Inheritance in Man
(OMIM), a knowledgebase of human genes and genetic disorders.
Nucleic Acids Res., 33, D514–D517.

17. Forbes,S.A., Beare,D., Boutselakis,H., Bamford,S., Bindal,N.,
Tate,J., Cole,C.G., Ward,S., Dawson,E., Ponting,L. et al. (2017)
COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids
Res., 45, D777–D783.

18. Tomczak,K., Czerwinska,P. and Wiznerowicz,M. (2015) The Cancer
Genome Atlas (TCGA): an immeasurable source of knowledge.
Contemp. Oncol. (Pozn), 19, A68–A77.

19. Landrum,M.J., Lee,J.M., Benson,M., Brown,G., Chao,C.,
Chitipiralla,S., Gu,B., Hart,J., Hoffman,D., Hoover,J. et al. (2016)
ClinVar: public archive of interpretations of clinically relevant
variants. Nucleic Acids Res., 44, D862–D868.

20. Sherry,S.T., Ward,M. and Sirotkin,K. (1999) dbSNP-database for
single nucleotide polymorphisms and other classes of minor genetic
variation. Genome Res., 9, 677–679.

21. Genomes Project, C., Auton,A., Brooks,L.D., Durbin,R.M.,
Garrison,E.P., Kang,H.M., Korbel,J.O., Marchini,J.L.,
McCarthy,S., McVean,G.A. et al. (2015) A global reference for
human genetic variation. Nature, 526, 68–74.

22. Lek,M., Karczewski,K.J., Minikel,E.V., Samocha,K.E., Banks,E.,
Fennell,T., O’Donnell-Luria,A.H., Ware,J.S., Hill,A.J.,
Cummings,B.B. et al. (2016) Analysis of protein-coding genetic
variation in 60,706 humans. Nature, 536, 285–291.

23. Bean,L.J. and Hegde,M.R. (2016) Gene variant databases and
sharing: creating a global genomic variant database for personalized
medicine. Hum. Mutat., 37, 559–563.

24. Pinero,J., Bravo,A., Queralt-Rosinach,N., Gutierrez-Sacristan,A.,
Deu-Pons,J., Centeno,E., Garcia-Garcia,J., Sanz,F. and
Furlong,L.I. (2017) DisGeNET: a comprehensive platform
integrating information on human disease-associated genes and
variants. Nucleic Acids Res., 45, D833–D839.

25. Wang,Z. and Moult,J. (2001) SNPs, protein structure, and disease.
Hum. Mutat., 17, 263–270.

26. Adzhubei,I.A., Schmidt,S., Peshkin,L., Ramensky,V.E.,
Gerasimova,A., Bork,P., Kondrashov,A.S. and Sunyaev,S.R. (2010)
A method and server for predicting damaging missense mutations.
Nat. Methods, 7, 248–249.

27. Choi,Y., Sims,G.E., Murphy,S., Miller,J.R. and Chan,A.P. (2012)
Predicting the functional effect of amino acid substitutions and
indels. PLoS One, 7, e46688.

28. Schwede,T. (2013) Protein modeling: what happened to the “protein
structure gap”? Structure, 21, 1531–1540.

29. Boyle,E.A., Li,Y.I. and Pritchard,J.K. (2017) An expanded view of
complex traits: from polygenic to omnigenic. Cell, 169, 1177–1186.

30. Yang,A., Troup,M. and Ho,J.W.K. (2017) Scalability and validation
of big data bioinformatics software. Comput. Struct. Biotechnol. J.,
15, 379–386.

31. Greene,A.C., Giffin,K.A., Greene,C.S. and Moore,J.H. (2016)
Adapting bioinformatics curricula for big data. Brief. Bioinform., 17,
43–50.

32. Yang,P., Hwa Yang,Y., B Zhou,B. and Y Zomaya,A. (2010) A review
of ensemble methods in bioinformatics. Curr. Bioinform., 5, 296–308.

33. Jeong,H., Mason,S.P., Barabasi,A.L. and Oltvai,Z.N. (2001)
Lethality and centrality in protein networks. Nature, 411, 41–42.

34. Barabasi,A.L. and Oltvai,Z.N. (2004) Network biology:
understanding the cell’s functional organization. Nat. Rev. Genet., 5,
101–113.

35. Mason,O. and Verwoerd,M. (2007) Graph theory and networks in
biology. IET Syst. Biol., 1, 89–119.

36. Tran,N.T., Mohan,S., Xu,Z. and Huang,C.H. (2015) Current
innovations and future challenges of network motif detection. Brief.
Bioinform., 16, 497–525.

37. Stone,L., Simberloff,D. and Artzy-Randrup,Y. (2019) Network
motifs and their origins. PLoS Comput. Biol., 15, e1006749.

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqab010#supplementary-data


16 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1

38. Chung,S.S., Pandini,A., Annibale,A., Coolen,A.C., Thomas,N.S.
and Fraternali,F. (2015) Bridging topological and functional
information in protein interaction networks by short loops profiling.
Sci. Rep., 5, 8540.

39. Bennett,J.M., Catovsky,D., Daniel,M.T., Flandrin,G., Galton,D.A.,
Gralnick,H.R. and Sultan,C. (1985) Proposed revised criteria for the
classification of acute myeloid leukemia. A report of the
French-American-British Cooperative Group. Ann. Intern. Med.,
103, 620–625.

40. Swerdlow,S.H., Campo,E., Pileri,S.A., Harris,N.L., Stein,H.,
Siebert,R., Advani,R., Ghielmini,M., Salles,G.A., Zelenetz,A.D.
et al. (2016) The 2016 revision of the World Health Organization
classification of lymphoid neoplasms. Blood, 127, 2375–2390.

41. Ley,T.J., Mardis,E.R., Ding,L., Fulton,B., McLellan,M.D.,
Chen,K., Dooling,D., Dunford-Shore,B.H., McGrath,S.,
Hickenbotham,M. et al. (2008) DNA sequencing of a cytogenetically
normal acute myeloid leukaemia genome. Nature, 456, 66–72.

42. Papaemmanuil,E., Gerstung,M., Bullinger,L., Gaidzik,V.I.,
Paschka,P., Roberts,N.D., Potter,N.E., Heuser,M., Thol,F., Bolli,N.
et al. (2016) Genomic classification and prognosis in acute myeloid
leukemia. N. Engl. J. Med., 374, 2209–2221.

43. Metzeler,K.H., Herold,T., Rothenberg-Thurley,M., Amler,S.,
Sauerland,M.C., Gorlich,D., Schneider,S., Konstandin,N.P.,
Dufour,A., Braundl,K. et al. (2016) Spectrum and prognostic
relevance of driver gene mutations in acute myeloid leukemia. Blood,
128, 686–698.

44. Potter,N., Miraki-Moud,F., Ermini,L., Titley,I., Vijayaraghavan,G.,
Papaemmanuil,E., Campbell,P., Gribben,J., Taussig,D. and
Greaves,M. (2019) Single cell analysis of clonal architecture in acute
myeloid leukaemia. Leukemia, 33, 1113–1123.

45. Greaves,M. and Maley,C.C. (2012) Clonal evolution in cancer.
Nature, 481, 306–313.

46. van Galen,P., Hovestadt,V., Wadsworth Ii,M.H., Hughes,T.K.,
Griffin,G.K., Battaglia,S., Verga,J.A., Stephansky,J., Pastika,T.J.,
Lombardi Story,J. et al. (2019) Single-Cell RNA-Seq reveals AML
hierarchies relevant to disease progression and immunity. Cell, 176,
1265–1281.

47. Green,S.D. and Konig,H. (2020) Treatment of acute myeloid
leukemia in the era of genomics-achievements and persisting
challenges. Front. Genet., 11, 480.

48. The American Cancer Society medical and editorial content team
(2018) What’s New in Acute Myeloid Leukemia (AML) Research?.
https://www.cancer.org/cancer/acute-myeloid-leukemia/about/new-
research.html (5 September 2020, date last accessed).

49. The European Union Clinical Trials Register. (2020) Clinical trials
for Acute Myeloid Leukemia (AML).
https://www.clinicaltrialsregister.eu/ctr-search/search?query=
Acute+Myeloid+Leukemia+(AML) (5 September 2020, date last
accessed).

50. Keshava Prasad,T.S., Goel,R., Kandasamy,K., Keerthikumar,S.,
Kumar,S., Mathivanan,S., Telikicherla,D., Raju,R., Shafreen,B.,
Venugopal,A. et al. (2009) Human Protein Reference
Database–2009 update. Nucleic Acids Res., 37, D767–D772.

51. Xenarios,I., Salwinski,L., Duan,X.J., Higney,P., Kim,S.M. and
Eisenberg,D. (2002) DIP, the Database of Interacting Proteins: a
research tool for studying cellular networks of protein interactions.
Nucleic Acids Res., 30, 303–305.

52. Lamesch,P., Li,N., Milstein,S., Fan,C., Hao,T., Szabo,G., Hu,Z.,
Venkatesan,K., Bethel,G., Martin,P. et al. (2007) hORFeome v3.1: a
resource of human open reading frames representing over 10,000
human genes. Genomics, 89, 307–315.

53. Havugimana,P.C., Hart,G.T., Nepusz,T., Yang,H., Turinsky,A.L.,
Li,Z., Wang,P.I., Boutz,D.R., Fong,V., Phanse,S. et al. (2012) A
census of human soluble protein complexes. Cell, 150, 1068–1081.

54. Wodak,S.J., Pu,S., Vlasblom,J. and Seraphin,B. (2009) Challenges
and rewards of interaction proteomics. Mol. Cell. Proteomics, 8,
3–18.

55. The UniProt, C. (2017) UniProt: the universal protein
knowledgebase. Nucleic Acids Res., 45, D158–D169.

56. Aken,B.L., Ayling,S., Barrell,D., Clarke,L., Curwen,V., Fairley,S.,
Fernandez Banet,J., Billis,K., Garcia Giron,C., Hourlier,T. et al.
(2016) The Ensembl gene annotation system. Database (Oxford),
2016, baw093.

57. National Center for Biotechnology Information
(NCBI). (2017) Human Variation Sets in VCF Format. https:
//www.ncbi.nlm.nih.gov/variation/docs/human variation vcf/ (5
September 2020, date last accessed).

58. McLaren,W., Gil,L., Hunt,S.E., Riat,H.S., Ritchie,G.R.,
Thormann,A., Flicek,P. and Cunningham,F. (2016) The ensembl
variant effect predictor. Genome Biol., 17, 122.

59. Gene Ontology, C. (2015) Gene Ontology Consortium: going
forward. Nucleic Acids Res., 43, D1049–D1056.

60. Reimand,J., Arak,T., Adler,P., Kolberg,L., Reisberg,S., Peterson,H.
and Vilo,J. (2016) g:Profiler-a web server for functional
interpretation of gene lists (2016 update). Nucleic Acids Res., 44,
W83–W89.

61. Bindea,G., Mlecnik,B., Hackl,H., Charoentong,P., Tosolini,M.,
Kirilovsky,A., Fridman,W.H., Pages,F., Trajanoski,Z. and Galon,J.
(2009) ClueGO: a Cytoscape plug-in to decipher functionally
grouped gene ontology and pathway annotation networks.
Bioinformatics, 25, 1091–1093.

62. Dempster,J.M., Rossen,J., Kazachkova,M., Pan,J., Kugener,G.,
Root,D.E. and Tsherniak,A. (2019) Extracting biological insights
from the project achilles genome-scale CRISPR screens in cancer
cell lines. bioRxiv doi: https://doi.org/10.1101/720243, 31 July 2019,
preprint: not peer reviewed.

63. Meyers,R.M., Bryan,J.G., McFarland,J.M., Weir,B.A.,
Sizemore,A.E., Xu,H., Dharia,N.V., Montgomery,P.G.,
Cowley,G.S., Pantel,S. et al. (2017) Computational correction of
copy number effect improves specificity of CRISPR-Cas9
essentiality screens in cancer cells. Nat. Genet., 49, 1779–1784.

64. Ghandi,M., Huang,F.W., Jane-Valbuena,J., Kryukov,G.V., Lo,C.C.,
McDonald,E.R. 3rd, Barretina,J., Gelfand,E.T., Bielski,C.M., Li,H.
et al. (2019) Next-generation characterization of the Cancer Cell
Line Encyclopedia. Nature, 569, 503–508.

65. Tsherniak,A., Vazquez,F., Montgomery,P.G., Weir,B.A.,
Kryukov,G., Cowley,G.S., Gill,S., Harrington,W.F., Pantel,S.,
Krill-Burger,J.M. et al. (2017) Defining a cancer dependency map.
Cell, 170, 564–576.

66. Gu,Z., Eils,R. and Schlesner,M. (2016) Complex heatmaps reveal
patterns and correlations in multidimensional genomic data.
Bioinformatics, 32, 2847–2849.

67. Shannon,P., Markiel,A., Ozier,O., Baliga,N.S., Wang,J.T.,
Ramage,D., Amin,N., Schwikowski,B. and Ideker,T. (2003)
Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res., 13, 2498–2504.

68. Yang,Y., Dong,X., Xie,B., Ding,N., Chen,J., Li,Y., Zhang,Q., Qu,H.
and Fang,X. (2015) Databases and web tools for cancer genomics
study. Genomics Proteomics Bioinform., 13, 46–50.

69. Salesse,S. and Verfaillie,C.M. (2002) BCR/ABL: from molecular
mechanisms of leukemia induction to treatment of chronic
myelogenous leukemia. Oncogene, 21, 8547–8559.

70. Futreal,P.A., Coin,L., Marshall,M., Down,T., Hubbard,T.,
Wooster,R., Rahman,N. and Stratton,M.R. (2004) A census of
human cancer genes. Nat. Rev. Cancer, 4, 177–183.

71. Hanahan,D. and Weinberg,R.A. (2011) Hallmarks of cancer: the
next generation. Cell, 144, 646–674.

72. Hanahan,D. and Weinberg,R.A. (2000) The hallmarks of cancer.
Cell, 100, 57–70.

73. Stark,G.R. and Darnell,J.E. Jr (2012) The JAK-STAT pathway at
twenty. Immunity, 36, 503–514.

74. Maslov,S. and Sneppen,K. (2002) Specificity and stability in
topology of protein networks. Science, 296, 910–913.

75. Cocciardi,S., Dolnik,A., Kapp-Schwoerer,S., Rucker,F.G., Lux,S.,
Blatte,T.J., Skambraks,S., Kronke,J., Heidel,F.H., Schnoder,T.M.
et al. (2019) Clonal evolution patterns in acute myeloid leukemia
with NPM1 mutation. Nat. Commun., 10, 2031.

76. Kunchala,P., Kuravi,S., Jensen,R., McGuirk,J. and Balusu,R. (2018)
When the good go bad: Mutant NPM1 in acute myeloid leukemia.
Blood Rev., 32, 167–183.

77. Colombo,E., Marine,J.C., Danovi,D., Falini,B. and Pelicci,P.G.
(2002) Nucleophosmin regulates the stability and transcriptional
activity of p53. Nat. Cell Biol., 4, 529–533.

78. Cela,I., Di Matteo,A. and Federici,L. (2020) Nucleophosmin in Its
Interaction with Ligands. Int. J. Mol. Sci., 21, 4885.

https://www.cancer.org/cancer/acute-myeloid-leukemia/about/new-research.html
https://www.clinicaltrialsregister.eu/ctr-search/search?query=Acute+Myeloid+Leukemia+(AML)
https://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf/
https://www.doi.org/10.1101/720243


NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1 17

79. Cancer Genome Atlas Research, N. (2013) Genomic and
epigenomic landscapes of adult de novo acute myeloid leukemia. N.
Engl. J. Med., 368, 2059–2074.

80. Rogozin,I.B. and Pavlov,Y.I. (2003) Theoretical analysis of mutation
hotspots and their DNA sequence context specificity. Mutat. Res.,
544, 65–85.

81. Cotto,K.C., Wagner,A.H., Feng,Y.Y., Kiwala,S., Coffman,A.C.,
Spies,G., Wollam,A., Spies,N.C., Griffith,O.L. and Griffith,M.
(2018) DGIdb 3.0: a redesign and expansion of the drug-gene
interaction database. Nucleic Acids Res., 46, D1068–D1073.

82. Gross,S., Rahal,R., Stransky,N., Lengauer,C. and Hoeflich,K.P.
(2015) Targeting cancer with kinase inhibitors. J. Clin. Invest., 125,
1780–1789.

83. Vogelstein,B., Papadopoulos,N., Velculescu,V.E., Zhou,S.,
Diaz,L.A. Jr and Kinzler,K.W. (2013) Cancer genome landscapes.
Science, 339, 1546–1558.

84. Dixit,A., Yi,L., Gowthaman,R., Torkamani,A., Schork,N.J. and
Verkhivker,G.M. (2009) Sequence and structure signatures of cancer
mutation hotspots in protein kinases. PLoS One, 4, e7485.

85. Yang,F., Petsalaki,E., Rolland,T., Hill,D.E., Vidal,M. and Roth,F.P.
(2015) Protein domain-level landscape of cancer-type-specific
somatic mutations. PLoS Comput. Biol., 11, e1004147.

86. Treiber,D.K. and Shah,N.P. (2013) Ins and outs of kinase DFG
motifs. Chem. Biol., 20, 745–746.

87. Nolen,B., Taylor,S. and Ghosh,G. (2004) Regulation of protein
kinases; controlling activity through activation segment
conformation. Mol. Cell, 15, 661–675.

88. Weinstein,I.B. and Joe,A. (2008) Oncogene addiction. Cancer Res.,
68, 3077–3080.

89. Smith,C.C. (2013) Disease diversity and FLT3 mutations. Proc.
Natl. Acad. Sci. U.S.A., 110, 20860–20861.

90. Mackarehtschian,K., Hardin,J.D., Moore,K.A., Boast,S., Goff,S.P.
and Lemischka,I.R. (1995) Targeted disruption of the flk2/flt3 gene
leads to deficiencies in primitive hematopoietic progenitors.
Immunity, 3, 147–161.

91. Simister,P.C., Luccarelli,J., Thompson,S., Appella,D.H., Feller,S.M.
and Hamilton,A.D. (2013) Novel inhibitors of a Grb2 SH3C
domain interaction identified by a virtual screen. Bioorg. Med.
Chem., 21, 4027–4033.

92. Romero,C., Lambert,L.J., Sheffler,D.J., De Backer,L.J.S.,
Raveendra-Panickar,D., Celeridad,M., Grotegut,S., Rodiles,S.,
Holleran,J., Sergienko,E. et al. (2020) A cellular target engagement
assay for the characterization of SHP2 (PTPN11) phosphatase
inhibitors. J. Biol. Chem., 295, 2601–2613.

93. Prahallad,A., Heynen,G.J., Germano,G., Willems,S.M., Evers,B.,
Vecchione,L., Gambino,V., Lieftink,C., Beijersbergen,R.L., Di
Nicolantonio,F. et al. (2015) PTPN11 is a central node in intrinsic
and acquired resistance to targeted cancer drugs. Cell Rep., 12,
1978–1985.

94. Uxa,S., Bernhart,S.H., Mages,C.F.S., Fischer,M., Kohler,R.,
Hoffmann,S., Stadler,P.F., Engeland,K. and Muller,G.A. (2019)
DREAM and RB cooperate to induce gene repression and cell-cycle

arrest in response to p53 activation. Nucleic Acids Res., 47,
9087–9103.

95. Schaller-Schonitz,M., Barzan,D., Williamson,A.J., Griffiths,J.R.,
Dallmann,I., Battmer,K., Ganser,A., Whetton,A.D., Scherr,M. and
Eder,M. (2014) BCR-ABL affects STAT5A and STAT5B
differentially. PLoS One, 9, e97243.

96. Nelson,E.A., Walker,S.R., Weisberg,E., Bar-Natan,M., Barrett,R.,
Gashin,L.B., Terrell,S., Klitgaard,J.L., Santo,L., Addorio,M.R.
et al. (2011) The STAT5 inhibitor pimozide decreases survival of
chronic myelogenous leukemia cells resistant to kinase inhibitors.
Blood, 117, 3421–3429.

97. Warsch,W., Kollmann,K., Eckelhart,E., Fajmann,S.,
Cerny-Reiterer,S., Holbl,A., Gleixner,K.V., Dworzak,M.,
Mayerhofer,M., Hoermann,G. et al. (2011) High STAT5 levels
mediate imatinib resistance and indicate disease progression in
chronic myeloid leukemia. Blood, 117, 3409–3420.

98. Drew,K., Lee,C., Huizar,R.L., Tu,F., Borgeson,B., McWhite,C.D.,
Ma,Y., Wallingford,J.B. and Marcotte,E.M. (2017) Integration of
over 9,000 mass spectrometry experiments builds a global map of
human protein complexes. Mol. Syst. Biol., 13, 932.

99. O’Neil,N.J., Bailey,M.L. and Hieter,P. (2017) Synthetic lethality and
cancer. Nat. Rev. Genet., 18, 613–623.

100. Hu,J.X., Thomas,C.E. and Brunak,S. (2016) Network biology
concepts in complex disease comorbidities. Nat. Rev. Genet., 17,
615–629.

101. Barabasi,A.L., Gulbahce,N. and Loscalzo,J. (2011) Network
medicine: a network-based approach to human disease. Nat. Rev.
Genet., 12, 56–68.

102. Medina-Franco,J.L., Giulianotti,M.A., Welmaker,G.S. and
Houghten,R.A. (2013) Shifting from the single to the multitarget
paradigm in drug discovery. Drug Discov. Today, 18, 495–501.

103. Pushpakom,S., Iorio,F., Eyers,P.A., Escott,K.J., Hopper,S.,
Wells,A., Doig,A., Guilliams,T., Latimer,J., McNamee,C. et al.
(2019) Drug repurposing: progress, challenges and
recommendations. Nat. Rev. Drug Discov., 18, 41–58.

104. Choong,M.L., Pecquet,C., Pendharkar,V., Diaconu,C.C., Yong,J.W.,
Tai,S.J., Wang,S.F., Defour,J.P., Sangthongpitag,K., Villeval,J.L.
et al. (2013) Combination treatment for myeloproliferative
neoplasms using JAK and pan-class I PI3K inhibitors. J. Cell. Mol.
Med., 17, 1397–1409.

105. Hou,H.A., Chou,W.C., Lin,L.I., Chen,C.Y., Tang,J.L., Tseng,M.H.,
Huang,C.F., Chiou,R.J., Lee,F.Y., Liu,M.C. et al. (2008)
Characterization of acute myeloid leukemia with PTPN11 mutation:
the mutation is closely associated with NPM1 mutation but inversely
related to FLT3/ITD. Leukemia, 22, 1075–1078.

106. Kiefer,J., Nasser,S., Graf,J., Kodira,C., Ginty,F., Newberg,L.,
Sood,A. and Berens,M.E. (2017) Asystematic approach toward gene
annotation of the hallmarks of cancer. In: Asystematic approach
toward gene annotation of the hallmarks of cancer. Cancer Res.,
Washington, DC. Philadelphia (PA), Vol. 77, p. 3589.

107. Kolde,R. (2019) pheatmap: Pretty Heatmaps.
https://cran.r-project.org/web/packages/pheatmap/index.html (5
September 2020, date last accessed).

https://www.cran.r-project.org/web/packages/pheatmap/index.html

