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Abstract: (1) Background: Bone metastasis is among diseases that frequently appear in breast,
lung and prostate cancer; the most popular imaging method of screening in metastasis is bone
scintigraphy and presents very high sensitivity (95%). In the context of image recognition, this work
investigates convolutional neural networks (CNNs), which are an efficient type of deep neural
networks, to sort out the diagnosis problem of bone metastasis on prostate cancer patients; (2) Methods:
As a deep learning model, CNN is able to extract the feature of an image and use this feature to classify
images. It is widely applied in medical image classification. This study is devoted to developing
a robust CNN model that efficiently and fast classifies bone scintigraphy images of patients suffering
from prostate cancer, by determining whether or not they develop metastasis of prostate cancer.
The retrospective study included 778 sequential male patients who underwent whole-body bone scans.
A nuclear medicine physician classified all the cases into three categories: (a) benign, (b) malignant
and (c) degenerative, which were used as gold standard; (3) Results: An efficient and fast CNN
architecture was built, based on CNN exploration performance, using whole body scintigraphy
images for bone metastasis diagnosis, achieving a high prediction accuracy. The results showed that
the method is sufficiently precise when it comes to differentiate a bone metastasis case from other
either degenerative changes or normal tissue cases (overall classification accuracy = 91.61% ± 2.46%).
The accuracy of prostate patient cases identification regarding normal, malignant and degenerative
changes was 91.3%, 94.7% and 88.6%, respectively. To strengthen the outcomes of this study the
authors further compared the best performing CNN method to other popular CNN architectures
for medical imaging, like ResNet50, VGG16, GoogleNet and MobileNet, as clearly reported in the
literature; and (4) Conclusions: The remarkable outcome of this study is the ability of the method
for an easier and more precise interpretation of whole-body images, with effects on the diagnosis
accuracy and decision making on the treatment to be applied.

Keywords: bone metastasis; prostate cancer; nuclear imaging; bone scintigraphy; deep learning;
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1. Introduction

Bone metastasis is one of the most frequent cancer complications which mainly emerge in patients
suffering from certain types of primary tumors, especially those arising in the breast, prostate and
lung [1,2] These types of cancer have great avidity for bone, causing painful and untreatable effects;
thus, an early diagnosis is a crucial factor for making treatment decisions and could as well have
a significant impact on the progress of the disease, affecting a patient’s quality of life. In the case of
prostate cancer diagnosis in men, the metastatic prostate cancer has a significant impact on the quality
of their life [3,4]. Lymph nodes and the bones are the sites where metastatic prostate cancer mainly
appears. This type of metastasis takes place when cancer cells get away from the tumor in the prostate
area and use the lymphatic system or the bloodstream to travel to other areas of a patient’s body [5].
In most men suffering from prostate cancer, bone metastasis mainly sites on the bones of the axial
skeleton [6].

Different modern imaging techniques have been used in clinical practice lately, for achieving rapid
diagnosis of bone metastases such as scintigraphy, positron emission tomography and whole-body
MRI [7–10]. Even though PET and PET/CT are the most efficient screening techniques for bone metastasis
in recent years, due to technological advancements in medical imaging systems, bone scintigraphy
(BS) remains the most common imaging method in nuclear medicine and is regarded as the golden
standard [11–13]. As it is reported in EANM guidelines [14], BS that uses single-photon emission
computed tomography (SPECT) imaging, is particularly important for the clinical diagnosis of
metastatic cancer, both in men and women [1].

To date, as regards bone scans and other diagnostic images, medical interpretation has been
typically conducted by the interpreter who visually assesses the accumulation of a radiopharmaceutical,
which has been given to patients. Because this pattern recognition task is based on the experience of the
interpreter, computer aided diagnosis (CAD) systems have been introduced to eliminate any possible
subjectivity. Their mission is to consider all user-defined criteria for scintigraphy data classification,
as well as define a new model for image interpretation purposes.

For the development of CAD systems in medical image analysis domain, machine learning and
especially deep learning algorithms have been investigated and implemented, due to their remarkable
applicability in diagnostic medical images interpretation [15–18]. In particular, deep learning has shown
exceptional performance in visual object recognition, detection and classification, thus, the development
of deep learning tools would be so helpful for nuclear physicians, as these tools could enhance the
accuracy of BS [19–21].

The contribution of deep learning in medical imaging is attained through the use of convolutional
neural networks (CNNs) [16,22,23]. The learning process is an advantageous feature of CNNs as
they can learn useful representations of images and other structured data. Until the introduction of
CNNs, the task of feature extraction has been accomplished by machine learning models or by hand,
whereas medical imaging now uses features learned directly from the data. Judging from the existence
of certain features in their structure, CNNs are proven to be powerful deep learning models in the
image analysis field [15,16,23,24]. Deriving from its name, a typical CNN comprises one or more filters
(i.e., convolutional layers), accompanied by two more layers (an aggregation and pooling layer) that are
used for classification purposes [25]. Since a CNN has similar characteristics with a standard artificial
neural network (ANN), it uses gradient descent and backpropagation for training tasks, whereas it
contains additionally pooling layers along with layers of convolutions. The vector that is sited at the
end of the network architecture can deliver the final outputs [17,18,26].

In medical image analysis, the most popular CNNs methods are the following: AlexNet
(2012) [27,28], ZFNet (2013) [29], VGGNet16 (2014) [30,31], GoogleNet [32], ResNet (2015) [33],
DenseNet (2017) [34]. The advantageous features of CNNs have a significant impact on their
performance, making them so far, the most efficient methods for medical image analysis
and classification.
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Nowadays, the main challenge in BS, as one of the most sensitive methods for imaging in nuclear
medicine, is to build an algorithm that automatically identifies whether a patient is suffering from bone
metastasis or not, just by looking at whole body scans. The algorithm has to be extremely accurate
because the lives of people are at stake. In this direction, CAD systems have been proposed in the
domain of nuclear medical imaging analysis, offering promising results. The first CAD system for
BS has been introduced in 1997 in [35]. It was semi-automated and allowed quantification of bone
metastases from whole body scintigraphy through an image segmentation method, that was proposed
in [35]. Fully automated CAD systems were later examined by Sajn et al. [36], who contributed in
the diagnostics field by introducing a machine learning-based expert system. Among the proposed
CAD systems, there are few already in the market as part of software packages, such as Exini bone
and Bonenavi.

Based on the advanced characteristics that deep convolutional networks have, CNNs have been
recently applied in nuclear medicine mainly for classification and segmentation tasks showing some
promising preliminary results, as presented in [37,38]. Considering bone metastasis diagnosis, CNNs
were initially used in BS in nuclear medicine for image analysis and classification using the Exini
software [37]. The dataset was delivered by Exini Diagnostics AB and contained image patches of
hotpots that had been previously detected. The hotspots in the spine area were the only ones that
were deployed to train the CNN, due to lack of time and the ease to classify them. Then, the BSI
value was computed after the examined skeleton was fragmented from the background in both the
anterior and posterior views. The overall accuracy of the produced results of the examined thesis [37]
is assessed as 0.875 for the validation set and 0.89 for the testing set. The second study [38] deals
with the exploration of CNNs for classification of prostate cancer metastases using bone scan images,
having a significant potential on classifying bone scan images obtained by Exini Diagnostics AB
too, including BSI. It entails two tasks, namely: classifying anterior/posterior pose and classifying
metastatic/nonmetastatic hotspots. The trained models produce highly accurate results in both tasks
and outperformed other methods for all tested body regions when classifying metastatic/nonmetastatic
hotspots. The evaluation indicator of the area under receiver operating characteristic (ROC) score was
obtained equal to 0.9739, which is significantly higher than the respective ROC of 0.9352, obtained by
methods reported in the literature for the same test set.

Focusing on PET and PET–CT imaging [39–41], recent studies have shown that a deep learning
based system performs as well as nuclear physicians do in standalone mode and improves physicians’
performance in support mode. Although BS is extremely important for the diagnosis of metastatic
cancer, there is currently no research study regarding the diagnosis of prostate cancer metastasis from
whole body scan images that applies efficient CNNs. A description on previous related works in
nuclear medicine imaging, regarding the application of convolutional neural networks, is provided in
Section 2.

This study is devoted to the identification of suitable methods for BS image processing (i) to
diagnose bone metastasis disease by investigating efficient CNN based methods and (ii) to assess the
method performances, based on whole body images. After a thorough CNN investigation regarding
the architecture and configuration of hyperparameters, the authors ended up to the proposal of
a robust CNN which could identify the right category of bone metastasis. The classification task is
a three-class problem that classifies images in healthy, malignant, as well as healthy images with
degenerative changes. A thorough comparative analysis between the proposed CNN method based on
grayscale mode and a number of popular CNN architectures was conducted to validate the proposed
classification methodology. The advanced structures of CNNs, like ResNet50, VGG16, Inception V3,
Xception and MobileNet, have been previously proposed for medical image classification [16,42].
In this work, we apply these popular and efficient CNN algorithms in our dataset, making the
necessary parameterization and regularization. Experimental results reveal that the proposed method
achieves superior performance in BS and outperforms other well-known methods of CNNs. In addition,
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the proposed method performs as a simple and fast classification method with optimum performance
and low computational time.

This study presents innovative ideas and mainly contributes to the following issues:

• The development of a robust CNN algorithm which can automatically identify metastatic patients
of prostate cancer by examining whole body scans;

• The efficacy of grayscale mode that enhances the classification accuracy compared to other
CNN models;

• A comparative analysis of common image classification CNN architectures, like ResNet50, VGG16,
GoogleNet and MobileNet;

• The establishment of future research directions which will extend the applicability of the method
to other types of scintigraphy.

2. Materials and Methods

2.1. Prostate Cancer Patient Images

All procedures in this study were in accordance with the Declaration of Helsinki. The retrospective
review that was performed, comprised 908 patients’ whole-body scintigraphy images from 817 different
male patients who visited the Nuclear Medicine Department of the Diagnostic Medical Center
“Diagnostiko-Iatriki A.E.”, Larissa, Greece, between June 2013 and June 2018. The selected images
came from prostate cancer patients with suspected bone metastatic disease, who had undergone
whole-body scintigraphy.

Due to the fact that whole body scan images contain some artifacts and non-related to bone
uptake, such as urine contamination and medical accessories (i.e., urinary catheters) [43], as well
as the frequent visible site of radiopharmaceutical injection [25], it is necessary to remove these
artifacts and non-osseous uptake from the original images by following a preprocessing approach.
This method was applied by a nuclear medicine physician before the use of dataset in the proposed
classification approach.

The initial dataset of 908 images contained not only bone metastasis present and absent patient’s
cases suffering from prostate cancer, but also degenerative lesions. Due to this reason and for the
purposes of this research study to cope with a three-class classification problem, a preselection process
concerning images of healthy patients, patients with degenerative lesions and malignant patients was
accomplished. In specific, 778 out of 908 consecutive whole-body scintigraphy images of men from
817 different patients were selected and diagnosed accordingly by a nuclear medicine specialist with
15 years’ experience in bone scan interpretation. Out of 778 bone scan images, 328 bone scans concern
men patients with bone metastasis, 271 benign cases that include degenerative changes and 179 normal
male patients without bone metastasis. A nuclear medicine physician classified all these cases into
three categories: (1) normal (metastasis absent), (2) degenerative (no metastasis, but image includes
degenerative lesions/changes) and (3) malignant (metastasis present), which were used as golden
standard (see Figure 1). The metastatic images were confirmed after further examinations performed
by CT/MRI.

A Siemens gamma camera Symbia S series SPECT System (by a dedicated workstation and
software Syngo VE32B) with two heads with low energy high-resolution (LEHR) collimators was used
for patient scanning. In total, 778 planar bone scan images from patients with known P–Ca were
retrospectively reviewed. A whole-body field was used to record anterior and posterior views digitally
with a resolution of 1024 × 256 pixels.
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2.2. Methodology

In this research study, an approach based on CNN model, as a common method in medical image
analysis, is suggested for a three-class bone metastasis classification. The three-class classification
problem regards bone metastasis presence, absence and cases that are linked to degenerative changes
in 778 samples of male patients suffering from prostate cancer and consists of three phases, namely:
preprocessing, network design and testing/evaluation. Figure 2 demonstrates the whole process for
the examined dataset of 778 patients classifying them into three categories, (i) malignant (with bone
metastasis presence), (ii) healthy (no bone metastasis) and (iii) degenerative (healthy, presenting
degenerative changes).

Diagnostics 2020, 10, x 5 of 16 

 

A Siemens gamma camera Symbia S series SPECT System (by a dedicated workstation and 
software Syngo VE32B) with two heads with low energy high-resolution (LEHR) collimators was 
used for patient scanning. In total, 778 planar bone scan images from patients with known P–Ca were 
retrospectively reviewed. A whole-body field was used to record anterior and posterior views 
digitally with a resolution of 1024 × 256 pixels. 

2.2. Methodology 

In this research study, an approach based on CNN model, as a common method in medical 
image analysis, is suggested for a three-class bone metastasis classification. The three-class 
classification problem regards bone metastasis presence, absence and cases that are linked to 
degenerative changes in 778 samples of male patients suffering from prostate cancer and consists of 
three phases, namely: preprocessing, network design and testing/evaluation. Figure 2 demonstrates 
the whole process for the examined dataset of 778 patients classifying them into three categories, (i) 
malignant (with bone metastasis presence), (ii) healthy (no bone metastasis) and (iii) degenerative 
(healthy, presenting degenerative changes). 

 
Figure 2. Three stages of the proposed methodology (preprocessing, network design and 
testing/evaluation) for bone metastasis classification using whole body scans. 

2.2.1. Preprocessing Stage 

In this stage, images given by a nuclear medicine doctor are first loaded in RGB mode and stored 
in a PC memory. They are in RGB mode by default and can be transformed to grayscale mode only 
if requested. Depending on their class, they are given the prefix 1 (one), 2 (two) or 3 (three) as an 
output, determining whether they are malignant, degenerative or healthy, respectively. Then, data 
normalization follows, which is a useful and necessary method in a machine–learning process that 
rescales the data values within 0 and 1. This technique makes the dataset scalable and discards 
possible outliers that usually confuse the algorithm. In order to avoid choosing wrong samples for 
training and testing, the shuffling method comes to give a random order to data. In the case of small 
number of data, data augmentation takes over and applies the techniques of rescale, rotation range, 
zoom range and flip in order to create variant images without generating new ones and to avoid 
overfitting, as well. Data augmentation is used only on the training phase that follows next. Finally, 
the original dataset is split in three segmented parts: testing (15%) and the rest (85%) is split in 80% 
for training and 20% for validation. The training process gives to the model the opportunity to learn 

Figure 2. Three stages of the proposed methodology (preprocessing, network design and
testing/evaluation) for bone metastasis classification using whole body scans.



Diagnostics 2020, 10, 532 6 of 17

2.2.1. Preprocessing Stage

In this stage, images given by a nuclear medicine doctor are first loaded in RGB mode and
stored in a PC memory. They are in RGB mode by default and can be transformed to grayscale
mode only if requested. Depending on their class, they are given the prefix 1 (one), 2 (two)
or 3 (three) as an output, determining whether they are malignant, degenerative or healthy, respectively.
Then, data normalization follows, which is a useful and necessary method in a machine–learning
process that rescales the data values within 0 and 1. This technique makes the dataset scalable and
discards possible outliers that usually confuse the algorithm. In order to avoid choosing wrong samples
for training and testing, the shuffling method comes to give a random order to data. In the case of
small number of data, data augmentation takes over and applies the techniques of rescale, rotation
range, zoom range and flip in order to create variant images without generating new ones and to
avoid overfitting, as well. Data augmentation is used only on the training phase that follows next.
Finally, the original dataset is split in three segmented parts: testing (15%) and the rest (85%) is split
in 80% for training and 20% for validation. The training process gives to the model the opportunity
to learn patterns, whereas validation is used for normalizing weights. During the testing process,
the model is assessed in terms of accuracy and loss.

2.2.2. Network Design Stage

In our effort to determine which is the most proper architecture for the convolutional neural
network (CNN), considering image classification, we first need to perform an exploration process,
where the most significant parameters need to be defined. The experimentation and trial phase can
help the researchers to explore and then choose the most effective network architecture with respect to
the number and type of convolutional layers, the number of nodes and pooling layers, filters, the drop
rate and the batch size, the number of dense nodes.

Next, a number of functions are defined through bibliographic research. The activation function,
which defines the output of the layer and the loss function, which is used for the network’s weights
optimization, are the main functions which are involved in the design of the CNN model. The main
features of the CNN and its implementation are adequately described in Section 3. The training process
refers to the development of a function that describes the desired relation, based on the training
data. The validation dataset is next used in the validation process, which aims at error minimization
and reveals the prediction efficiency of the proposed method. In addition, it is important for the
selected architecture to minimize the training and validation losses in order to stop the validation
process and finalize the model.

2.2.3. Evaluation/Testing Stage

The testing data—which were initially split and completely unknown to the model—are used
during the testing process. Predictions on each image class are then carried out by the classifier and
finally a comparison between the calculated predicted class and the true class is made. In the next step,
common performance metrics, such as the testing accuracy, precision, recall, F1-score, sensitivity and
specificity of the model are computed to evaluate the classifier [16,22,44]. An error/confusion matrix is
also employed to further evaluate the performance of the model and check if it is biased over one or
the other class.

2.3. Proposed CNN Architecture for Bone Metastasis Classification

In this research study, a CNN architecture is proposed to precisely identify bone metastasis from
whole-body scans of men suffering from prostate cancer. The developed CNN will prove its capability
to provide high accuracy with a simple and fast architecture for whole-body image classification.
Through an extensive CNN exploration process, we conducted experiments with different values for
our parameters, like pixels, epochs, drop rate, batch size, number of nodes and layers [26]. In common
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classic feature extraction techniques, a manual feature selection was required to extract and utilize
the appropriate feature. CNNs, resembling in type ANNs, can perform feature extraction techniques
automatically by applying multiple filters on the input images and then, through an advanced learning
process, they select those that are the most proper for images classification.

In this context, a deep-layer network with 4 convolutional-pooling layers, 2 dense layers followed
by a dropout layer, as well as a final output layer with three nodes, is built (see Figure 3).Diagnostics 2020, 10, x 7 of 16 
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bone scintigraphy (BS) images.

The images enter the network at various pixels dimensions, starting from 200 × 200 pixels to
400 × 400 pixels. Following the structure of the CNN, the first (input) convolutional layer consists of
3 × 3 filters (kernels) of size 3 × 3, always followed by a max-pooling layer of size 2 × 2 and a dropout
layer with 0.2 as dropout rate. The first convolutional layer has 16 filters and each next convolutional
layer doubles the numbers of filters, just like the following max-pooling layers. Next, a flattening
operation transforms the 2-dimensional matrices to 1-dimensional arrays, in order to run through the
hidden fully connected (dense) layer with 32 nodes. To avoid overfitting, a dropout layer was suggested
to drop randomly 20% of the learned weights. The final layer is a three-node layer (output layer).

In the suggested CNN architecture, the ReLU function is used in all convolutional and fully
connected (dense) layers, whereas the categorical cross-entropy function is the final activation function
used in output nodes. Moreover, two performance metrics, concerning accuracy and loss, are used.
As regards loss, the categorical cross-entropy function is calculated with an ADAM optimizer, which is
an adaptive learning rate optimization algorithm [45]. For model training, the ImageDataGenerator class
from Keras was used, offering augmentations on images like rotations, shifting, zoom, flips and more.

2.4. Availability of Data

Data are available from the nuclear medicine doctor N.P. upon reasonable request.

3. Results

This section reports the findings of this research study based upon the results produced of the
methodology applied. For the classification accuracy calculations, each process was repeated 10 times.

3.1. Three-Class Classification Problem Using CNN in Grayscale Mode

Certain hardware and software environments were used to implement the experiments,
according to the aim of this work. The experiments were performed in a collaborative environment,
called Google Colab [46], which is a free Jupyter notebook environment in the cloud. The main
reason for selecting the cloud environment of Google Colab is that it supports free GPU acceleration.
Additionally, the frameworks Keras 2.0.2 and TensorFlow 2.0.0. were used.
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The software that was used in this study also included OpenCV, which was used for loading
and manipulating images, Glob, for reading filenames from a folder, Matplotlib, for plot visualizations
and finally, Numpy, for all mathematical and array operations. Moreover, Python was used for coding,
Keras (with Tensorflow [47]) for programming the CNN whereas, data normalization, data splitting,
confusion matrices and classification reports were carried out with Sci-Kit Learn. The computations
ranged between 6′ to 8′ per training (epoch) for RGB images (256 × 256 × 3) and 3′ to 4′ per training
(epoch) for grayscale images depending on the input.

Following the steps described in Section 2.2, the images are initially loaded in grayscale or RGB
mode. Then, normalization, shuffling and data augmentation take place while the training phase
follows next. Dataset is next split into training, validation and testing samples.

A meticulous CNN exploration process was accomplished, in which experiments with various
convolutional layers, drop rates, epochs, number of dense nodes, pixel sizes and batch sizes were
conducted. Different values for image pixel sizes were also examined, such as 200 × 200 × 3,
256 × 256 × 3, 300 × 300 × 3, 350 × 350 × 3, 400 × 400 × 3, as well as various values for batch sizes,
such as 8, 16, 32 and 64 were investigated. In addition, variant drop rate values were studied,
for example 0.2, 0.4, 0.7 and 0.9, as well as a divergent number of dense nodes, like 16, 32, 64, 128, 256
and 512 was explored. The number of epochs that was tested, ranged from 200 up to 700. The number
of convolutional and pooling layers was also investigated, whereas early stopping criterion was
considered without producing promising classification accuracies.

It should be pointed out that authors performed many experiments with several convolutional
layers, epochs, pixel sizes, drop rates, dense nodes and batch sizes to find the optimum values of
all parameters. After a thorough CNN exploration analysis, the best CNN configuration was the
following: a CNN with 4 convolutional layers, starting with 16 filters for the first layer, and for each
convolutional layer that comes next, the number of filters is doubled (16 -> 32 -> 64 -> 128). The same
philosophy is followed for the max-pooling layers that come next. All filters have the dimensions of
3 × 3. This setup is shown in Figure 3, including the best performance parameters.

Table 1 gathers the performance analysis and results for the CNN models with the
following specifications: 4 convolutional layers (16, 32, 64, 128), epochs = 300, dropout = 0.2,
pixel size = 400 × 400 × 3, dense nodes = 32–16 and different batch sizes (in Google Colab [46]) for
10 runs. Table 2 presents the 5 runs of the best CNN architecture, entailing 4 convolutional layers
(16, 32, 64, 128), epochs = 300, dropout = 0.2, pixel size = 400 × 400 × 3, batch size = 32 examining
various dense nodes. It is obvious that the dense 32–16 provides the highest classification accuracies.

Table 1. CNN model with 4 conv (16, 32, 64, 128), epochs = 300, dropout = 0.2, pixel size = 400 × 400 × 3,
dense nodes= 32–16 and different batch sizes. (AC—accuracy validation; LV—loss validation;
AT—accuracy testing; LT—loss testing).

Batch Size = 8 Batch Size = 16 Batch Size = 32

AV LV AT LT AV LV AT LT AV LV AT LT

Run 1 81.25 0.42 85.72 0.34 92.19 0.3 82.14 0.59 86.16 0.21 89.58 0.13
Run 2 92.97 0.17 86.61 0.53 91.41 0.14 92.86 0.26 92.97 0.23 92.71 0.21
Run 3 83.59 0.41 95.53 0.19 91.41 1.88 86.61 0.07 89.06 0.25 91.07 0.29
Run 4 88.28 0.3 88.39 0.22 77.34 0.38 83.93 0.14 89.84 0.41 96.88 0.09
Run 5 82.03 0.34 89.28 0.33 89.84 0.13 88.39 0.29 91.41 0.17 91.67 0.37
Run 6 87.5 0.36 89.29 0.27 86.72 0.32 83.04 0.21 89.06 0.10 92.71 0.20
Run 7 84.37 0.499 91.07 0.34 86.72 0.39 79.46 0.45 83.59 0.24 90.63 0.19
Run 8 90.62 0.24 91.96 0.35 79.69 0.06 89.29 0.43 90.63 0.38 90.63 0.58
Run 9 92.19 0.27 88.39 0.4 86.72 0.41 86.61 0.12 90.63 0.97 92.71 0.17

Run 10 89.84 0.25 88.39 0.65 89.84 0.3 86.61 0.59 93.75 0.16 87.50 0.24
Average 87.26 0.325 89.46 0.36 87.19 0.43 85.89 0.32 89.71 0.31 91.61 0.25
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Table 2. CNN model with 4 conv (16, 32, 64, 128), epochs = 300, dropout = 0.2, pixel size=400 × 400
× 3, dense nodes = 32–16 and different batch sizes; AC—accuracy validation; LV—loss validation;
AT—accuracy testing; LT—loss testing.

Dense
Nodes 32–16 64–32 128–64 256–128

AV LV AT LT AV LV AT LT AV LV AT LT AV LV AT LT

Run 1 86.16 0.21 89.58 0.13 85.16 0.21 89.58 0.13 88.28 0.15 86.46 0.48 82.81 0.42 83.33 0.24
Run 2 92.97 0.23 92.71 0.21 86.72 0.34 84.38 0.58 82.81 0.30 83.33 0.38 86.72 0.45 89.58 0.37
Run 3 89.06 0.25 91.07 0.29 85.94 0.28 89.58 0.30 88.28 0.32 88.54 0.17 89.84 0.12 91.67 0.38
Run 4 89.84 0.41 96.88 0.09 92.97 0.15 89.58 0.27 92.97 1.58 86.46 0.38 93.75 0.05 92.71 0.06
Run 5 91.41 0.17 91.67 0.37 82.03 0.26 87.50 0.19 89.84 0.50 84.38 0.47 90.63 0.11 84.38 0.34
AVE 89.89 0.25 92.38 0.22 86.56 0.24 88.12 0.29 88.44 0.57 85.83 0.38 88.75 0.23 88.33 0.28

Following the exploration analysis, the performance analysis and results produced in Google
Colab [46], for the suggested CNN model of 4 convolutional layers (16, 32, 64, 128), epochs = 300,
pixel size = 400 × 4003, dense nodes = 32–16 for different dropouts, showed that the CNN is not able
to perform properly for dropouts > 0.4. Figure 4 presents the average accuracies for the proposed
grayscale CNN architecture, containing various pixel sizes. Figure 5 represents the (a) accuracy
and (b) loss precision curves for the best grayscale CNN model.
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Figure 4. Grayscale CNN architecture with 4 conv (16, 32, 64, 128), epochs = 300, dropout = 0.2,
dense = 32–16, dropout = 0.2 and batch size = 32, for different pixel sizes.
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3.2. Three-Class Classification Problem Using CNN in RGB Mode

In the current section, the same CNN exploration process for RGB mode as in grayscale mode,
was followed. The network parameters that were considered as the best, were: 4 convolutional
layers (16–32–64–128), dense = 256–128, batch size = 16, drop-rate = 0.2, pixel size 256 × 256 × 3
and epochs = 500 (see Table 3).

Table 3. CNN architecture for RGB mode (best RGB-CNN).

Layers Output Size Description

Batch Size: 16, Epochs: 500, Pixel Size 256 × 256 × 3, Dropout: 0.2

Layer 1

convolution (none, 254, 254, 16) filters: 16, kernel size: 3 × 3, input size:
256 × 256 × 3, activation: ReLU

pooling (none, 127, 127, 16) 2 × 2 max pooling

dropout (none, 127, 127, 16) drop rate = 0.2

Layer 2

convolution (none, 125, 125, 32) filters: 32, kernel size: 3 × 3 activation: ReLU

pooling (none, 62, 62, 32) 2 × 2 max pooling

dropout (none, 62, 62, 32) drop rate = 0.2

Layer 3

convolution (none, 60, 60, 64) filters: 64, kernel size: 3 × 3, activation: ReLU

pooling (none, 30, 30, 64) 2 × 2 max pooling

dropout (none, 30, 30, 64) drop rate = 0.2

Layer 4

convolution (none, 28, 28, 128) filters: 128, kernel size: 3 × 3, activation: ReLU

pooling (none, 14, 14, 128) 2 × 2 max pooling

dropout (none, 14, 14, 128) drop rate = 0.2

flatten_1 (flatten) (none, 25, 088)

dense_1 (dense) (none, 256) 256 nodes

dropout_18 (dropout) (none, 256) drop rate = 0.2

dense_2 (dense) (none, 128) 128 nodes

dense_3 (dense) (none, 3) 3 nodes, activation Sigmoid

A series of indicative results from the conducted exploration analysis for best network performance
regarding the problem of bone metastasis classification, when RGB mode images are used, is gathered
in Table 4. Figure 6 illustrates the precision curves for the best CNN in RGB mode.
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Table 4. CNN model with 4 conv (16, 32, 64, 128), epochs = 500, dropout = 0.2, pixel size = 256 × 256 × 3,
dense nodes = 256–128 and different batch sizes. (AC—accuracy validation; LV—loss validation;
AT—accuracy testing; LT—loss testing).

Batch Size = 8 Batch Size = 16 Batch Size = 32

AV LV AT LT AV LV AT LT AV LV AT LT

Run 1 81.25 0.42 85.72 0.34 91.41 0.23 91.07 0.2 86.72 0.29 92.71 0.18
Run 2 92.97 0.17 86.61 0.53 94.53 0.15 91.96 0.25 93.75 0.27 92.71 0.22
Run 3 83.59 0.41 95.53 0.19 92.19 0.12 93.75 0.15 91.41 0.27 83.30 0.37
Run 4 88.28 0.3 88.39 0.22 91.41 0.22 91.07 0.24 88.28 0.27 92.71 0.21
Run 5 82.03 0.34 89.28 0.33 94.53 0.167 90.17 0.253 90.62 0.25 92.71 0.21
Run 6 87.5 0.36 89.29 0.27 86.71 0.328 89.28 0.393 87.50 0.44 93.75 0.27
Run 7 84.37 0.499 91.07 0.34 90.62 0.22 91.07 0.19 92.97 0.24 92.71 0.19
Run 8 90.62 0.24 91.96 0.35 95.31 0.23 93.75 0.139 89.06 0.41 87.50 0.30
Run 9 92.19 0.27 88.39 0.4 92.96 0.217 92.85 0.16 85.94 0.37 89.58 0.36

Run 10 89.84 0.25 88.39 0.65 85.93 0.45 89.28 0.22 87.50 0.46 82.29 0.39
Average 87.26 0.325 89.46 0.36 91.56 0.23 91.42 0.22 89.38 0.33 89.99 0.27
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3.3. Comparison with State of the Art CNNs

To further investigate the performance of the proposed CNN architecture, an extensive comparative
analysis between state of the art CNNs and our best model, was performed. Well-known CNN
architectures, such as (1) ResNet50 [33], (2) VGG16 [30,31], (3) Inception V3 [48], (4) Xception [49]
and (5) MobileNet [50] were used and are described as follows:

(1) ResNet50 is a 50-weight layer deep version of ResNet (residual neural network), with 152 layers
based on “network-in-network” micro-architectures [33]. ResNet50 has less parameters than the
VGG network, demonstrating that extremely deep networks can be trained using standard SGD
(and a reasonable initialization function) through the use of residual modules.

(2) VGG16 [31] is an extended version of visual geometry group, (VGG) as it contains 16 weight
layers within the architecture. VGGs are usually constructed by using 3 × 3 convolutional layers,
which are stacked on top of each other. For the examined problem, the vanilla implementation of
VGG16 was not able to produce a satisfactory accuracy (<70%), thus authors investigated a slight
fine-tuning on the number of its trainable layers. Thus, after an exploration process, it emerged that
by retraining the weights of the last five layers, the model significantly improved its performance,
reaching an acceptable classification accuracy up to 89%.

(3) Inception V3 [48], which is Inception’s third installment, includes new factorization ideas.
It is a 48-layers deep network which incorporates RMSProp optimizer and computes 1 × 1, 3 × 3
and 5 × 5 convolutions within the same module of the network. Its original architecture is GoogleNet.
Szegedy et al. proposed an updated version of the architecture of Inception V3, which was included
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in Keras’ inception module [48]. This updated version is capable to further boost the classification
accuracy of ImageNet.

(4) Xception, which is an extension of the Inception’s architecture, replaces the standard Inception’s
modules with depth-wise separable convolutions [49].

(5) MobileNet convolutes each channel separately instead of combining and flattening them all,
with the use of depth-wise separable convolutions [50]. Its architecture combines convolutional layers,
depth-wise and point-wise layers to a total number of 30.

After performing an extensive exploration of all the provided architectures of popular CNNs,
authors defined the respective parameters as follows:

• Best gray CNN: pixel size (400 × 400 × 3), batch size = 32, dropout = 0.2, 16–32–64–128 dense
nodes 32, 16, epochs = 300 (average run time = 938 s);

• Best RGB CNN: pixel size (256 × 256 × 3), batch size = 16, dropout = 0.2, conv 16–32–64–128 dense
nodes 256, 128, epochs = 500 (average run time = 3348 s);

• VGG16: pixel size (250 × 250 × 3), batch size = 32, dropout = 0.2, flatten, dense nodes 512 × 512,
epochs = 200 (average run time = 2786 s);

• ResNet50: pixel size (250 × 250 × 3), batch size = 64, dropout = 0.2, Global Average pooling,
dense nodes 1024 × 1024, epochs = 200 (average run time = 1853 s);

• MobileNet: pixel size (300 × 300 × 3), batch size = 32, dropout = 0.5, GlobalAveragepooling2D,
epochs = 200 (Average Run Tim e = 2361 s);

• Inception V3: pixel size (250 × 250 × 3), batch size = 32, dropout = 0.7, GlobalAveragepooling2D
dense nodes = 1500 × 1500, epochs = 200 (average run time = 2634 s);

• Xception: pixel size (300× 300× 3), batch size = 16, dropout = 0.2, flatten, dense nodes = 512 × 512,
epochs = 200 (average run time = 3083 s).

Figure 7a illustrates the classification accuracy for validation and testing for all the examined CNNs,
whereas Figure 7b depicts the corresponding loss for validation and testing for all the examined CNNs.
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Figure 7. (a) Comparison of the classification accuracies for all performed CNNs; (b) comparison of
loss (validation and testing) for all performed CNNs.

In what follows, Table 5 gathers the results of state-of-the-art CNN models, concerning the
malignant disease class performance which are straightforward compared with our best performed
CNN configuration, proposed in this research work.
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Table 5. Malignant disease class performance comparison of different methods.

Network Accuracy (Testing) Precision Recall F1-Score Sensitivity Specificity

Proposed CNN 91.61 0.948 0.928 0.938 0.927 0.960
RGB CNN 91.42 0.935 0.946 0.941 0.946 0.942
ResNet50 90.74 0.904 0.972 0.934 0.971 0.921
VGG16 90.83 0.952 0.950 0.952 0.949 0.960

MobileNet 91.02 0.946 0.941 0.944 0.940 0.952
Inception V3 88.96 0.902 0.922 0.911 0.920 0.909

Xception 91.54 0.964 0.932 0.946 0.937 0.968

It is important to highlight that authors have conducted an exploratory analysis for all benchmark
CNNs for different dropouts, while they have paid special attention to avoid overfitting [26] by
reducing the number of weights (in order to find a network complexity, appropriate for the problem).
Thus, not only did they select the best performing model for each CNN architecture in terms of accuracy,
but at the same time, the best CNN that avoids overfitting in 10 runs.

4. Discussion of Results

The problem of diagnosis of bone metastasis in prostate cancer patients has been tackled with the
use of CNN algorithms, which are considered applicable and powerful methods for detecting complex
visual patterns in the field of medical image analysis. In the current work, a total of 778 images was
acquired, that includes almost the same numbers of healthy, degenerative and malignant cases from
metastatic prostate cancer patients. Several CNN architectures were tested, leading to the one that
performed optimum under all hyperparameter selection cases and regularization methods, emerging
classification accuracies ranging from 89.15% up to 94.07%. Authors selected the grayscale CNN
model with four convolutional layers, batch size = 32, dropout = 0.2 and 32–16 dense nodes as the
simplest, fastest and most optimum performed CNN, with respect to testing accuracy and loss, as well
as performing time.

As can be seen in the relevant literature, the ML-based models underfit if the accuracy on the
validation set is higher than the accuracy on the training set [26]. The authors of this study have
carefully monitored each training process and made sure the model does not underfit (and does not
overfit, too). To mitigate the issue of the small dataset, we employed a data augmentation method
that performs various pseudorandom transformations on the images of the existing dataset, in order
to create more images that can be used for training and validation. The transformations consist
of rotations, width and height shifts, flips, zooms and shears on images [26]. We applied as many
transformations as possible, without affecting the key characteristics which are used to classify the
original image. Normally, underfit models perform poorly in test sets, which is not the case in this study.

After a thorough exploration analysis, grayscale CNN provides equivalent results with the best
RGB-CNN counterpart concerning classification accuracy. It is demonstrated in [51] that grayscale
images can add value to such studies, despite having similar or lower performance than their RGB
counterparts. The reason behind this, is that by lacking color information, the learning process focuses
on other types of characteristics that can be generalized better. Thus, grayscale images can build
classifiers with lower computation run time, higher accuracy and a more robust behavior, overall.

For a further discussion of the results produced, the classification performance of the proposed
model is compared (even indirectly) with that of other CNNs, which were reported in the literature
and have been already applied in the particular problem of bone metastasis classification in nuclear
medicine. Due to the fact that none of these research studies provide publicly available data, it is not
feasible to accomplish a straightforward comparison with them.

Previous works that are highly related to this research study are those carried out in [37]
and [38] regarding bone metastasis classification. Both works employ CNNs for classification of
metastatic/nonmetastatic hotspots, providing classification accuracies up to 89%. There are more
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previous works in this domain but are devoted to PET or PET/CT imaging, which is a different imaging
modality. According to the related work in bone metastasis diagnosis in prostate cancer patients from
whole body scintigraphy images, there is inadequate formation regarding classification accuracy of BS
when CNN systems are considered.

To highlight the classification performance of the proposed CNN method, authors performed
a straightforward comparison of the accuracy and several other evaluation metrics like precision, recall,
sensitivity, specificity and F1 score indicators of our model with those of other state-of-the-art CNNs,
commonly used for image classification problems. From the results produced, including those listed in
Table 5, which concern the malignant disease class performance, it arises that the proposed algorithm
exhibits better or similar performance to other well-known CNN architectures, applied in the specific
problem. This study validates the premise that CNNs are algorithms that can offer high accuracy in
medical image classification-based problems and can be directly applied on medical imaging where
the automatic identification of diseases is crucial for the patients.

The following text outlines the main advantages of the proposed CNN architecture in grayscale
mode according to the results thoroughly presented in Section 3. More precisely, gray–CNN:

(1) Can train model efficiently in a small dataset: Regardless the relevant literature, in which CNN
can work properly and effectively only when large datasets of medical images are available, in this
nuclear medical image analysis problem where the dataset is small, the proposed gray–CNN model
is proven that it can be trained efficiently too. Actually, it does not need network pre-training with
ImageNet dataset. On the other hand, the well-known CNN methods use the ImageNet dataset which
contains 1.4 million images with 1000 classes to perform model pre-training.

(2) Avoids overfitting: A CNN exploratory analysis for the proposed CNN architectures was
conducted, that employed or tested to a certain degree, the three most used techniques for regularization,
such as reducing the number of weights (to find a network complexity appropriate for the problem),
adding constraints to their values (known as weight decay) and modifying dropout (to prevent complex
co-adaptations among weights [25]). In this research work, these three methods were accordingly
exploited to discover optimally performing networks that generalize well to unseen input examples.

(3) Reduces architecture complexity: gray-CNN that comes with a simpler architecture exhibits
better and much faster performance than other well-known CNN architectures in the field of medical
image analysis. In addition, both gray and RGB CNN structures operate with less running time, due to
their reduced architectural complexity.

The main outcomes of this study can be summarized as follows:

• The proposed CNN models appear to have significant potential since they exhibit better
performance with less running time and simpler architecture than other well-known CNN
architectures, considering the case of bone metastasis classification of bone scintigraphy images;

• The proposed bone-scan CNN performs efficiently, despite the fact that it was trained on a small
number of images;

• Even though Xception emerges similar classification accuracy, Xception performs with higher loss
(both in validation and testing) and high computational time.

Some potential limitations of this research study include: (i) the use of a small dataset, since most
of the notable accomplishments of deep learning are typically based on very large amounts of data and
(ii) no explanation on the decisions is provided. These limitations will be tackled in our future work as
highlighted in the last section.

5. Conclusions and Future Directions

To sum up, this is the first research study which fully explores the advantageous capabilities of
CNNs for bone metastasis diagnosis in prostate cancer patients, using bone scans. This work also
proposes a simpler, faster and more accurate set of CNN networks for classification of bone metastasis
than those found on the existing literature and other state-of-the-art CNNs in medical image analysis.
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Future work is oriented in three different directions: (i) to perform a further investigation
of the proposed architecture using more images from prostate cancer patients as well as patients
suffering from other types of metastatic cancer, like breast, kidney, lung or thyroid cancer. This will
demonstrate the generalization capabilities of the proposed method, (ii) to offer interpretability and
transparency in the classification process while simultaneously increase the accuracy of the model.
Interpreting predictions becomes more difficult when deep neural networks are applied since they
rely on complicated interconnected hierarchical representations of the training data, (iii) to investigate
new combined architectures of efficient deep learning and fuzzy cognitive techniques for medical data
modeling and image classification in order to enhance explainability in clinical decision making.
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