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Abstract

Voices are arguably among the most relevant sounds in humans’ everyday life, and several studies have suggested
the existence of voice-selective regions in the human brain. Despite two decades of research, defining the human brain
regions supporting voice recognition remains challenging. Moreover, whether neural selectivity to voices is merely driven
by acoustic properties specific to human voices (e.g., spectrogram, harmonicity), or whether it also reflects a higher-
level categorization response is still under debate. Here, we objectively measured rapid automatic categorization re-
sponses to human voices with fast periodic auditory stimulation (FPAS) combined with electroencephalography (EEG).
Participants were tested with stimulation sequences containing heterogeneous non-vocal sounds from different catego-
ries presented at 4Hz (i.e., four stimuli/s), with vocal sounds appearing every three stimuli (1.333Hz). A few minutes of
stimulation are sufficient to elicit robust 1.333 Hz voice-selective focal brain responses over superior temporal regions
of individual participants. This response is virtually absent for sequences using frequency-scrambled sounds, but is
clearly observed when voices are presented among sounds from musical instruments matched for pitch and harmonic-
ity-to-noise ratio (HNR). Overall, our FPAS paradigm demonstrates that the human brain seamlessly categorizes human
voices when compared with other sounds including musical instruments’ sounds matched for low level acoustic fea-
tures and that voice-selective responses are at least partially independent from low-level acoustic features, making it a
powerful and versatile tool to understand human auditory categorization in general.
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Significance Statement

Voices are arguably among the most relevant sounds we hear in our everyday life, and several studies have corro-
borated the existence of regions in the human brain that respond preferentially to voices. However, whether this
preference is driven by specific acoustic properties of voices or whether it rather reflects a higher-level categoriza-
tion response to voices is still under debate. We propose a new approach to objectively identify rapid automatic
voice-selective responses with frequency tagging and electroencephalographic (EEG) recordings. In 4 min of re-
cording only, we recorded robust voice-selective responses independent from low-level acoustic cues, making
this approach highly promising for studying auditory perception in children and clinical populations.
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Introduction
Voices of conspecifics are arguably among the most

relevant sounds we hear in our everyday life: they do not
only carry speech, but also convey a wealth of information
about the speakers such as their sex, age, emotional sta-
tus, identity, trustworthiness, etc. (Belin et al., 2004).
Regions in the human brain located along the bilateral
superior temporal sulcus (STS) respond more to human
voices than to other sounds (temporal voice areas; TVAs),
playing a key role in voice recognition (Belin et al., 2000,
2002). However, whether this selectivity is fully accounted
for by specific acoustic properties of voices (Staeren et
al., 2009; Moerel et al., 2012; Ogg et al., 2020), or whether
it also reflects a higher-level categorization response be-
yond these low-level auditory properties is still under de-
bate. This question has been previously addressed
through careful choice and design of acoustic stimuli
(Belin et al., 2002; Levy et al., 2003; Agus et al., 2017) and
sophisticated signal analyses (Leaver and Rauschecker,
2010; Moerel et al., 2012; Giordano et al., 2013), with re-
sults sometimes challenging the notion of brain regions
dedicated to the abstract encoding of voices (Santoro et
al., 2017; Ogg et al., 2020). For instance, regions identified
as voice-selective present a response bias to low fre-
quencies typical of voices, even when responding to
tones (Moerel et al., 2012), and portions of auditory cortex
are sensitive to the degree of harmonic structure present
in both artificial sounds and in human vocalizations (Lewis
et al., 2009).
The approaches used so far to delineate voice-selectiv-

ity in the human brain, mostly relying on functional mag-
netic resonance imaging (fMRI) or event-related potential
recordings with electroencephalography (EEG), present
limitations that hinder the characterization of a putative
high-level voice-categorization response. For instance,
these methods usually imply the subtraction between
neural responses elicited by voices and control sounds
which occurred at different times, or the regression of pa-
rameters linked to low-level properties of sounds, when in
fact the subtracted components might be a part of the

expression of a response to voices (Frühholz and Belin,
2018).
Here, we shed light on the nature of voice-selective re-

sponses in the human brain by proposing a new approach
to identify these automatic responses objectively and
directly (i.e., without subtraction/regression). This ap-
proach relies on EEG recordings and, more specifically,
on “EEG frequency tagging” (Regan, 1989). Frequency
tagging builds on the principles of so-called steady-state
evoked responses: under periodic external stimulation,
the brain region encoding that input responds at the exact
same stimulation frequency (for review, see Norcia et al.,
2015). We developed a fast periodic auditory stimulation
(FPAS) paradigm adapted from studies in vision, in partic-
ular to study face (Rossion et al., 2015; Retter and
Rossion, 2016) and letter/word categorization (Lochy et
al., 2015). Specifically, participants listened to sequences
of heterogeneous sounds presented at a periodic rate of
4Hz. Critically, each third sound presented in the sequen-
ces was a (different) human voice excerpt, so that voices
were presented at a periodic rate of 1.333Hz. In the EEG
frequency domain, a response at the sound presentation
frequency would reflect shared processes between all
sounds, while a putative activity at the voice presentation
rate would emerge only if the participant’s brain success-
fully discriminates human voices from other sounds and
generalizes across all the diverse vocal samples pre-
sented (to maintain periodicity). To further assess whether
low-level properties alone could elicit voice-selective re-
sponses, we included a second stimulation sequence
with identical periodicity constraints using the same
sounds but frequency-bins scrambled (Dormal et al.,
2018) to preserve the overall frequency content of the
original sounds while disrupting their harmonicity and in-
telligibility. In a second experiment, we implemented a se-
quence presenting voices among musical instrument
notes that were matched for pitch, harmonicity-to-noise
ratio (HNR) and spectral center of gravity to control for fre-
quency content of the sounds, harmonicity and within cat-
egory homogeneity (Belin et al., 2002, 2011).
In summary, the goal of the present study was both

conceptual and methodological. We aimed to develop a
FPAS paradigm combined with EEG to test whether and
to which extent voice-selective responses are partially in-
dependent from low-level acoustic features. Since FPAS
provides a marker for categorization that is objective, di-
rect and does not require overt responses to voices from
the participants, we expect our observations to hold sig-
nificant value for further characterization of the nature of
voice-selectivity in the human brain.

Materials and Methods
Experiment 1 - voice versus object sounds
Participants
EEG was recorded in 20 participants (age range 19–

26 years, 10 female) in experiment 1. Data from four par-
ticipants were excluded because of the presence of EEG
artefacts. All participants were right-handed and reported
normal or corrected to normal vision, normal hearing and
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no history of psychiatric or neurologic disorders. The ex-
periment was approved by the local ethical committee of
the University of Louvain (project 2016-25), all partici-
pants provided written informed consent and received fi-
nancial compensation for their participation.

Stimuli
Individual sounds used to create the standard sequen-

ces were 250ms long, leading to a base stimulation fre-
quency (BF) of 4Hz (1/250ms) and a target frequency (TF)
of 1.333Hz (4Hz/3: vocal stimuli presented each third
sound) and were selected in an effort to be as heteroge-
neous and variable as possible. We selected 137 non-
vocal stimuli including environmental sounds (e.g., water
pouring, rain), musical instruments, sounds produced by
manipulable and non-manipulable objects (e.g., tele-
phone ringing, ambulance siren). We selected 55 vocal
stimuli including speech and non-speech vocalizations
pronounced by speakers of different sex, age and emo-
tional states. Stimuli were extracted from various sources
including online databases, extracts from audiobooks
and the Montreal Affective Voices dataset (Belin et al.,
2008). These stimuli were then frequency scrambled
using the method described in Dormal et al. (2018) to cre-
ate the scrambled sequences. Specifically, we applied a

fast Fourier transformation to vocal and non-vocal sounds
and created frequency bins of 200Hz. Within each of
these frequency windows, we shuffled the magnitude and
phase of each Fourier component. We then performed an
inverse Fourier transform to the signal and then applied
the original sound envelope to the scrambled sound. As a
result, the scrambled sounds have frequency content and
spectral-temporal structure that are almost identical to
that of the original stimuli (Fig. 1C). However, the harmon-
icity is altered and the intelligibility of the stimuli is dis-
rupted as confirmed by the behavioral experiment
(experiment 3; Fig. 5). All sounds were equalized in overall
energy (RMS) and faded-in and faded-out with 10-ms
ramps to facilitate individual sounds segregation and
avoid clicking.

Procedure
A schematic representation of the experimental design

is shown in Figure 1B. Sounds of the same duration were
presented one after another to create periodic auditory
sequences. In particular, sounds were presented such
that each third sound was a human voice. Vocal and non-
vocal samples were selected from various sources and
were as heterogeneous as possible to represent the vari-
ability characteristic of a sound category (and thus also

Figure 1. Experimental design for experiments 1 (A–C) and 2 (D, E). A, Three seconds excerpts of the sequences for the standard
(top) and scrambled (bottom) sequences (left) with their relative spectrograms (right). B, Schematic representation of the paradigm.
C, Standard and scrambled sequences: Bode magnitude plot expressing the magnitude in decibels as a function of frequency for
the averaged sounds of vocal and non-vocal stimuli separately, for standard and scrambled sequences. D, Three seconds excerpts
of the harmonic sequence (left) with its spectrogram (right). E, Acoustic features as a function of sound category: HNR, pitch, and
spectral center of gravity.
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naturally increasing the variability of low-level acoustic
features). No auditory category other than voice was pre-
sented periodically. Participants listened to two different
sequence types that were created to measure voice se-
lectivity using naturalistic stimuli (standard sequence) and
to control for low-level acoustic confounds (i.e., frequency
content, scrambled sequences). If, at the target (voice)
rate, the standard and the scrambled sequences evoke
responses that are quantitatively (amplitude of the re-
sponse) and qualitatively (topographical map, pattern of
harmonics) similar, it would indicate that we are interpret-
ing as voice-selective responses that are elicited by fre-
quency content alone. Each stimulation sequence was 64
s long, including 2 s of fade-in and fade-out during which
the presentation volume raised gradually from 0 to the
maximum at the start of the sequence, and vice versa at
the end of the sequence. Fade-in and fade-out were intro-
duced to avoid abrupt movements that the sudden onset
of the sequences could have provoked and that would
have introduced artefacts in the data. Sequences for
both conditions were presented four times in a pseudo-
randomized order. Individual sequences with a new pseu-
do-randomized order of stimulus presentation were gen-
erated before testing for each repetition and for each
individual participant in an effort to increase generaliza-
tion; all sequences played during the testing therefore
constitute unique exemplars that share presentation pa-
rameters (base and target frequencies) and the sounds
which were used to build them, but systematically pre-
senting them in different order in each sequence and each
participant. During testing, participants were asked to
perform an orthogonal non-periodic task: they had to
press a button whenever they heard a sound that was pre-
sented at a lower volume as compared with the volume of
the other sounds in the sequence. Volume reduction was
obtained by decreasing the sounds’ root mean square
values of a factor of 12.5. Each sequence contained six
attentional targets (including both vocal and non-vocal
sounds) that were introduced in a pseudo-randomized
order (excluding fade-in and fade-out period at the start
and the end of the sequence). Participants were required
to listen to the sequences and perform the task blind-
folded sitting at 90-cm distance from the speakers.

EEG acquisition
The EEG was recorded with a Biosemi Active Two

system (https://www.biosemi.com/products.htm) with
128 Ag-AgCl active electrodes at a sampling rate of
512Hz. Recording sites included standard 10–20 sys-
tem locations as well as intermediate positions (position
coordinates can be found at https://www.biosemi.com/
headcap.htm). The magnitude of electrode offset, refer-
enced to the common mode sense (CMS), was held
below 650mV.

Analysis
Data analysis was performed using the Letswave5 tool-

box (https://github.com/NOCIONS/Letswave5) and the
FieldTrip toolbox (Oostenveld et al., 2011) running on
MATLAB_R2016b (MathWorks), custom-build scripts in
MATLAB_R2016b and RStudio (RStudio Team, 2018).

Preprocessing
A fourth order Butterworth bandpass filter with cutoff

values of 0.1–100Hz was applied to the raw continuous
EEG data of each participant. Electrical noise at 50,
100, and 150Hz was attenuated with a FFT multinotch
filter with a width of 0.5 Hz. Data were then down-
sampled to 256Hz to facilitate data handling and stor-
age. Subsequently, data were segmented into 69 s-long
epochs (we will use the term epoch in the analysis sec-
tions to refer to the EEG data relative to one sequence
of stimulation) to include 2 s before the onset of the
fade-in and 3 s after the offset of the fade-out of the
stimulation sequences. At this stage, after visual in-
spection of the data, four subjects were excluded from
further analysis as their EEG trace was highly contami-
nated by artefacts. In the remaining 16 participants,
noisy channels were linearly interpolated with the clos-
est neighboring channels (three/four, considering elec-
trodes representing the full area around the interpolated
one). This procedure was carried on six participants
with no more than 5% of the electrodes (Bottari et al.,
2020; Retter et al., 2020) being interpolated in each par-
ticipant (mean number of channels interpolated consid-
ering all 16 participants is 1, range: 0–6; of the channels
interpolated across the six participants, six were poste-
rior-occipital electrodes, two central parietal, one cen-
tral, one temporal, one fronto-temporal, four fronto-
central, and one anterior-frontal). The same analyses
performed on the 10 participants on which no channel
interpolation was performed and on the entire group
(with interpolation) led to very similar results. Epochs
that presented multiple artefacts after channel interpo-
lation were removed, with no more than one epoch per
condition per participant being excluded. All 128 EEG
channels were then re-referenced to the common aver-
age of all electrodes.

Frequency domain analysis
Considering the frequency resolution (1/duration of the

sequence) and the frequency of presentation of voices
(target frequency), preprocessed data were re-segmented
so as to contain an integer of voice presentation cycles to
avoid overspill of the target-rate response in the fre-
quency domain. Therefore, epochs were re-segmented
excluding fade-in and fade-out and had a final length of
60 s. For each condition and participant separately,
epochs were averaged in the time domain to attenuate
EEG activity not in phase with the auditory stimulation. A
fast Fourier transformation was applied, resulting in am-
plitude spectra for each channel, condition and subject.
Amplitude spectra ranged from 0 to 128Hz and had a
very high resolution of 0.0167Hz (i.e., 1/60 s), thus allow-
ing to isolate responses at the frequencies of interest and
their harmonics. Then, we determined the number of sig-
nificant harmonics at the group level for target frequency
and base frequency: for each condition separately, we
computed the grand average across subjects, pooled all
channels together and calculated z scores on these aver-
aged spectra including as baseline 20 surrounding fre-
quency bins (10 bins on each side excluding the
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immediately adjacent bins, the local minimum and the
local maximum; Retter and Rossion, 2016). Harmonics of
the target and base frequencies were considered as sig-
nificant if their relative z scores were higher than 2.32 (i.e.,
p, 0.01, one-tailed, signal . noise). Consecutive signifi-
cant harmonics were considered, excluding frequencies
corresponding to the base-rate responses for the count of
target-rate significant harmonics. Responses are repre-
sented as topographical head maps summing baseline
subtracted amplitude spectra at significant harmonics for
target and base frequencies separately, where baseline
was calculated as for the calculation of z scores. Baseline
subtraction before quantification of the response enables
to take into account the fact that different frequency
bands are differentially affected by noise in EEG record-
ings (Luck, 2014), with typically higher noise at low fre-
quencies (,1Hz) and in the a frequency band (8–13Hz).
We also compared the sum of the baseline subtracted
amplitude of the significant harmonics as elicited by the
standard and the scrambled sequences (standard .
scrambled, Bonferroni correction for the 128 electro-
des). To compute this comparison, we considered the
highest number of significant harmonics in any of the
two conditions (here, standard) knowing that including
baseline-subtracted activity at non-significant harmon-
ics to compute the overall response is not detrimental
(i.e., adding zeroes). The electrodes that were signifi-
cant for the standard . scrambled comparison were
considered to define the voice-selective region of inter-
est (ROIvoice).
To assess the robustness of the method to identify

voice-selective responses with an even shorter acquisi-
tion time, we conducted the same analysis to individuate
significant harmonics considering only the responses eli-
cited by the first stimulation sequence for each condition
(i.e., 1 min of recording).
Lastly, we performed source localization to identify the

generators of the voice-selective response. Source local-
ization was implemented here with Dynamic Imaging of
Coherent Sources (DICS; Gross et al., 2001) following the
method as described in Popov et al., 2018. Using the
cross-spectral density (CSD) calculated at the sensor
level, DICS estimates the interaction between sources at
a particular frequency: in this case, at the voice presenta-
tion frequency (1.333Hz). This beamformer was chosen
since it yields lower localization error despite low SNR
when compared with other current density measures
(Halder et al., 2019). To attenuate brain activity not in
phase with the auditory stimulation, all epochs were aver-
aged in the time domain, then across all subjects for
standard and scrambled sequences separately; conse-
quently, a Fourier transform was applied to compute the
CSD. The forward model was computed with the segmen-
tation of the MRI152 template, based on which a headmo-
del was generated using the boundary element model
(BEM), characterizing the current conduction and propa-
gation properties in surfaces of scalp, skull and brain.
Sources were placed in the brain part of the volume con-
duction headmodel with a resolution of 5 mm. Further, we
performed a manual co-registration of the headmodel and

Biosemi electrode coordinates using rotation, translation
and scaling of the electrodes on the scalp to match our
best visual estimate. Because of the imprecise co-regis-
tration of the forward model, as we did not have individual
participants’ MRI and precise electrode location on the
scalp, we did not focus on the exact anatomic areas of
the brain generators, but limited our attention to compare
the voxel-by-voxel activity (i.e., coherence) between the
two conditions. A common spatial filter was computed
by appending the data of the two conditions to localize
each condition. A regularization parameter of 5% was
used. Then, we calculated the difference of coherence
values between the standard and scrambled conditions
taking the whole brain into consideration to estimate an
overall activity at the target frequency. We hypothe-
sized to obtain higher coherence values for the stand-
ard condition.
Although source analysis is introduced to suggest a link

with previous neuroimaging studies, results should be in-
terpreted cautiously, not only because of the indetermi-
nate nature of source localization from scalp voltage
potentials but also because we did not collect MRI scans
of individual participants, nor the electrode positions on
their scalp during the EEG sessions, important elements
that would enhance the precision and accuracy of source
localization (Akalin Acar and Makeig, 2013). We therefore
consider the results of the source localization for visual-
ization purpose only and the main statistical inferences
were done on the scalp data.

Experiment 2 - Voice versus musical instruments
controlled for low level acoustic properties
Materials and methods were the same as for experi-

ment 1 unless specified below.

Stimuli
Sounds were extracted from a database provided by Agus

and collaborators (Goto et al., 2003; Agus et al., 2017).
Stimuli were 128 ms long, therefore the base and target fre-
quencies of what we will refer to as harmonic sequences
were approximately 7.813 Hz and 2.604Hz, respectively.
Vocal stimuli (16 exemplars) consisted in vowels /a/, /e/, /i/
and /o/ sung in the note A3 by twomale and two female sing-
ers. Non-vocal sounds consisted in 16 different musical in-
struments playing the note A3 (oboe, clarinet, bassoon,
saxophone, trumpet, trombone, horn, guitar, mandolin, uku-
lele, harpsichord, piano, marimba, violin, viola, and cello, for a
total of 16 stimuli). Importantly, vocal and non-vocal sounds
implemented for this sequence type were matched for pitch
(mean=223.5Hz, SD=7.1Hz for voices, mean=220.6Hz,
SD=1.85Hz for instruments, Welch’s two-sample t test
t(17.03) =1.56, p=0.14), spectral center of gravity (Mann–
Whitney test, W=107, p=0.45) and HNR (mean=20.9dB,
SD=2.5dB for voices, mean=18.9dB, SD=5.0dB for in-
struments, Welch’s two-sample t test t(21.8) =1.45, p=0.16;
Fig. 1E). Pitch, spectral center of gravity and HNR were com-
puted using the Praat software (Boersma, 2001). Stimuli were
equalized in overall energy (RMS) and their RMS value was
set as to match the energy of the sounds of experiment 1.
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Sounds were then faded-in and faded-out with 10 ms ramps
to facilitate individual sounds segregation and avoid clicking.

Procedure
Harmonic sequences were generated following the

same procedure as reported for experiment 1, presenting
sounds one after another with each third sound being a
voice. Sequences were 65.5 s long including 2 s of fade-
in and fade-out. As in experiment 1, individual sequences
were created before testing for each repetition and for
each individual participant and included six attentional
targets consisting in sounds played at a lower volume.
Participants were required to listen to four different
harmonic sequences and press a button whenever they
perceived a sound played in a lower volume sitting blind-
folded at 90 cm from the speakers.

Analysis
Data were analyzed as in experiment 1 with the

epochs being re-segmented from 2.048 s after the
onset of the sequences (to exclude fade-in and to start
segmenting from the onset of the first sound at 100%
volume) and had a final length of 59.9 s to contain an
integer of voice presentation cycles and avoid overspill
of the target-rate response in the frequency domain.
The number of significant harmonics for the responses
at the target and base frequencies were calculated as
in the previous experiment considering all four stimula-
tion sequences or the first sequence alone. We then
performed a region-of-interest analysis by averaging
the sum of the baseline subtracted amplitude of the
significant harmonics of the target of the electrodes of

Figure 2. Experiment 1. Voice versus object sounds. A, Responses at the base (top) and at the target frequency (bottom) for the
standard (left) and scrambled (right) conditions as topographic head plots. Topographic head plots were obtained by summing the
baseline subtracted amplitude at the significant harmonics. B, Source localization analysis revealed stronger coherence values at
the target frequency for the standard condition (standard . scrambled) over right superior and middle temporal areas (voxels with
intensity above the 95th percentile are highlighted in red). C, Signal-to-noise ratio (SNR) of voice-selective responses obtained by
averaging SNR values of ROIvoice electrodes as a function of number of stimulation sequences/minutes of recording for the stand-
ard condition. D, SNR averaged spectra of ROIvoice electrodes. E, Sum of the baseline corrected amplitude (considering 10 bins
on each side, excluding the immediately adjacent ones) of voice selective responses at the four significant harmonics for the stand-
ard (blue) and scrambled condition (orange). F, Responses at the target frequency for the standard (blue) and scrambled (orange)
conditions as the sum of baseline subtracted amplitude at four harmonics in the left and right ROIs. G, There is no correlation be-
tween responses at the left and right ROIs across the standard and scrambled conditions.
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the ROIvoice as defined in experiment 1 and con-
trasted the resulting activity against 0.

Experiment 3 - Behavioral detection of voices
To validate that the sounds presented in the two EEG

experiments could effectively be categorized as vocal/
non-vocal sounds and to assess the effectiveness of the
sound scrambling procedure in altering intelligibility, we
conducted a behavioral experiment in which participants
had to classify all sounds, presented either in short se-
quences or in isolation, as vocal or non-vocal sounds.

Participants
Sixteen participants (age range 18–26 years, nine fe-

male), four of which had previously participated in the
EEG experiments, took part in the behavioral experiment.
All participants reported normal or corrected to normal vi-
sion, normal hearing and no history of psychiatric or neu-
rologic disorders. The experiment was approved by the
local ethical committee of the University of Louvain (pro-
ject 2016-25), all participants provided written informed
consent and received financial compensation for their
participation.

Stimuli
Auditory stimuli were the same as for experiments 1

and 2, all equalized so to have the same overall energy
(RMS) and faded-in and -out with 10-ms ramps.

Procedure
Participants listened to sounds corresponding to the

three sequence types of experiments 1 and 2 (standard,
scrambled, and harmonic) that were presented either em-
bedded in short sequences of five sounds (task sequence)
or in isolation (task isolation). For the sequence task, short
sequences were created so that they could contain either
one vocal sound or none (50%/50% of occurrences). In
particular, when a vocal sound was presented in a
short sequence, it was inserted as the third sound to
mimic the structure of sequences implemented for the
EEG experiments. For each condition, 80 sequences
were created (40 with one voice, 40 without voices), for
a total of 240 trials (one short sequence of the behav-
ioral experiment = one trial). In the isolation task, for
the sequence types standard and scrambled, we pre-
sented 33 vocal and 67 non-vocal sounds extracted
randomly for each participant to reproduce the 1:2
ratio of vocal and non-vocal stimuli presented in se-
quences in the EEG experiment. For the harmonic se-
quence, we presented all 16 vocal and 16 non-vocal
stimuli. Sounds from each of the three conditions were
presented once in a randomized order, for a total of
132 trials (one sound = one trial). The sequence and
isolation tasks were presented one after another. Each
trial consisted in the presentation of one short se-
quence (sequence task)/one sound (isolation task)
after which participants had to indicate whether they
heard a voice or not with a button press and a re-
sponse was required to initiate the following trial.
Participants performed the task blindfolded. The experiment
was implemented on MATLAB _R2016b (MathWorks) using

the Psychophysics Toolbox extensions (Brainard, 1997; Pelli,
1997; Kleiner et al., 2007).

Results
Experiment 1 - Voice versus object sounds
We expected clear responses at the base frequency

(BF, 4 Hz) and harmonics (multiples of BF: 2BF, 3BF, etc.)
for both the standard and the scrambled sequences, a re-
sponse at the base frequency reflecting shared processes
between all sounds. Then, we predicted to observe, or
not, depending on the sequence type, responses at the
target frequency (TF, 1.333 Hz) and the harmonics.
Critically, a response at the target frequency would arise
only if the participant’s brain successfully discriminates
human voices from other sounds and generalizes across
voices. We predicted that the standard sequences would
elicit a voice-selective response reflecting selective re-
sponses to vocal versus non-vocal sounds. We also hy-
pothesized that if voice-selective responses evoked by
the standard condition were the mere by-product of fre-
quency content, the scrambled condition would have eli-
cited responses quantitatively (in terms of magnitude of
the response) and qualitatively (in terms of topographical
distribution of the response) similar to the standard
condition.

Base frequency
We observed significant responses for the first two har-

monics of the base stimulation frequency, i.e., at 4 and
8Hz, for both the standard and scrambled sequences.
The scalp topographies of the two conditions obtained
summing baseline corrected amplitudes at the two signifi-
cant harmonics did not differ, suggesting that individual
sounds were similarly processed between the standard
and scrambled conditions, with responses peaking over
central and occipital electrodes (Fig. 2).

Target frequency
The standard sequence elicited robust voice-selective

responses that were significant at the group level for the
first four harmonics of the target frequency (at 1.333,
2.666, 5.333, and 6.666Hz). For the scrambled sequence,
we observed a weak but significant response only at the
first harmonic of the target frequency (at 1.333Hz). We
quantified voice-selective responses as the sum of the
baseline subtracted amplitudes of the highest number of
significant harmonics in any of the two conditions (here:
standard, four harmonics) knowing that including base-
line-subtracted activity at non-significant harmonics to
compute the overall response is not detrimental (i.e.,
adding zeroes; Retter et al., 2018). For the standard
condition, voice-selective responses peaked bilater-
ally at superior temporal electrodes (Fig. 2): TP8h,
CP6, T8h, T8 on the right hemisphere and T7h, T7, TP7
on the left hemisphere (contrasting the response
against zero, one-sided t test, reported p-values are
Bonferroni corrected, Cohen’s d values are reported re-
ferred to as d, TP8h: t(15) =6.68, p=0.0005, d=1.67; CP6:
t(15) =5.51, p=0.0038, d=1.38; T8h: t(15) =6.89, p=0.0003,
d=1.72; T8: t(15) =7.16, p=0.0002, d=1.79; T7h: t(15) =5.62,
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p=0.0031, d=1.40; T7: t(15) =5.44, p=0.0043, d=1.36; TP7:
t(15) =5.56, p=0.0035, d=1.39), the topography of the re-
sponse being consistent across participants (Fig. 3). No elec-
trode reached significance when we computed the same
contrast for the scrambled condition. Overall, in regions
where the response was peaking for the standard condition,
the amplitude of the response to voice-scrambled stimuli
was of 50.6% of the response to voices for the left ROI (T7h,
T7, TP7) and only 18.8% for the right ROI (TP8h, CP6,
T8h, T8; Fig. 2F). Moreover, the magnitude of the re-
sponses to the standard and scrambled conditions over
these two ROIs did not correlate across participants
(Spearman’s r correlation, left ROI: rs = 0.11, p= 0.68,
right ROI: rs = 0.14, p= 0.62; Fig. 2G). This suggests that,
although scrambled voices could elicit a response, fre-
quency content alone was not enough to elicit a voice-
selective response as recorded with the standard se-
quence. We further investigated that by comparing the
responses elicited at the target frequency by the stand-
ard and the scrambled sequences; although one of the
advantages of the FPAS paradigm is that it does not re-
quire a direct comparison between conditions, we de-
cided to include this extra step as a proof of principle
since we introduce oddball fast periodic stimulation with
high-level, naturalistic sounds for the first time here.
First, for each condition, participant and electrode

separately we summed the responses of the highest
number (i.e., four) of significant harmonics in any of the
two conditions. Then, comparing the responses for
each participant and electrode (standard . scrambled,
paired-sample t test, Bonferroni corrected), we isolated
four significant superior temporal electrodes over the
right hemisphere: TP8h, CP6, C6 and T8 (TP8h:
t(15) = 6.21, p = 0.0011, d = 1.55; CP6: t(15) = 5.02, p =
0.0097, d = 1.26; C6: t(15) = 4.71, p = 0.0179, d = 1.18;
T8: t(15) = 4.60, p = 0.0223, d = 1.15, Bonferroni cor-
rected). Non-parametric testing (Winkler et al., 2014) of
the standard . scrambled comparison led to very simi-
lar results and the choice of a one-sided comparison
was made with the a priori assumption that the
scrambled condition would have elicited a target re-
sponse as high- if voice responses could have been ex-
plained by frequency content alone- or smaller than the
one elicited by the standard sequence. Finally, a region-
of-interest was defined considering the four electrodes
identified as above (ROIvoice; Fig. 2).
To assess whether FPAS was a suitable tool to investi-

gate voice-selectivity at the individual level, we calculated
whether these responses were significant in every subject
(Liu-Shuang et al., 2016). For each participant, we consid-
ered the amplitude spectrum and we pooled together all
channels. We chunked epochs that were centered around

Figure 3. Experiment 1. Responses at the voice presentation frequency for each individual (standard condition). Topographic head
plots represent the sum of the baseline subtracted amplitude of significant harmonics as identified at the group level. The scale of
each head plot ranges from 0mV to the maximum (reported on top) for each subject.
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the harmonics of the target frequency that were signifi-
cant at the group level (1.333, 2.666, 5.333, and 6.666Hz)
and that contained 11 frequency bins on each side. We
then summed these epochs together and computed the z
scores at the target frequency considering as baseline the
20 surrounding frequency bins (10 on each side, exclud-
ing the immediately adjacent bin). Considering as signifi-
cant responses whose relative z scores was higher than
1.64 (i.e., p, 0.05, one-tailed, signal . noise), we were
able to find significant voice-selective responses in 13 out
of 16 participants (with only 4min of recordings).
To assess the robustness of the method with an even

shorter acquisition time, we then performed the same an-
alytical steps done to calculate the number of significant
harmonics at the group level considering the first se-
quence of recording only. For the standard sequence, we
were able to identify voice-selective responses that were
significant at the group level even with 1 min of recording
only (one significant harmonic: 1.333Hz). The signal-to-
noise ratio (SNR) of the response at right superior tempo-
ral electrodes (ROIvoice) as a function of number of stimu-
lation sequences (i.e., minutes of recordings, as each
sequence is 1 min long) is presented for visualization pur-
poses in Figure 2C.
A stronger voice-selective response in the standard

condition was observed when compared with the
scrambled condition at the source level as well. After
implementing source localization, the final voxel coher-
ence values were compared for the two conditions
(standard . scrambled) and interpolated to the MRI152
template. Then, the voxels with intensity above the 95th
percentile were selected, as illustrated in Figure 2B.
The maximum value obtained of 0.32 (min-max range:
[0, 1]) indicates voxel preference for voice presentation
frequency (i.e., 1.333 Hz) for the standard over the
scrambled sequence. Despite the imprecise source lo-
calization because of the limitations outlined in the
method section (lack of individual coregistration be-
tween electrodes position and brain anatomy), the posi-
tion of the source reconstructed effect of interest (Fig.
2B) lies in the vicinity of the known location of TVAs
(Belin et al., 2000, 2002) and are in line with results
showing that right anterior STS regions respond more
strongly to non-speech vocal sounds than their
scrambled versions (Belin et al., 2002).

Experiment 2 - Voice versus musical instruments
controlled for low level acoustic properties
We expected to observe a response at the base presen-

tation frequency and its harmonics, this response reflect-
ing processes that are shared among vocal and non-
vocal sounds. More crucially, we predicted that, if voice-
selectivity is not solely driven by harmonicity and/or pitch
of the sounds, we would observe a target-rate response
to the harmonic sequences, as in these sequences, vocal
and non-vocal sounds did not differ for these low-level
acoustic features.

Base frequency
There was a significant base-rate response for the first

two harmonics: at 7.813 and 15.625Hz, with responses

peaking over central and occipital electrodes (Fig. 4). The
topography of the response was qualitatively similar to
the base-rate responses obtained in experiment 1.

Target frequency
We observed a significant voice-selective response for

the first two harmonics: at 2.604 and 5.208 Hz. Voice-se-
lective responses peaked over central and superior tem-
poral electrodes bilaterally, the scalp distribution of the
response being highly similar to the voice-selective re-
sponse found in the standard sequence (Fig. 4) and being
reliable across participants. We then performed a ROI
analysis considering the right superior temporal electro-
des (ROIvoice) as defined in experiment 1. Baseline sub-
tracted amplitudes at the two significant harmonics were
summed for each electrode individually and the resulting
responses at the electrodes of the ROIvoice were then
averaged together for every participant. One data point
was excluded as it deviated more than three standard de-
viations from the mean of the group and responses were
significant against zero (mean=0.152 mV, SD=0.087mV,
t(14) = 6.78, p=4.436� 10�6, d=1.75, one-tailed t test).
Voice-selective responses were already present after 1

min of recording, showing the resilience of FPAS even
with very short acquisition time (one harmonic significant,
the second: 5.208Hz, with 2 min of recording the first two
harmonics reached significance at the group level; Fig. 4).
As for the standard condition, we then assessed signifi-

cance of voice-selective responses at the individual level
with the same procedure. A total of 15 out of 16 partici-
pants showed a significant response (z score higher than
1.64, i.e., p,0.05, one-tailed, signal. noise).

Figure 4. Experiment 2. Voice versus musical instruments. A,
Responses at the base and at the target frequency as topo-
graphic head plots. Topographic head plots were obtained by
summing the baseline subtracted amplitude at the significant
harmonics. B, SNR averaged spectra of ROIvoice electrodes.
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Experiment 3 - Behavioral detection of voices
Responses to the sequence and isolation tasks were

analyzed according to signal detection theory.
Specifically, sensitivity indices related to the partici-
pants’ ability to detect a voice when present was as-
sessed using d-prime (Fig. 5); d-prime (d9) constitutes
an unbiased quantification of performance in detec-
tion tasks as it takes into account both hits and false
alarms (Tanner and Swets, 1954; Macmillan and
Creelman, 2004). Data points were considered as out-
liers when deviating from the mean of the group of
more (or less) than three times the standard deviation
of the group in at least one condition/task, leading to
the exclusion of one participant. We first checked
whether performance was above chance (d9 = 0) for
each condition and for the sequence and the isolation
task separately. Participants performed above chance for all
conditions in the sequence (t test, one-tail, standard: d9 val-
ues mean=4.11, SD=0.45, t(14) =35.30, p=2.2� 10�15,
d=9.11; scrambled: mean=0.29, SD=0.30, t(14) =3.75,
p=0.001, d=0.97; harmonic: mean=1.91, SD=0.77,
t(14) =9.58, p=7.8� 10�8, d=2.47) and in the isolation task (t
test, one-tail, standard: mean=4.25, SD=0.46, t(14) =35.71,
p=1.8� 10�15, d=9.21; scrambled: mean=0.16, SD=0.21,
t(14) =2.97, p=0.005, d=0.77; harmonic: mean=3.30,
SD=1.24, t(14) =10.29, p=3.3� 10�8, d=2.66). Statistical
comparisons of conditions were then performed separately
for the two tasks using repeated measures ANOVAs.
Whenever Mauchly’s test indicated that the assumption of
sphericity had been violated, we applied a Greenhouse–
Geisser correction to the degrees of freedom. For the se-
quence task, we found a significant effect of condition
(F(2,28) =207.39, p=1.6� 10�17, h2 = 0.898) and post hoc
pairwise comparisons showed that all conditions differed one
from another (standard vs scrambled, p, 2� 10�16; stand-
ard vs harmonic, p=7.1� 10�9; scrambled vs harmonic,
p=1.5� 10�6; Bonferroni corrected). The same pattern of
performance was found when sounds were presented
in isolation (F(1.20,16.86) = 134.23, p = 6.8� 10�10, h2 =
0.845; pairwise comparisons: standard vs scrambled,
p, 2� 10�16; standard vs harmonic, p = 0.038;
scrambled vs harmonic, p = 2.7� 10�7; Bonferroni cor-
rected). Although performance was above chance for
the scrambled sounds, d9 scores were significantly
lower than the one achieved in the standard condition

(Fig. 5), suggesting that our frequency scrambling ef-
fectively disrupted the intelligibility of the sounds.

Discussion
Similarly to the issue of category-selectivity in human

visual cortex (Rice et al., 2014; Bracci et al., 2017; Peelen
and Downing, 2017), studies have attempted to determine
whether category-selectivity in auditory cortices is mostly
driven by a biased tuning toward low-level acoustic fea-
tures or whether categorization responses go beyond the
acoustic properties of sound and therefore represent a
more abstract representation of sound category (Leaver
and Rauschecker, 2010; Giordano et al., 2013). In fact, as
sounds tend to be acoustically similar within an auditory
category and dissimilar between categories, differences
in cortical responses could be a mere reflection of differ-
ent acoustic properties across categories of sounds
(Staeren et al., 2009; Ogg et al., 2020). One approach to
address this question is to test for low-level featural cod-
ing. However, although studies using artificial stimuli
allow for a careful control of low-level acoustic properties
(Patterson et al., 2002; Warren et al., 2005; Lewis et al.,
2009), they usually lack ecological validity and underesti-
mate the issue of stimulus-driven response correlation
(Norman-Haignere and McDermott, 2018). Moreover, arti-
ficial stimuli may fail in eliciting brain activation in a (be-
haviorally) relevant way, as evidenced by a study
revealing different tonotopic maps obtained with natural
sounds and pure tones (Moerel et al., 2012).
In this study, we developed a FPAS paradigm as a

powerful mean to investigate voice-selectivity in the brain
with the aim of disentangling between a categorization
response to voices and the contribution of low-level
acoustic features that are typical of voices (e.g., high
harmonicity, characteristic frequency ranges, specific
change of energy over time) with EEG. The frequency
constraint of this approach allowed us to individuate ro-
bust voice-selective responses objectively, at known
stimulation frequencies, and automatically: not only par-
ticipants did not have to overtly respond to voices, thus
avoiding the contamination of the response from atten-
tional and decisional processes (Levy et al., 2003; Von
Kriegstein et al., 2003), but also no subtraction between
responses elicited by different auditory categories was re-
quired. That is, while traditional M/EEG approaches inves-
tigate whether there are differences in isolated responses
elicited by different classes of stimuli (Levy et al., 2003;
Murray et al., 2006; Charest et al., 2009; De Lucia et al.,
2010), in our paradigm, this differentiation is implicit.
Moreover, the relatively low-speed presentation of stimuli
required by many traditional experimental paradigms
precludes from the possibility of presenting a high number
of stimuli that could be representative enough of an audi-
tory category and therefore responses observed to such a
subset of voice samples might not reflect a generalized
response to voices (Giordano et al., 2013). In addition,
low-speed presentation of stimuli might fail in fully char-
acterizing voice processes as they occur in daily-life,
since we are experts in extracting voice features almost

Figure 5. Experiment 3. Behavioral detection of voices.
Sensitivity indices for the sequence (left) and isolation (right)
tasks, for the three conditions. The bar plots represent the
group average of d9, each dot represents an individual partici-
pant’s d9 score.
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effortlessly in highly dynamic acoustically changing
environments.
For a voice-specific response to be captured with the

FPAS paradigm, two processes need to occur: the brain
has to concurrently discriminate voices from non-vocal
sounds and to generalize this selective response across
diverse vocal samples for a response at the target (i.e.,
voice presentation) rate to occur. FPAS therefore not only
allows to characterize a general voice-selective response,
as it is elicited by heterogeneous vocal samples and not
from a specific subset of those, but also not to cancel out
processes elicited by voices that are shared by other
sound categories. This can be accomplished in a very
short acquisition time (i.e., 4 min or even less) and with a
high SNR (up to 7, or 600% of amplitude increase with
four stimulation sequences; Fig. 2C).
To isolate voice-selective responses that could not be

merely explained by low-level acoustic features, we im-
plemented two EEG experiments using the FPAS princi-
ple. In the first experiment, participants were presented
with two different types of FPAS sequences. In the stand-
ard sequence, vocal and non-vocal samples were se-
lected to be as heterogeneous as possible to represent
the high variability of sounds of a given category (e.g., voi-
ces from speakers from different ages, sex, emotional
state with speech and non-speech vocalizations) as en-
countered in natural environment, as well as to minimize
the potential contributions of low-level acoustic features
in the voice-selective response (controlling by variability).
Specifically, low level acoustic properties would have to
vary periodically to participate in the target-specific re-
sponses, and the high variability of the voice samples
adopted should prevent that. These sounds were then
scrambled using small frequency bins (after FFT) to gen-
erate a sequence in which scrambled sounds had similar
frequency content as the original stimuli (Fig. 1C) but were
not recognizable anymore (Fig. 5). We measured robust
voice-selective responses at superior temporal electrodes
that were significant in the vast majority of the participants
with only 4min of recording (Fig. 2). Moreover, these re-
sponses remained significant at the group level when re-
stricting the analysis to the first minute of recording only,
highlighting the robustness of the method even with
an extremely short acquisition time. Voice-selective re-
sponses could not have been explained by frequency
content alone: although one of the advantages of FPAS is
that it does not require an explicit comparison across con-
ditions, here, as an extra proof of principle, we compared
the responses elicited by the standard and scrambled
sequences, highlighting a response expressing over
right superior temporal electrodes. This preference also
emerged at the source space: although source localiza-
tion as implemented in our study presents limitations that
could hinder the accuracy of our results (see Materials
and Methods), we localized a standard . scrambled pref-
erence over the right superior temporal gyrus and sulci.
The observed regions lie in the proximity of the TVAs and
are in line with results showing that the right anterior STS
regions respond more strongly to non-speech vocal
sounds than their scrambled versions (Belin et al., 2002).

It has to be noted that the scrambled condition elicited
a weak but yet significant response at the (scrambled)
voice presentation rates: we think there might be two, not
mutually exclusive, explanations for this weak response.
First, this response might be because of the low-level
acoustic features shared by voices and scrambled voices
(i.e., frequency content): preferential response biases to-
ward acoustic features peculiar of voices have been ob-
served in voice-selective regions (Moerel et al., 2012) and,
despite the fact that voice-selective responses elicited by
the standard condition could not be well explained by
low-level acoustic features alone, these features may
nevertheless weakly contribute to the response. Second,
although the scrambling procedure disrupted the intelligi-
bility of the sounds, with original sounds being more
accurately recognized as voices or not than scrambled
sounds, participants’ performance in categorizing scrambled
sounds was above chance level, suggesting that some resid-
ual sound recognizability might have still been present.
To further investigate the nature of voice-selective re-

sponses, we designed a second FPAS experiment using
sequences built from sung vowels and musical instru-
ments that were matched in terms of pitch, spectral
center of gravity and HNR. The observation of robust
voice-selective responses despite controlling for the
above-mentioned acoustic features speaks in favor of a
categorization response to voices that is at least partially
independent from some of the most intrinsic acoustic fea-
tures of voices. The similar scalp topographies elicited by
the standard and harmonic sequences suggest a similarity
between the selective responses to voices elicited in the
two conditions. However, the voice-selective response in
the standard sequences was larger in amplitude as com-
pared with the response of the harmonic sequence.
Different factors might account for this difference. First,
the higher amplitude of response observed in the stand-
ard sequence could be due to voices being more easily
discriminated from non-vocal sounds, as pointed out by
the behavioral data. In fact, even if an overt response to
voices is not necessary to elicit a target rate specific re-
sponse, the easiness at which a voice is perceived could
have impacted the amplitude of brain responses. Second,
while vocal stimuli of the harmonic sequence were accu-
rately chosen to be matched in acoustic properties with
the sounds of musical instruments, it could be argued that
those vocal stimuli represent a subset of voices, and thus
that the strongest response in the standard condition re-
flects the response to a more heterogeneous and repre-
sentative sample of voices of that condition. The choice
of the frequencies of stimulation could also have im-
pacted on the magnitude of the responses (Regan, 1966;
Ding et al., 2006; Retter et al., 2020), while all parameters
proved effective in eliciting target-rate responses, further
studies would be needed to indicate which parameters
are optimal to capture voice-selective responses, as ad-
dressed in the case of the implementation of the fre-
quency tagging approach in high-level vision (Alonso-
Prieto et al., 2013; Retter et al., 2020). Finally, systematic
differences in low-level acoustic features between vocal
and non-vocal sounds potentially present in the standard
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sequence could have boosted the categorization re-
sponse to voices. In fact, feature dependence is not in
conflict with a categorical coding hypothesis (Bracci et
al., 2017), and preferential response biases observed in
voice regions to specific acoustic features such as low
frequencies (Moerel et al., 2012), harmonic structure
(Lewis et al., 2009), and spectrotemporal modulations
(Santoro et al., 2017), could serve as a scaffold or facili-
tate a higher level categorical responses to voices.
In summary, we objectively defined human voice-selec-

tive responses independent from low-level acoustic cues
that are characteristic of voices with high SNR and in a
very short acquisition time using an original FPAS ap-
proach. Although it is possible that other acoustic fea-
tures that were not explicitly controlled for might be at the
origin of the recorded responses, the nature of the FPAS
design makes it unlikely, as said features should be sys-
tematically present in all voices and absent in non-vocal
sounds. In other words, activity in voice-selective regions
could not be only, or even substantially, accounted for by
any basic acoustic parameter tested.
While the goal of the current study was to investigate

the existence of a voice-selective response partially inde-
pendent from some acoustic features, the FPAS para-
digm we developed could be a valuable tool for the study
of auditory perceptual categorization in the human brain,
extending to other categories. Moreover, the high SNR of
this technique achievable in a very short acquisition time
(i.e., significant responses were observed with 1 min of re-
cording) and the fact that no overt response to specific
stimuli is required, makes this approach highly promising
for studying voice perception in children and clinical pop-
ulations. Our findings therefore advance our understand-
ing of voice-selectivity in the brain and our method
provides an essential foundation for understanding its de-
velopment in typical and atypical populations.
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