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By uncovering complex dynamics in the expression or localization of transcriptional

regulators in single cells that were otherwise hidden at the population level, live

cell imaging has transformed our understanding of how cells sense and orchestrate

appropriate responses to changes in their internal state or extracellular environment. This

has proved particularly true for the nuclear factor-kappaB (NF-κB) family of transcription

factors, key regulators of the inflammatory response and innate immune function, which

are capable of encoding information about the mode and intensity of stimuli in the

dynamics of NF-κB nuclear accumulation and loss. While live cell imaging continues

to serve as a useful tool in ongoing efforts to characterize the feedbacks that shape

these dynamics and to connect dynamics to downstream gene expression, it is also

proving invaluable for recent studies that seek to determine how intracellular pathogens

subvert NF-κB signaling to survive and replicate within host cells by providing quantitative

information about the pathogen and changes in NF-κB activity during different stages of

an infection. Here, we provide a brief overview of NF-κB signaling in innate immune cells

and review recent literature that uses live imaging to investigate themechanisms by which

bacterial and yeast pathogens modulate NF-κB in a variety of different host cell types to

evade destruction or maintain the viability of an intracellular growth niche.
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INTRODUCTION

The nuclear factor-kappa B (NF-κB) pathway is considered a master regulator of inflammation
and is intimately involved in the cellular response to infection (1). Similar to other mammalian
transcription factor pathways, such as p53 (2–4), and NFAT (5), the NF-κB pathway can exhibit
distinct dynamic responses to different stimuli (6–9). These dynamics, which include damped
oscillations (7), allow cells to encode complex information about the modality, concentration,
and duration of a particular stimulus in the amplitude, frequency, and persistence of oscillations
(6, 10, 11). These dynamics are essentially decoded at the level of gene expression with different
patterns of behavior leading to differing cell fates and phenotypes (10, 12, 13). This phenomenon,
which is often referred to as dynamicmultiplexing, allows cells to efficiently use a limited number of
signaling pathways to deal with highly complex signaling environments (11). The dynamic behavior
of the NF-κB pathway can be challenging to study using standard biochemical techniques that
use population averaging because the responses of individual cells to a given stimulus can differ
markedly (7, 9). This may be due to the difficult to control effects of paracrine and autocrine
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signaling (12), inherent differences between cells and the
signaling history of the cell (extrinsic noise), and the stochasticity
of certain elements of the signaling pathway (e.g., transcription
and translation; intrinsic noise) (8, 14, 15). For these reasons, live
cell imaging (often in combination with mathematical modeling)
has become an invaluable tool for studying NF-κB signaling
(16, 17), and has been used to characterize the specific feedbacks
that shape the behavior of the pathway (6, 7, 18, 19). For
similar reasons, live cell imaging is being increasingly used to
improve our understanding of the role NF-κB signaling plays
during infection with intracellular pathogens (20–23). In tissue
culture models of infection, only a fraction of the cells within the
population may become infected and this will occur at different
times between cells making it difficult to build an accurate
picture of how NF-κB signaling is affected during each stage
of the pathogenic process. Live cell imaging provides a means
to deconvolve events occurring during different stages of an
infection (20), distinguish between non-infected and infected
cells (23), as well as keeping track of changes in intracellular
microbial burden within individual cells (22).

In the following review, we will provide a brief overview
of NF-κB signaling and describe how live cell microscopy has
been used to investigate the capacity of the pathway to encode
information about the signaling environment of the cell in the
dynamics of NF-κB transcription factors. We will discuss the
duality of NF-κB signaling within the context of host:pathogen
interactions and how it can both aid and hinder the response
to an infection. Finally, we describe how recent live cell studies
have provided new insights into the ways in which different
microbial pathogens incorporate NF-κB modulation as a part of
intracellular survival strategies.

BASIC INSIGHTS INTO NF-κB
REGULATION FROM LIVE CELL IMAGING

At the core of the NF-κB pathway are the Rel family of
transcription factors: p65 (RelA), RelB, c-Rel, p100/p50, and
p105/p52, each containing a central DNA binding motif, known
as the Rel homology domain (24). These proteins can form
homo- or heterodimers in virtually any combination with
p65:p50 dimers appearing to be themost common. In the absence
of stimulus, NF-κB activity is suppressed by inhibitor kappaB
(IκB) proteins, which anchor NF-κB transcription factors in the
cytoplasm. The canonical wing of the NF-κB pathway, defined
by the activity of p65-containing dimers, can be activated by
diverse stimuli. These range from the proinflammatory cytokines,
tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-
1β), to microbe-associated molecular patterns (MAMPs) like
lipopolysaccharide (LPS) and flagellin, which are recognized by
surface or phagosomal pattern recognition receptors (PRRs),
including the toll-like receptors (TLRs) (25). In each case,
activation proceeds via the IκB kinase (IKK) complex, a
convergence point for the NF-κB pathway. The IKK complex
phosphorylates both NF-κB and IκB proteins (26, 27), regulating
the activity of the former and stimulating the degradation
of the latter. In the case of IκBα, an IκB isoform associated

with the regulation of canonical NF-κB signaling, the protein
is phosphorylated at serine 32 and 36, creating a phospho-
degron, which is recognized by the E3 ubiquitin ligase complex,
SCFβ−TRCP, and leads to polyubiquitination and proteasomal
degradation of IκBα (28). IKK-dependent phosphorylation also
promotes the degradation of other IκB isoforms (i.e., IκBβ and ε)
and the processing of p100 and p105 to p52, and p50, respectively
[reviewed in (29)].

In addition to regulating genes involved in innate immunity
and inflammation, p65 also promotes the expression of a core
set of negative regulators, IκBα, IκBε, and tumor necrosis factor
alpha-induced protein 3 (TNFAIP3/A20, Figure 1) (6, 7, 19). The
inherent delay in the expression of these proteins is thought
to be responsible for the oscillatory behavior of the pathway.
While each of these feedbacks was first identified in genetic and
biochemical studies (19, 30–33), the individual roles played by
these in shaping NF-κB dynamics was clarified by subsequent
studies using live imaging and mathematical modeling. As
RNA polymerase II associates with the IκBα promoter prior to
stimulation (6), this feedback is rapidly activated on nuclear
translocation of p65 and is perhaps most closely linked to the
oscillatory behavior of the pathway (7). Expression of IκBε is
delayed relative to IκBα and this may play a role in increasing
the heterogeneity of the response between cells in addition to
helping terminate NF-κB activation after transient stimulation
(6, 19). Finally, A20 provides a non-redundant feedback that
operates over longer timescales (34), inhibiting IKK activity
by antagonizing upstream regulators (35). Expression of the
TNFAIP3 gene, which encodes A20, is temperature sensitive and
may imbue the NF-κB pathway with the ability to adjust the
expression of select NF-κB-regulated genes across physiologically
relevant temperatures during infection and inflammation (36).

The core negative feedbacks are supplemented by additional
cell type and stimulus-specific feedbacks. The best example of this
is the feedback dominance switching observed in macrophages
exposed to LPS (18), which enables cells to discriminate
between high and low LPS concentrations. In response to high
concentrations of LPS, p65 is able to transactivate expression of
the Rela gene, increasing the expression of p65 and overcoming
negative feedbacks that would otherwise curtail NF-κB activity.
This mechanism is likely specific to macrophages or at least
lymphoid cells as it requires expression of Ikaros, a transcription
factor involved in lymphoid development (37). The NF-κB-
regulated expression of TNFα could also be considered a second
positive feedback, acting as an autocrine or paracrine signal to
prolonging the NF-κB response to LPS in mouse embryonic
fibroblasts as well as increasing the heterogeneity of the response
in murine macrophages (12, 38).

The challenging task of assigningmeaning to NF-κB dynamics
has been addressed by recent studies that supplement live
cell imaging with microfluidics and transcriptional profiling
to either shape and synchronize NF-κB dynamics across a
cell population through periodic forcing (10) or link the
dynamics in individual cells to single cell RNAseq transcriptional
profiles (12). These studies, together with earlier work (6),
collectively show that different dynamic responses can produce
distinct patterns of gene expression and changes in cellular
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FIGURE 1 | Information processing by the NF-κB pathway. The NF-κB pathway is able to encode information about time-varying stimuli. In this illustration, which

depicts LPS-induced NF-κB activity in macrophages, we list the factors that influence the dynamics of the response in individual cells. These include the core negative

feedbacks (red dashed lines) and positive feedbacks (green dashed lines). The variability in single cell NF-κB dynamics are contributed to by a variety of factors,

including paracrine signaling, and result in different patterns of gene expression between cells. The intrinsic biochemical noise of gene expression will also create

variability within the responses of individual cells.

function. This appears to be because the transcripts of NF-
κB target genes with related functions are expressed with
similar kinetics or have similar stabilities. In this way, the
expression of cytokines and cytokine receptors closely track NF-
κB dynamics and will even oscillate, whereas the transcripts
for target genes associated with other processes, including
remodeling the extracellular matrix, accumulate more slowly
and require repeated cycles of NF-κB nuclear accumulation in
order to be expressed at biologically meaningful concentrations

(10). Therefore, it seems logical that exogenous factors that
influence NF-κB dynamics could effectively alter their meaning,
impacting gene expression, and potentially compromising the
response.

A large number of microbial pathogens are known to
utilize effectors that directly target components of the NF-κB
system and those that replicate or survive within host cells
may also indirectly affect NF-κB as a consequence of other
pathogen-encoded activities (39, 40). In most studies, these
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effects are characterized as simply inhibiting or activating NF-
κB signaling in host cells. Given our current understanding of
the relationship between NF-κB dynamics and gene expression,
we assert that a more nuanced view of these effects is
called for if we are to fully understand the role NF-
κB signaling plays in innate immunity and host: pathogen
interactions.

LIVE IMAGING AS A TOOL TO STUDY
NF-κB MODULATION BY INTRACELLULAR
PATHOGENS

Overall, the use of live cell imaging to investigate NF-κB
responses in cells exposed to live pathogens is surprisingly
uncommon and is dwarfed by a wealth of similar studies using
purified microbial ligands. Perhaps for this reason, the earliest
publications in this area compared the kinetics of the TLR4-
NF-κB response in cells co-cultured with intact, extracellular E.
coli or LPS isolated from the same organism, showing similar
effects (41). Other early publications used live cell imaging
to correlate the attachment of bacteria to the surface of host
cells with the timing of an NF-κB nuclear accumulation and
disentangle the asynchronous responses between cells. This was
used in two separate studies by the Meyer group to show
that H. pylori with an intact type IV secretion system could
induce p65 oscillations in human gastric epithelial cells (42),
and that the force of type IV pilus retraction could stimulate
waves of p65 nuclear translocation as Neisseria gonorrhoeae
microcolonys form and fuse on the surface of infected
cells (21).

While these studies using extracellular pathogens have been
informative, they are mainly descriptive and do not provide
deeper insights into howNF-κB signaling alters during the course
of an infection or how it impacts outcome. During intracellular
infections, NF-κB activity is very much a double-edged sword
that can benefit both host and pathogen. It can strengthen the
innate immune response of the host through expression of pro-
inflammatory cytokines and directly enhance the microbicidal
activity of macrophages by promoting expression of Nos2 and
other markers ofM1 polarization (43–45). However, by positively
regulating the expression of anti-apoptotic proteins, prolonged
NF-κB activation can extend the survival of infected cells,
providing a niche for the intracellular persistence and replication
of the pathogen. Perhaps for these reasons, a wide variety of
bacterial and eukaryotic pathogens, including Salmonella (23, 46,
47), Legionella pneumophilia (20, 48), and Toxoplasma gondii
(49, 50) target NF-κB during infection. It is also common for
individual pathogens to express multiple effectors, regulating
different components of the NF-κB system to contrasting effect,
deploying them individually or in combinations at different
stages of an infection (39).

Delineating the various events that impact NF-κB activity
during intracellular infection can be especially challenging.
Intracellular pathogenesis is a multistage process, involving the
microbe-active or -passive entry into host cells, intracellular
survival of the pathogen, which may be accompanied by

replication, and eventual exit (51). Changes in NF-κB activity
may be associated with any phase of the process, driven by
recognition of microbial antigens by host cell PRRs, either
pre- or post-entry, or through the delivery of microbial
effectors into the host cell. Even in cell culture models of
infection, these events will happen asynchronously and,
indeed, intracellular microbial burden will vary between
cells. Furthermore, non-infected cells may exhibit so-called
bystander effects, either through interaction with shed MAMPs,
paracrine signaling, or a combination of both, complicating
analysis (23). However, as many intracellular pathogens
can be genetically modified to express fluorescent markers
or are large enough to be identified in brightfield images,
live cell microscopy can be used to track the progress of
infection in individual cells while simultaneously monitoring
changes in the localization of NF-κB proteins (Figures 2A,B)
(22, 23). Quantitative time-resolved measurements of this
type, and the ability to separate the responses of bystanders
from those occurring in infected cells would be impractical
(if not impossible) to achieve using bulk cell analysis
techniques.

This approach was used in a recent study by Ramos-
Marquès et al. to characterize the effect of Salmonella enterica
serovar Typhimurium (S. Typhimurium) on NF-κB signaling
in fibroblasts (23). S. Typhimurium is a cause of inflammatory
enteric disorders in mammals and is able to colonize fibroblasts
after penetrating gut epithelium (52). While it was known
that exposure to S. Typhimurium was capable of triggering
NF-κB activity in these cells through recognition of shed
MAMPs, LPS and flagellin by TLR4 and TLR5, respectively,
it was previously unclear whether intracellular persistence of
the bacterium affected the response. In order to explore this,
the investigators used live imaging together with microfluidics
in order to transiently expose fibroblasts to live bacteria for
10min. This approach both limited the exposure of non-infected
cells to shed extracellular MAMPs while also minimizing the
effects of paracrine signaling. Although infected cells exhibited a
heightened initial NF-κB response to S. Typhimurium exposure,
presumably due to engagement of both surface and intracellular
TLRs, subsequent exposure to bacteria or TNFα elicited a much-
diminished response. The decreased nuclear translocation of
p65 in these cells was accompanied by decreased IL1B and
increased SOCS3 expression, a cytokine signaling suppressor.
These effects required a functional type III secretion system
expressed from the Salmonella pathogenicity island 1 (T1)
but not pathogenicity island 2 (T2). While the specific S.
Typhimurium effectors responsible were not identified, it is
known that a variety of T1 and T2 effectors directly target NF-
κB pathway components and are capable of both increasing and
decreasing NF-κB activity in different cellular contexts (47, 53,
54). These include AvrA, which inhibits p65 nuclear translocation
by deubiquitinating IκBα (47). The ability to selectively employ
combinations of these effectors in different host cell types may
provide S. Typhimurium with the capability to tune host NF-κB
responses to contrasting effect, either leading to the apoptosis
of the host cell or extending its viability for use as a growth
niche.
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FIGURE 2 | Translational interference by intracellular pathogens alters NF-κB signaling dynamics. Both the fungal pathogen, C. neoformans (A–C), and bacterial

pathogen L. pneumophila (D–E), alter NF-κB signaling by inducing translational interference in host cells. In C. neoformans infected cells, these effects are influenced

by microbial burden. (A) Changes in burden can be tracked in live host macrophages. RAW 264.7 murine macrophages were stained with the membrane dye

CellTrackerTM Red CMTPX dye (Red) and infected with GFP-expressing C. neoformans (Green) then imaged by live cell fluorescence microscopy. The number of

intracellular C. neoformans in each cell is marked in white. Burden can increase or decrease due to C. neoformans replication and non-lytic extrusion (NLE),

respectively. (B) RAW264.7 cells expressing p65-EGFP were infected with C. neoformans and imaged by live cell fluorescence microscopy in the presence of LPS.

For the two infected cells, white and red dashed lines indicate cell and nuclear boundary, respectively. Intracellular C. neoformans are marked with arrows. (C)

Quantification of p65-EGFP nuc:cyto ratio in 4 representative non-infected and infected cells (containing ≥3 yeast per cell). Scale bars represents 20µm. (D,E)

Epithelial cells exhibit a biphasic NF-κB response to L. pneumophila. (D) During the first phase, flagellin from extracellular L. pneumophila stimulates transient

TLR5:MyD88-dependent nuclear localization of p65. (E) In contrast, the second phase is flagellin, TLR5, and MyD88-independent and requires the L. pneumophila

Dot/lcm secretion system. Delivery of effectors into host cells induces translational interference, the partial inhibition of new protein synthesis. This results in a net

decrease in the levels of IκBα (and A20) proteins, labile negative regulators of NF-κB signaling. The resulting stable accumulation of p65 proteins in the nucleus

promotes increased expression of a subset of pro-inflammatory cytokines, including GM-CSF and IL-23, encoded by the Csf2 and Il23a genes, respectively. The

images and data depicted in (B,C) were originally published in Hayes et al. (22), reproduced with permission. © The American Society for Biochemistry and Molecular

Biology.
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TRANSLATIONAL INTERFERENCE: A
RECEPTOR-INDEPENDENT MECHANISM
OF ALTERING NF-κB SIGNALING IN HOST
CELLS

Facultative intracellular pathogens, by definition, do not require

a mammalian host for replication. It is thought, therefore, that
many of the strategies employed by these pathogens to evade
host macrophages evolved in order to survive interactions with
environmental protozoa, such as amoeba (55). These strategies
may involve the expression of virulence factors that enable

pathogens to either avoid ingestion by phagocytes or by targeting
highly conserved, essential eukaryotic processes within the host

cell in order to survive ingestion. It is notable then that a
variety of bacterial and eukaryotic intracellular pathogens are
able to induce translational interference, the partial suppression

of nascent protein synthesis in host cells [reviewed in (56)].
While the primary purpose of this might be simply to increase
the availability of free amino acids within the intracellular
environment for microbial growth and attenuate innate immune
function, its effects on cellular signaling should not necessarily

be dismissed as “collateral” or a secondary effect. As feedback
in the NF-κB system requires protein synthesis, translational

interference will alter NF-κB dynamics and downstream gene
expression. This has been illustrated by experiments where
partial inhibition of ribosome function in the absence of external
stimulus or microbial pathogens have driven a rapid reduction
in IκBα (and slower loss of IκBβ and IκBε) and nuclear

accumulation of p65 in murine fibroblasts (57). Within the
context of an intracellular infection, this could hypothetically
aid the pathogen by disrupting the normal operation of
the pathway but it may also provide a receptor-independent
mechanism by which intracellular microbial activity could be

detected and responded to by host cells. These possibilities
have been explored in a number of recent studies utilizing

live cell imaging to measure NF-κB activity during infection

with the facultative intracellular pathogens, L. pneumophilia and
Cryptococcus neoformans (20, 22).

The encapsulated fungal pathogen, C. neoformans, is
ubiquitous in urban environments and infects most individuals
during childhood. It rarely causes disease in immune-competent

hosts (58). Instead, it can enter a chronic, dormant state in

host macrophages, often for many years, before later emerging
should the immune system become compromised, leading to

pneumonia and meningitis. As such, it is generally characterized
as an AIDS-associated infection and is thought to be responsible
for approximately 181,000 deaths per year worldwide, with most
occurring in sub-Saharan Africa where HIV is endemic (59).

The C. neoformans polysaccharide capsule is essential for

virulence and is largely made up of glucuronoxylomannan
(GXM). GXM is synthesized and deployed as capsule rapidly
after the inhalation of C. neoformans spores, increasing the
effective radius of the yeast particle, impeding ingestion by

host phagocytes and masking cell wall antigens that could be
detected by PRRs. GXM is continually shed during growth as
polysaccharide-filled vesicles both pre- and post-phagocytosis

and appears to have immunomodulatory activities in this form
(60). While there is disagreement in the literature about the
precise effects of free GXM (61), possibly due to differences in the
cell models used and GXM purification methods, several groups
have shown that it is capable of suppressing TLR4 and MyD88-
dependent NF-κB activation in a FcγRIIb and SHIP-dependent
manner both in vitro and in a murine model of endotoxic shock
(22, 62, 63).

Interestingly, the effects of GXM and capsular polysaccharides
on NF-κB signaling may differ when secreted by phagosomal C.
neoformans. This was explored in a recent study by Hayes et al.
(22), which utilized the RAW264.7 NF-κB reporter cell line first
described by Sung et al. (18), in order to simultaneously monitor
p65 localization, the expression of an mCherry reporter of TNF
promoter transactivation, and intracellular microbial burden.
During these experiments, microbial burden was highly variable,
as C. neoformans is able to both replicate within the acidified
environment of the phagolysosome and also exit host cells
without inducing cell death by non-lytic extrusion (Figure 2A)
(64). While phagocytosis of encapsulated C. neoformans alone
did not have an immediate effect on NF-κB signaling in host
macrophages, it was capable of influencing the response of
infected cells to pro-inflammatory stimulus. Specifically, when
infected cells were challenged with LPS, the amplitude and
duration of the response was increased and this was found
to be dose-dependent, escalating with intracellular microbial
burden (Figures 2B,C). This effect was lost when macrophages
were infected with the capsule-deficient, GXM-negative C.
neoformans mutant strain, CAP59, indicating that this effect
was GXM-dependent. Interestingly, only live GXM-positive
C. neoformans strains but not CAP59 or heat killed yeast
induced a measurable decrease in nascent protein production
in host cells, as measured by ribopuromycylation, suggesting
that the altered NF-κB response was a product of GXM-induced
translational interference. These data were consistent with the
findings of an earlier independent study showing a reduction in
protein translation rate in C. neoformans-infected J774.1 murine
macrophage-like cells (65). Even though the overall change in
NF-κB dynamics in the live cell imaging study were slight and
would be difficult to detect in biochemical assays, it seems likely
that it would be sufficient to influence the pattern of NF-κB
regulated gene expression given the strong association between
NF-κB dynamics and transcriptional output, which has been
clearly demonstrated in macrophages (12).

The strategies employed by intracellular pathogens to subvert
signaling may differ by cell type and can also alter as an infection
progresses. For example, L. pneumophila, the causative agent of
Legionnaires’ disease can directly activate IκBα degradation and
NF-κB in host macrophages through secretion of LegK1 effector
proteins, an IKK mimic (48), promoting host cell survival.
However, in epithelial cells, L. pneumophila induces biphasic NF-
κB activation, which was resolved in a live cell imaging study
by the Meyer group (20). The first phase of activation involves
the recognition of flagellin, a component of L. pneumophila
flagella, by TLR5, triggering transient MyD88-dependent nuclear
translocation of p65 in infected cells (Figure 2D). This was
associated with NF-κB-dependent expression of IL-8, likely
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benefiting the host (66, 67). The second phase was TLR5
and MyD88-independent and instead required a functional
Dot/lcm type IV secretion system, used by the bacterium to
deliver effector proteins into host cells from the Legionella-
containing vacuole (Figure 2E). This stimulated long-lasting,
non-oscillatory p65 nuclear localization and was associated
with a reduction in IκBα levels and expression of the anti-
apoptotic proteins cIAP1, cFLIP, and XIAP, which the authors
hypothesized would aid the pathogenesis of L. pneumophila
through preservation of the intracellular growth niche. It is
notable that earlier studies interpreted the TLR5-dependent and
Dot/lcm-dependent responses as separate effects achieved at
different multiplicities of infection rather than sequential events
occurring during infection (68, 69). In this regard, the use of live
cell imaging was instrumental in correcting this misconception.

Subsequent studies by an independent group indicate that the
second phase of NF-κB activation in L. pneumophila infected
cells is a product of translation interference (40), requiring the
L. pneumophila Dot/Icm type IV secretion system to deliver
a cocktail of five bacterial effectors into host cells to globally
decrease—but not completely inhibit—mRNA translation. As
IκBα proteins are particularly labile and turn over quickly, under
these conditions, the rate of IκBα degradation exceed the rate of
production, resulting in a rapid decrease in IκBα protein levels
accompanied by stable nuclear accumulation of NF-κB in host
cells. This results in the selective “superinduction” of specific
transcripts that are not normally responsive to transient PRR-
mediated NF-κB activity. While the precise mechanism remains
unclear it seems likely that the shear number of these transcripts
and possibly the stability of the protein products overcome
the translational bottleneck in L. pneumophila infected cells.
Proteins upregulated in these cells included the proinflammatory
cytokines, interleukin-23 and GM-CSF, suggesting that this stable
nuclear localization of p65 may not be entirely beneficial to the
pathogen and may represent a receptor-independent mechanism
of NF-κB activation, providing a means to initiate an innate
immune response.

CONCLUDING REMARKS

Live cell imaging has transformed our understanding of how
the NF-κB system coordinates the cellular response to stimuli,
especially in innate immune cells. The ability of this technique to
disentangle differing and asynchronous responses of individual
cells has also made it ideal for investigating how intracellular
pathogens manipulate NF-κB signaling in host cells, particularly
in instances where the effects on this pathway are influenced
by intracellular microbial burden or the changing repertoire of
microbial ligands and effectors presented or deployed during the
course of an infection (22). Despite the various advantages of the
technique, to the author’s knowledge, it has seldom been used for
this purpose and thismini-review represents a relatively complete
overview of the current literature in this area.

Prior genetic and biochemical studies have shown that
modulation of host cell NF-κB signaling is relatively common
among gastrointestinal pathogens, including Helicobactor pylori

(70), Shigella (71), and Yesinia (72), and has been demonstrated
in other invasive bacteria, such as Mycobacterium tuberculosis
(73). Overall, it appears that NF-κB modulation is utilized by
pathogens to either “buy-time” for intracellular replication, as
employed by Mycobacterium tuberculosis and Shigella (71, 73)
by stimulating the expression of pro-survival NF-κB-responsive
genes, or to do quite the reverse, by using effectors that inhibit
host cell NF-κB-activity to blunt an inflammatory response
or promote apoptosis in order to evade destruction by innate
immune cells or aid escape and dissemination (72). While
these previous studies have successfully identified the molecular
players required for subversion of NF-κB signaling in host cells, a
reexamination of these effects using live cell imaging is merited.
As demonstrated by the research highlighted in this review, this
method could help to resolve otherwise hidden bi- or multiphasic
responses to intracellular pathogens (20), and perhaps most
interestingly, link the different NF-κB responses of individual
cells to specific transcriptional responses using fluorescent
reporters (18, 22) or downstream single cell transcriptomics (12)
and different infection outcomes (e.g., intracellular replication,
non-lytic exocytosis, host cell death, killing of the pathogen
etc.).

Despite the potentially very useful insights that can be
obtained through the application of this technique, our
enthusiasm should be tempered by an awareness of its inherent
limitations, which stem from the absolute requirement to modify
the system being studied through the use of fluorescent tags and
the over-expression of exogenous proteins, both of which have
the potential to affect the behavior of the pathway. The former
is perhaps least concerning as careful characterization of p65
fluorescent fusions has suggested that GFP-tags neither interfere
with the ability of the protein to transactivate gene transcription
or correctly associate with regulators, including the IκB proteins
(74), although it may have as yet unrecognized consequences.
The effects of protein overexpression on the behavior of the
NF-κB are less clear-cut. Experimental evidence has suggested
that p65 overexpression has little effect on pathway behavior
(75), although separate studies have indicated IκBα levels recover
more rapidly after stimulation in cells expressing p65-GFP in
addition to the endogenous protein (42). More recent studies
have attempted tominimize the effects of overexpression by using
BACS or stable transduction of viral constructs to express p65
fusions under the control of the endogenous promoter (18, 36).
In these ways, expression levels of tagged p65 can be regulated
appropriately by the cell and kept more closely to endogenous
levels than might be achieved through transient transfection of
plasmid constructs. It also seems likely that future studies will
utilize CRISPR/Cas9-based gene editing to introduce fluorescent
proteins into the endogenous locus of NF-κB genes to avoid
protein overexpression.
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