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Abstract. Telomeres are specific DNA regions positioned at 
the ends of chromosomes and composed of functional non-
coding repeats. Upon cell division, the telomeres decrease in 
length by a preordained amount. When the telomeres become 
critically short, cells lose the ability to divide and enter a 
specific functioning mode designated as ‘cellular senescence’. 
However, human tissues express an enzyme that deters the 
shrinking of the telomeres, the telomerase. Due to its ability 
to maintain telomere length, the telomerase slows down and 
possibly suspends the aging of the cells. In regard to this, solid 
evidence demonstrates that female human fertility decreases 
with increased maternal age and that various adverse factors, 
including alterations in telomerase activity, can contribute to 
age-associated infertility in women. The fact that telomerase 
activity is regulated in a time- and location-dependent manner 
in both embryo and placental tissues, highlights it potential 
importance to the successful completion of pregnancy. Since 
maternal age is a crucial determining factor for the success of 
in vitro and in vivo fertilization, numerous studies have focused 
on telomerase activity and its correlation with mammalian 
fertilization, as well as the following cleavage and  pre-implan-
tation developmental processes. Associations between 
telomerase activity and pregnancy complications have been 
previously observed. Our aim in this review was to summarize 
and critically discuss evidence correlating telomerase activity 
with pregnancy complications.
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1. Introduction

Telomeres are specific sections of DNA at the end of chromo-
somes comprised of tandem DNA repeats (TTAGGG). Their 
biological role is to prevent DNA shortening, protect chro-
mosomes from inappropriate DNA fusions, as well as DNA 
breaks in order to maintain genomic integrity and stability (1). 
Importantly, upon each cell division, telomere length  (TL) 
decreases by 50‑200  base pairs, which together with cell 
aging, ultimately results in a crucial TL point which triggers 
chromosomal fusions and/or apoptosis (2). Telomeric integrity 
is maintained by the specific activity of telomerase, a cellular 
holoenzyme. Telomerase, consists of two subunits, an enzymatic 
protein component, telomerase reverse transcriptase (TERT), 
that adds the telomeric DNA repeats onto the end of chromo-
somes, and an telomerase RNA template component (TERC), 
that serves as a template for telomeric DNA synthesis (3). Due 
to the fact that TERT is responsible for telomerase activity (TA), 
its expression is tightly regulated, being highly expressed only in 
periodically or continuously renewing tissues, such as in cells of 
the hematopoietic system, germ cells, the epidermis and tumors. 
Contrary to TERT, TERC is widely expressed in all types of 
cells, but is unable to induce TA (4).

The complex cell aging system regulates the longevity of 
cells, as well as senescence. Without functional telomerase, a 
typical ‘dividing’ cell will exhibit progressive telomere short-
ening, which upon reaching a ‘critically’ short TL, results in 
telomere‑dependent replicative senescence and in an inability to 
divide further (4). It is interesting to note that although the word 
‘aging’ is usually associated with old age, aging in the sense 
of telomeres is a life‑time phenomenon that begins even before 
birth. Age‑related diseases manifest mostly in old age; however, 
the aging process at the cellular level can be viewed as a life-
long progression (5). Importantly, premature aging phenotypes, 
collectively termed ‘telomere syndromes’ (6), can be induced by 
rare mutations in human TERT (hTERT). Furthermore, hTERT 
overexpression in normal human fibroblasts has been shown to 
protect the cells from apoptosis and necrosis (7). Nonetheless, 
some adverse factors which have been established to cause telo-
mere dysfunction, telomere uncapping or other types of DNA 
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damage, such as oxidative stress, can induce premature cell 
senescence without the presence of critically short telomeres (8).

Telomerase and telomeres functions, due to their roles in 
apoptosis and senescence, have been examined in many aspects of 
reproduction biology, such as fertilization, placental development, 
stress and hypoxic conditions during pregnancy, as well as prema-
ture aging following intrauterine growth restriction (IUGR).

2. Telomerase activity during in vivo and in vitro fertilization

It is well established that female human fertility declines with 
increasing maternal age and that various adverse factors can 
contribute to aging‑associated infertility in women (9). Oocyte 
defects, such as chromosome abnormalities (aneuploidy), are 
a major cause of age‑related decline in female fertility as they 
severely impair embryo implantation and development (10). 
Numerous studies have focused on TA and its correlation with 
mammalian fertilization, as well as following the cleavage, 
and pre‑implantation development processes. Importantly, 
Wright et al (11) demonstrated that TA exists in fetal, newborn, 
and adult testes and ovaries, but not in mature spermatozoa or 
oocytes. In human somatic cells grown in vitro or during replica-
tive aging in vivo, telomeres erode to shorter and shorter lengths 
and continually decreasing levels of TA are detectable (12).

According to Liu et al (13), aberrant cleavage and increased 
cytofragmentation are significantly higher in homozygotic 
telomerase knockout (TR‑/‑) eggs as compared to wild‑type eggs. 
From both in vivo and in vitro fertilization (IVF) experiments, 
it appears that the absence of TA leads to telomere dysfunction, 
which in turn results in aberrant fertilization and the cleavage of 
TR‑/‑ gametes (13).

Luteinized granulosa cells (GCs) surround the oocyte and 
are major somatic cell components of the ovarian follicle. TA 
is further evidence of the stemness of normal, non‑cancer cells 
in the ovaries (13,14). Successful maturation, fertilization and 
pre‑implantation embryonic development depends on a regulated 
programme of oocyte growth and differentiation coordinated with 
the development and differentiation of the surrounding GCs (15). 
Importantly, it has been demonstrated that TERT is expressed by 
GCs at all stages of ovarian follicle development (16,17). However, 
TERT mRNA expression and TA in GCs have been found to 
decrease with age and basal serum follicle stimulating hormone 
levels (18). Indeed, the low level of TA in the human ovaries was 
found to be related to the age‑related primordial follicle depletion 
and it was suggested that TA may be used as a marker of the ovarian 
functional age (19). Importantly, studies have demonstrated that 
oocyte development is related to the TA of peripherally residing 
GCs. GCs play an important role in the maturation of oocytes 
and are closely associatd with their reproductive quality (20,21). 
Interestingly, TA was found to be highest in the GCs of the small 
preantral follicles, and to decrease subsequently through different 
stages of antral development (22). Moreover, it was shown that the 
relative TL was longer in GCs from mature oocytes compared with 
GCs from immature oocytes in humans (23). Upon measuring TA 
in human GCs obtained from IVF and intracytoplasmic sperm 
injection cycles, it was demonstrated that the rates of oocyte 
maturation and good‑quality embryo generation increased in a 
TA level-dependent manner (24). Indeed, the same authors postu-
lated that women with a high level of TA had a greater likelihood 
of becoming pregnant than those with non‑detectable or low 

levels of TA (24). Along the same lines, the lack of TA in GCs is 
associated with occult ovarian insufficiency (25). Finally, in GCs 
obtained from the same individuals, it was shown that TA predicts 
IVF treatment outcomes better than TL (26). Importantly, TL in 
human eggs was found to predict cytoplasmic fragmentation in 
embryos suggesting that telomere shortening induces apoptosis 
in human prei‑mplantation embryos, well in accordance with a 
telomere theory of reproductive senescence in women (27). This 
data collectively suggest TA/TL of luteinized GCs is positively 
correlated with clinical pregnancy rate and, indicate that TA of 
ovarian luteinized GCs could help health workers to predict the 
clinical outcomes of IVF treatment.

3. Telomerase activity in intrauterine growth restriction

During normal pregnancies, a decrease in TA activity when 
comparing the early gestation period (<10 weeks), with the late 
gestation period (>10 weeks), is observed (28). Thus, placenta 
and chorionic villi specimens from the first trimester of gesta-
tion exhibit significantly more TA than placenta and chorionic 
villi specimens from the second and third trimester during 
gestation  (29,30). Specifically, a high TA was identified in 
trophoblast cell fractions of the chorion, suggesting that this 
fraction is a major source of TA activity (31). Additionally, 
the expression of hTERT was observed in chorions from early 
stages of gestation, but not in the placenta at the late stages 
of gestation, with a close correlation between TA and hTERT 
expression (31). A number of studies have been undertaken to 
correlate TA in pregnancies with IUGR. IUGR is a common 
pregnancy complication, which can be defined as the failure of 
the fetus to reach the size for which it is genetically programmed. 
Typically, IUGR affects 5‑10% of all pregnancies (32). Delayed 
growth puts the fetus at risk during pregnancy and is associated 
with adverse outcomes during delivery and to neonate health 
problems. These may include a low birth weight, difficulty in 
handling the stress of vaginal delivery, decreased oxygen levels, 
hypoglycemia, low resistance to infection, low Apgar scores 
(a test given immediately after birth to evaluate the newborn's 
physical condition and determine the need for special medical 
care), breathing problems associated with meconium aspiration 
(inhalation of stools passed while in the uterus), difficulties in 
maintaining body temperature, an abnormally high red blood 
cell count, long‑term growth problems, and in the most severe 
cases, IUGR can lead to still birth (33).

Interestingly, only weak TA was detected in the placenta and 
chorionic villi specimens from women with pregnancies compli-
cated by IUGR (34,35). Indeed, hTERT mRNA expression was 
detected in the placenta and chorionic villi specimens during the 
first, second and third trimester of gestation in normal pregnan-
cies, whereas copy numbers of hTERT were significantly lower 
in placenta specimens from women with pregnancies compli-
cated by IUGR (21). The expression of hTERC was observed 
in chorions obtained during early and late gestation and was 
not linked to TA (31). On the other hand (36), an analysis of the 
TERC telomerase subunit gene copy number in placentas from 
pregnancies complicated by IUGR revealed that the TERC gene 
copy number was decreased in trophoblasts in placentas from 
women with pregnancies complicated by IUGR, and it was thus 
suggested that this may promote senescence in trophoblasts in 
placentas from pregnancies complicated by IUGR.
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In accordance with these data, a decreased TL was observed 
in placenta samples collected from women with pregnancies 
complicated by IUGR (37). Furthermore, a decreased TA in 
placentas from women with pregnancies complicated by IUGR 
was associated with increased apoptosis (34).

Data collected from twins affected by growth discordance 
shed further light on these associations. Twins affected by 
growth discordance exhibit significant differences in their 
growth rate and size even though they develop in the same intra-
uterine environment (38). Importantly, birth weight discordance 
amongst twins is closely correlated to perinatal morbidity and 
mortality (39). TA activity was also investigated in twins affected 
by growth discordance. Thus, specimens from placental tissues 
from twins affected by growth discordance  (>20% weight 
difference) or not (<20% weight difference) were collected after 
birth, and TA was analyzed (40). The results revealed that in 
the growth discordant group, TA was significantly higher in the 
larger twin than in the smaller twin (40).

4. Telomerase activity in hypoxia

Oxygen is a necessity for life; yet, it is toxic to cells when 
dysregulated. Thus, both high and low levels of oxygen are 
deleterious to developing embryos. In normal pregnancies, 
in early gestation, the fetus and placenta exist in a relatively 
hypoxic environment with an ambient pO2 <20 mmHg (41). The 
low oxygen tension favors cell proliferation and angiogenesis 
in the placenta, whereas it simultaneously supports vasculo-
genesis, hematopoiesis and chondrogenesis of the developing 
fetus  (42,43). Upon establishing intervillous circulation at 
approximately 10‑12 weeks of gestation, oxygen tension rises to 
40‑80 mmHg and remains in this range throughout the second 
and third trimesters. In order to support normal placental 
function and fetal development, the placenta adapts to the 
alterations in oxygen levels by the modulation of hypoxia induc-
ible factor‑1α (HIF‑1α) expression and by increasing cellular 
antioxidant defenses (44). Thus, restricted oxygen availability is 
normal and necessary in utero; however, excessive fetal hypoxia 
leads to adverse outcomes, including fetal death, IUGR and low 
birth weight (45). Intrauterine hypoxia occurs when the fetus is 
deprived of an adequate supply of oxygen. Indeed, intrauterine 
hypoxia may be due to a variety of causes, including prolapse 
or occlusion of the umbilical cord, placental infarction, hyper-
tension, anemia, pulmonary disease, preeclampsia, as well as 
maternal smoking (46). Importantly, intrauterine hypoxia can 
cause cellular damage within the central nervous system and 
is associated with a reduced total brain volume and altered 
cortical volume and structure, a decrease in the total number of 
cells and myelination deficits (47). This results in an increased 
mortality rate, including an increased risk of sudden infant 
death syndrome (SIDS). Moreover, oxygen deprivation in the 
fetus and neonate have been implicated as either a primary 
or as a contributing risk factor in numerous neurological and 
neuropsychiatric disorders such as epilepsy, attention deficit 
hyperactivity disorder (ADHD), eating disorders and cerebral 
palsy, as well as in the later development of neurodegenerative 
diseases (48).

HIF‑1 is a transcription factor of major importance in 
the cellular response to oxygen deficiency with specific 
roles during embryogenesis  (49). HIF‑1 is a heterodimeric 

complex composed of the two basic helix‑loop‑helix PAS 
domain (bHLH‑PAS) subunits HIF‑1α and HIF‑1β (50). The 
HIF‑1α gene is constitutively transcribed under hypoxic 
conditions and determines HIF‑1 biological activity  (51), 
whereas the HIF‑1β subunit dimerizes with several different 
bHLH‑PAS proteins and is continuously expressed (50). HIF‑1 
targets genes that encode proteins which regulate oxygen 
homeostasis and are critical for developmental and physiological 
processes in hypoxic environments (51). Indeed, HIF‑1 activity 
is critical for normal fetal development, as it has been shown 
that murine embryos lacking functional HIF‑1 die on/or before 
E10.5 (52). An important issue to resolve is the existence of a 
correlation between HIF‑1 and TA. Indeed, HIF‑1α expression 
was detectable, as demonstrated by western blot analysis, in first 
trimester placenta samples, but not in placental samples from the 
second and third trimester (53,54). Accordingly, hTERT protein 
expression was increased in placental tissues before 10 weeks 
than in placental tissues after 10  weeks of gestation  (54). 
In  vitro Studies have suggested that hypoxia upregulates 
both HIF‑1α expression and TA. Thus, TL distribution in 
HUVECs under hypoxic conditions seems to be regulated by 
a balance between telomere attrition by hypoxia and telomere 
elongation by enhanced TA acting on telomeres (55). Indeed, 
Coussens et al (56) demonstrated that HIF‑1α affects telomerase 
regulation in murine embryological stem cells and these authors 
suggested that HIF‑1a may have a physiologically relevant role 
in the maintenance of functional levels of telomerase in stem 
cells (56). Furthermore, it was demonstrated that the hTERT 
promoter region contains two HIF‑1 consensus motifs, which are 
essential for hTERT transactivation by HIF‑1. The introduction 
of an antisense oligonucleotide for HIF‑1 diminishes hTERT 
expression during hypoxia, indicating that the upregulation of 
hTERT under hypoxic conditions is directly mediated through 
HIF‑1 (54). Thus, Nishi et al (54) suggested that the regulation 
of hTERT promoter activity by HIF‑1 represents a mechanism 
for trophoblast growth during hypoxia according to the previous 
data; there are two possibilities about the association between 
hypoxia induction and TA. DNA damage in the telomere region 
can be induced by hypoxia, which would result in HIF‑1-induced 
telomerase expression in order to heal the damaged chromosome 
ends; or an anti‑apoptotic response may be triggered by the 
hypoxic induction of telomerase (56-58).

5. Telomerase activity and stress exposure in intrauterine life

A rapidly growing body of empirical evidence suggests that a 
major burden of disease can be traced back to the intrauterine 
period of life. Importantly the sensitive biological functions of 
fetal cell proliferation, differentiation and maturation respond 
to, or are affected by conditions in the internal or external 
environment. The result of these responses are structural 
and/or functional changes in cells, tissues and organ systems 
that have important long‑term consequences for subsequent 
health and disease susceptibility (59). Exposure to psychosocial 
stress and/or biological stress mediators during gestation has 
been identified as a condition that may modulate the long‑term 
programming effects of the intrauterine environment (60).

Indeed, exposure to psychosocial stress during gestation 
appears to be an important risk factor for the earlier onset of 
complex, common age‑related diseases (60).
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Studies on humans have demonstrated links between 
chronic or excessive psychosocial stress exposure and telomere 
biology (5,61,62). These data suggest that stress‑related changes 
in telomere integrity may be a possible mechanism linking 
psychosocial stress and age‑related disease  (63). Indeed, 
accelerated telomere shortening reflects stress‑related oxidative 
damage to cells and increased aging (64). Substantial evidence 
supports the hypothesis that depression creates abnormalities in 
stress‑related biological outcomes. Thus, individuals with mood 
disorders have a significantly shorter TL compared with stable 
individuals, representing as much as 10 years of accelerated 
aging (64). Furthermore, it has been demonstrated that exposure 
to a major stress hormone, such as cortisol, is associated with the 
downregulation of TA in activated human T lymphocytes (65). 
This is highly relevant, as leukocyte  TL is a predictor of 
age‑related disease onset and mortality  (66). There is also 
the question of whether cellular aging is related to patterns of 
allostasis (66). Telomeric DNA quantity, DNA damage and heat 
shock protein gene expression have been used as physiological 
stress markers in chickens (67). Exposure to maternal psycho
logical stress during intrauterine life appears to induce not 
only adverse birth and neonatal outcomes, but also subsequent 
health and disease risk‑related outcomes over the lifespan of an 
individual. The relevant outcomes include metabolic, endocrine, 
immune and cognitive processes (5). One important question 
that has yet to be addressed is whether exposure to stress during 
intrauterine development can produce variations in TL, thereby 
potentially setting up a long‑term trajectory at birth that defines or 
contributes to individual susceptibility for complex and common 
age‑related diseases. Entringer et al (59) examined the TL in 
leukocytes of individuals whose mothers had experienced a high 
level of psychological stress during pregnancy. These authors 
demonstrated that exposure to maternal psychosocial stress 
during intrauterine life was associated with a significantly shorter 
TL in young adulthood (59). Additionally, it has been suggested 
that maternal psychological stress during pregnancy may exert a 
‘programming’ effect on the developing telomere biology system 
that is already apparent at birth, as reflected by the setting of 
newborn TL (5). The association between TA and maternal 
stress exposure during pregnancy, has not yet been investigated 
and may shed further light on telomere biology. Indeed, it was 

postulated by Shalev et al (5) that a ‘better understanding of 
the mechanisms that govern and regulate telomere biology 
throughout the lifespan may inform our understanding of 
etiology and the long‑term consequences of stress and mental 
illnesses on aging processes in diverse populations and settings’.

6. Telomerase activity and maternal nutrition

A close correlation between general nutrition and longevity 
has been well‑established. Importantly, nutrition is a key factor 
supporting normal pregnancy and refers to the consumption 
of nutrients and the diet of the mother before, during and after 
pregnancy. The nutrition of the fetus begins as early as concep-
tion. Thus, the nutritional status of the pregnant women is 
important as early as conception, and continues to be important 
throughout gestation and after birth during breastfeeding. It has 
been demonstrated that the nutrition of the mother is crucial 
as it may have an effect on the future health of the child; poor 
nutririon during pregrancy may lead to health complications in 
the later life of the child, and may lead to the development of 
cancer, cardiovascular disease, hypertension and diabetes (68). 
An inadequate or excessive amount of certain nutrients may lead 
to malformations or medical problems in the fetus and in the 
life of the developint child. Indeed, neurological disorders and 
handicaps of the fetus are more common in pregnant women 
who are malnourished (69). As 23.8% of babies worldwide are 
estimated to be born with lower than optimal weights at birth 
due to the lack of proper and sufficient nutrition, malnutrition 
poses a major risk to the health of the fetus (70). In particular, 
personal habits, such as smoking, excessive alcohol and caffeine 
consumption, the use of certain medications and illegal drugs 
can negatively and irreversibly affect the development of the 
fetus, and these negative effects can take place during the early 
stages of pregnancy. Moreover, maternal malnutrition generates 
offspring with a low birth weight (71). Specifically, a diet low in 
protein during gestation has no effect on placental weight, but 
results in a decreased weight of the offspring (72). Importantly, 
malnutrition in female rats has been shown to increase the 
production of the superoxide free radical (O2‑) (73). It is well 
established that oxidative damage is a major feature of the 
aging process and can lead to telomere shortening (74), which is 

Table I. Correlation of telomere length and telomerase activity with pregnancy complications.

Telomerase activity and telomere length	 Pregnancy complications

Decreased telomerase activity and telomere length is reduced	 Intrauterine growth restriction (IUGR)
Higher telomerase activity in the larger twin than the smaller twin	 Growth discordant twins
Increased telomerase activity	 Hypoxia
Absence of telomerase results in aberrant fertilization	 In vivo and in vitro fertilization treatment
Decreased telomerase activity could be expected	 Stress exposure in intrauterine life
Low protein diet during gestation leads to fewer large	 Maternal nutrition
telomeres and more short telomeres
Increased telomerase activity and no differences in fetal telomere length	 Hypertensive disorders
between normal pregnancy and gestational hypertension	
Increased telomerase activity but fetal telomere length is shorter	 Gestational diabetes or diabetes
in gestational diabetes than that of normal pregnancy	
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associated with cellular senescence in vitro and in vivo (75,76). 
These data lead to the conclusion that increased cell apoptosis in 
the offspring can be caused by maternal protein restriction (75).

Importantly, maternal diet was found to influence  TL 
in the rat offspring (77,78). Thus, the offspring of mothers 
who consumed a diet low in protein during gestation had 
significantly shorter telomeres compared to the controls. In 
addition, maternal protein restriction during lactation increased 
longevity and reduced renal telomere shortening compared 
with offspring that were maternally protein-restricted in utero 
and then suckled by normally fed dams (79). The nutritional 
programming of coenzyme Q was found to be relevant to 
aortic TL in rats with different gestational regimes of this 
coenzyme (80). The correlation between telomerase biology 
and various pregnancy complications is summarized in Table I.

7. Conclusions

The functions of telomerase and telomeres have been examin-
edin many aspects of reproduction biology, such as fertilization, 
placental development, stress and hypoxia conditions during 
pregnancy, as  well  as premature aging following IUGR. 
Importantly, varying TA activity has been shown during the 
progression of normal pregnancies; TA activity being signifi-
cantly higher in the early as compared to the late gestation 
period. It is noteworthy that under pregnancy-related patho-
logical conditions, TA is decreased or absent, which results in 
significantly shorter telomeres. In depth studies on telomere 
biology during reproduction can improve our understanding of 
the significance of telomerase in fetal development and lifelong 
consequences on illnesses and aging processes in different 
populations. This understanding may lead to better prevention 
policies and may perhaps reveal novel therapeutic strategies.
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