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Abstract: Background: Despite its widespread use, the use of prostate-specific antigen (PSA) alone
as a screening biomarker for prostate cancer (PCa) leads often to unwarranted prostate biopsy, over-
diagnosis, and consequently, over-treatment, because of its limited specificity. There are reports that
the apoptosis inhibitor of macrophage (AIM), secreted mainly by macrophages and epithelial cells, is
upregulated during inflammation and facilitates immune recognition of cancerous cells by blocking
human regulator of complement activation. Objective: These controversies around the PSA utility
necessitate a reexamination of its use as a screening tool. More so, despite the suggested implication
of AIM in anticancer immunosurveillance, there is a dearth of information on its role in therapy
response, disease progression, and clinical outcomes of patients with PCa. These inform the present
study to probe the nature and role of AIM/PSA signaling in anticancer immunity and prognosis in
PCa. Methods: A combination of bioinformatics-aided statistical analyses, gene function annotation,
and immune infiltrate analyses, coupled with tissue staining, and function assays, namely migration,
invasion, and clonogenicity assays, we employed. Results: We demonstrated that AIM and PSA
expression levels are inversely correlated in PCa clinical samples and cell lines, with AIMIowpgAhigh
defining PCa, compared to AIMM8'PSAIOW in normal samples. Concomitant aberrant PSA and
significantly suppressed AIM expression levels positively correlated with high-grade disease and
characterized by advanced stage prostate cancer, regardless of mutation status. We found that a
high PSA /AIM ratio is associated with disease recurrence in patients with prostate cancer but is
equivocal for overall survival. In addition, PSA-associated AIM suppression is implicated in the
enhanced ‘metastability” of PCa and a high AIM/PSA ratio is associated with strong castration-
induced regression. CRISPR-mediated AIM knockout was associated with higher PSA expression
while ectopic expression of AIM significantly attenuated the migration and invasive capability of PC3
and DU145 cells. Interestingly, compared to normal samples, we observed that AIM, biomarkers of
T-cell activation and M1 phenotype markers are co-suppressed in PCa samples. Conclusion: Herein,
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we demonstrate that AIM/CD5L binds to PSA and that a high PSA /AIM ratio defines advanced
stage PCa (regardless of mutation status), is implicated in enhanced metastability, and associated
with disease recurrence, while a high AIM/PSA ratio is associated with strong castration-induced
regression. More so, the ectopic expression of AIM significantly enhances the anticancer effect of
Pembrolizumab and elicits an increased CD8+ T-cell count in AIMMPSA°PDL1+ PCa cases that are
respondent to Pembrolizumab treatment.

Keywords: prostate cancer; apoptosis inhibitor of macrophage; AIM; CD5L; prostate-specific antigen;
PSA; KLK3; immune cells; T-cell; advanced disease; metastasis; recurrence; therapy-resistance; prognosis

1. Introduction

Prostate cancer (PCa) remains one of the most frequently diagnosed male malignancy
and cause of cancer-specific mortality, globally, with an incidence of 7.1% and mortality
rate of 3.8% in 2018 alone, and projected increase of ~1.8- and 2.1-fold in incidence and
mortality, respectively, by the year 2040 [1]. The acquisition of a metastatic or recurrent
phenotype by one in three PCa cases within 48 months from initial diagnosis, and evolution
of a fifth of these into castration-resistant PCa (CRPC) by year five of follow up constitutes
a clinical quagmire, especially in the context of about 14 months median survival for CRPC
cases [2,3]. Unfortunately, coupled with this unabated disease incidence, enhanced risk
of disease progression, and comparatively high mortality rate, our understanding of PCa
biology and the molecular mechanisms of PCa pathogenesis and progression continue to
evolve, remaining largely inconclusive.

Intracellular and genetic cancer-defining changes suggest a vital role for host T-cell-
mediated anticancer immune response, wherein the immune cells recognize, target, and
eradicate cancerous cells. Nonetheless, T-cell-mediated elimination of cancerous cells is
only a part of the broad anticancer immunity cascade that ensures the intricate homeostasis
of ‘self” and ‘non-self’ recognition, thus, preventing autoimmunity, while honing precise
targeting of malignant cells [4]. The identification of T-cell inhibitory signals, such as CTL4
and PDL1/PD1 in the tumor microenvironment (ITME), has prompted the development of
a whole new anticancer therapeutic strategy, namely, immunotherapy (more specifically,
immune-checkpoint inhibition), which specifically represses the inhibition of immune
effectors, while rejuvenating and broadening preexistent anticancer immune responses [4].
While immune-checkpoint inhibition (ICI) has triggered a paradigm shift in the treatment
of malignancies, including PCa, and that emerging clinical data suggesting that cancer im-
munotherapy is quickly becoming a key component of contemporary clinical management
of cancer, only a subset of patients exhibit durable response/remission, and ICI “has been
less successful in treating prostate cancer than other solid tumors” [5,6], thus, necessitating
a better understanding of the immune landscape in patients with PCa, identification of
immune-related or immune-boosting biomarkers, and discovery of potential actionable
therapeutic targets.

The prostate-specific antigen (PSA), also known as Kallikrein-related peptidase 3
(KLK3), is a single-chain glycoprotein and protease synthesized by the prostate epithelial
cells and remains the most evaluated serum biomarker used for early prostate cancer
screening, clinical staging, and therapy response monitoring. This is not without contro-
versies. Most PSA—identified PCa are localized and usually low-grade disease, many of
which never progress or become clinically relevant only after ~20 years [7]. This in itself
raises the question of overdiagnosis of low-grade PCa, especially as the rapidly growing,
difficult-to-treat, high-grade PCa are seldom found by PSA testing [7,8]. More so, being a
highly sensitive biomarker, an abundance of false positives cannot be ruled out, and this is
further compounded by the lack of consensual cut-off to delineate indolent from clinically
relevant disease, thus yielding a pool of false positives and negatives [7,8]. For example,
one in five CRPC cases that eventually respond to chemotherapy would have been labeled
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‘non-responders’ based on initial persistent elevated PSA level, that did not decline on
immune checkpoint blockade therapy or only declined after week 12 of chemotherapy [9].
This very modest or no association between changes in the post-treatment PSA level and
treatment response or disease recurrence highlights a critical unmet need in PCa man-
agement. In light of the above, coupled with indismissible confounders such as benign
prostate hypertrophy (BPH) and aging, the use of PSA as a standalone surrogate biomarker
of cancerization, disease progression, or prognosis in patients with PCa, remains incongru-
ous with available evidence, necessitating the discovery of supplementary PSA—related
biomarkers. This need for improved biomarker reliability and accurate indicators of patient
status, informs the present study.

The highly conserved scavenger receptors cysteine-rich (SRCR) superfamily consists
of membrane-bound receptors that are essential for the recognition of both ‘self” and
‘non-self’ targets, and play very vital roles in host defense, including pathogen sensing
and cleaning [10]. The SRCR family integrates specific proteins “expressed by innate and
adaptive immune cells for which no unifying function has yet been described” [11]. The
Apoptosis inhibitor of macrophage (AIM/CD5L/API6/Sp«) is a soluble/secreted member
of the SRCR superfamily that is readily detected in the serum, varying with different
clinical conditions [10,11]. In mice lacking AIM, the number of thymus cells was reduced
by approximately 50% in comparison to their wild-type litter-mates, and interestingly,
CD4*CD8* thymus cells were found to be exceptionally more susceptible to dexamethasone
or radiation-induced apoptosis, in vivo, conversely, apoptosis of the CD4*CD8"* thymus
cells was markedly inhibited by ectopic AIM expression, in vitro [12]. This is suggestive of
a role for AIM in inflammatory response regulation and immune cell viability. However, the
probable role of AIM in the modulation of PSA activity, cancerization, disease progression,
anticancer therapy response, and prognosis is largely unexplored.

The results presented herein demonstrate that AIM/CD5L binds to PSA, and that a
high PSA /AIM ratio is characteristic of advanced-stage PCa (regardless of mutation status),
implicated in enhanced metastability of PCa cells, associated with disease recurrence, while
high AIM/PSA ratio is associated with strong castration-induced regression. More so,
the ectopic expression of AIM was shown to significantly enhance the anticancer effect of
Pembrolizumab and elicited an increased CD8* T-cell count in AIMMPSAI°PDL1+ PCa
cases that were respondent to Pembrolizumab treatment.

2. Material and Methods
2.1. Prostate Cancer Tissue Samples

Prostate cancer tissue samples (1 = 56) were obtained from the Shuang Ho Hospital,
Taipei Medical University tissue bank after ethical approval from the Taipei Medical
University Institutional Review Board (approval number: N202101071). The requirement
for patients’ signed informed consent was waived because of the retrospective nature of
the study.

2.2. Cell Culture and Chemicals

Androgen-independent metastatic prostate carcinoma PC-3 (ATCC® CRL-1435™) and
DU145 (ATCC® HTB-81™) cell lines obtained from the ATCC (American Type Culture
Collection, Manassas, VA, USA), were cultured in RPMI-1640 (Thermo Fisher Scientific Inc.,
Bartlesville, OK, USA) supplemented with 10% fetal bovine serum (FBS, #26140079, Thermo
Fisher Scientific Inc., Bartlesville, OK, USA) and 100 U/mL of penicillin-streptomycin
(Thermo Fisher Scientific Inc., Bartlesville, OK, USA). The cells were passaged when they
attained >97% confluence and the culture medium was replenished every 48 h.
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2.3. Drugs and Antibodies

Pembrolizumab (anti-PD-1; #A2005) was purchased from Selleck Chemicals (Houston,
TX, USA). Stock solutions of 100 mM in 0.01% Dimethyl sulfoxide (DMSO; #D8418; Sigma-
Aldrich Inc., St. Louis, MO, USA) were stored at —20 °C, until use. Monoclonal antibodies
against CD5L/AIM (#sc-390486), KLK3/PSA (#sc-7316), and GAPDH (#sc-32233) was
from Santa Cruz Biotechnology (Santa Cruz, CA, USA), while PDL1/CD274 (#14-5983-82;
eBioscience™), was obtained from Thermo Fisher Scientific Inc. (Bartlesville, OK, USA).

2.4. Construction and Transfection of Plasmids Expressing AIM/CD5L

Ectopic expression of AIM/CD5L was achieved using the AIM (CD5L) (NM_005894)
Human (Myc-DDK)-Tagged ORF Clone (#RC206528L2, OriGene Technologies, Inc., Rockville,
MD, USA) in pCMV6-Entry vector transfected into PC-3 cells using Lipofectamine 2000
reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. Cells
transfected with empty vectors served as controls. Clones stably expressing AIM were
selected by 100 mg/mL Ampicillin (#11593027, Thermo Fisher Scientific Inc., Bartlesville,
OK, USA).

2.5. Cell Viability and Proliferation Colorimetric Assay

Cell viability was assessed using the Sulforhodamine B (SRB) assay. 3 x 10% wild-
type (WT) or CD5L-overexpressing (CD5L_OE) PC3 cells were seeded per well in 96-
well microtiter plates containing supplemented growth media and incubated at 37 °C
in humidified 5% CO,. After 48 h treatment with or without 5 uM Pembrolizumab, cell
viability was measured following the manufacturer’s instructions. Briefly, the WT or
CDS5L_OE PC3 cells were fixed with 10% trichloroacetic acid (TCA), carefully washed with
ddH;0O, and then stained with 0.4:1 (w/v) SRB-acetic acid solution. Unbound SRB dye was
washed off the cells with 1% acetic acid three times, plates containing stained cells were
air-dried, and bound SRB dye solubilized using 10 mM Tris base. For cell proliferation,
Invitrogen alamarBlue™ high sensitivity cell viability reagent (#A50100, Thermo Fisher
Scientific Inc., Bartlesville, OK, USA) was used strictly following the manufacturer’s
instruction. Briefly, after incubating WT or CD5L_OE PC3 cells with or without 5 pM
Pembrolizumab in triplicates with three biological replicas for each assay at each time point
(day 1-5), the cells were incubated with alamarBlue™ for 2 h at 37 °C, and the dye-stained
viable/proliferating cells were quantified at an absorbance wavelength of 570 nm in the
Molecular Devices Spectramax M3 multimode microplate reader (Molecular Devices LLC.,
San Jose, CA, USA).

2.6. Immunohistochemical (IHC) Staining Assays

Immunohistochemistry (IHC) analysis was performed on formalin-fixed paraffin-
embedded (FFPE) sections from our PCa cohort consisting of clinical samples of different
tumor grades (normal:Gleason score (GS) < 5; low: GS = 6; medium: GS = 7; high: GS > 8).
The study was approved by the Taipei Medical University Institutional Review Board
(approval number: N202101071) and performed following the recommendations from the
Declaration of Helsinki for biomedical research involving human subjects. Antibodies
against AIM/CD5L, PSA/KLK3, and PDL1/CD274 were used at 1:250 dilution following
standard IHC protocol. For protein expression scoring, automated scoring was adopted
using the National Institutes of Health Image] software version 1.49 (https://imagej.nih.
gov/ij/, accessed on 27 July 2021), with confirmation by two independent pathologists. For
cell visualization and imaging, the Nikon E800 fluorescent microscope (Nikon Instruments
Inc., Melville, NY, USA) was used.
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2.7. Scratch Wound-Healing Migration Assay

To assess cell migration, the scratch wound-healing assay was performed. Briefly,
WT or CD5L_OE PC3 and DU145 cells were seeded and allowed to grow in 6-well plates
(Corning, Corning, NY, USA) containing complete growth media with 10% FBS. Once
the cells attained >98% confluence, the media in the wells was changed to low serum
(1% FBS) growth media. The median axes of the adherent mono-layered PCa cells were
denuded with sterile yellow pipette tips. Cell migration based on wound closure was
monitored over time, and images were captured at 0 and 18 h after denudation, under a
light microscope using a 10X objective lens. Thereafter, the images were analyzed using
National Institutes of Health Image] software version 1.49 (https://imagej.nih.gov/ij/,
accessed on 27 July 2021).

2.8. Invasion Assay

For invasion assay, we used the Corning® BioCoat™ Matrigel® Invasion Chambers
with 8.0 um PET Membrane in two 24-well plate systems (#354480, Corning, Corning, NY,
USA). 1 x 10° WT or CD5L_OE PC3 cells treated with or without 5 uM Pembrolizumab
were seeded per well in the plates and incubated overnight at 4 °C. The upper chambers
contained 2% FBS-supplemented (low serum) media whereas the lower chamber contained
600 pL 20% FCS-supplemented (high serum) media. After incubating for 48 h, the non-
invaded cells in the upper chamber were wiped off carefully with sterile cotton buds, while
the cells that invaded /penetrated through the membrane to the lower chamber were fixed
with ethanol, stained with crystal violet dye, and counted under a light microscope from
five randomly selected fields of vision.

2.9. Public Cancer Dataset Access and Analysis

The public online cancer data repositories used in this study include a curated dataset
across 32 cancer types (n = 20,386) from the Institute of Cancer Research (ICR) online
platform [13]. The broad_2020_09_c7_immunologic dataset on the R2: Genomics Analysis
and Visualization Platform (https:/ /hgserverl.amc.nl/cgi-bin/r2/main.cgi, accessed on
22 February 2021), MET500 metastatic PRAD cohort data on whole-exome and transcrip-
tome sequencing of ~500 metastatic cancer samples (MET500) [14,15]. We also probed
GSE40272 (HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array dataset
(n =98), GSE46691 (HuEx-1_0-st) Affymetrix Human Exon 1.0 ST Array dataset (1 = 545),
GSE7930 (HG-U133) Affymetrix Human Genome U133 Array dataset (n = 6), GSE21887
(HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array dataset (n = 12), and
GSE32269 (HG-U133) Affymetrix Human Genome U133 Array dataset (n = 55) using
the National Center for Biotechnology Information Gene Expression Omnibus (NCBI
GEO) data Browser (https:/ /www.ncbinlm.nih.gov/geo/query/acc.cgi?, accessed on 15
February 2021) and the Oncomine (https:/ /www.oncomine.org/resource/main.html#v:18,
accessed on 02 March 2021) online platforms. Gene ontology analysis was performed
using the NIAID/NIH DAVID Bioinformatics Resources software version 6.8 (https:
//david.ncifcrf.gov/, accessed on 19 February 2021).

2.10. Statistical Analysis

All data are representative of the mean =+ standard deviation (SD) of assays performed
three times in triplicates. For comparison between two groups, we used the two-sided
Student’s t-test, and one-way analysis of variance (ANOVA) with Tukey’s post hoc test
aided comparison between >3 groups. Kaplan-Meier survival analyses were used to
compare survival rates between groups. All statistical analyses were performed using
GraphPad Prism version 8.0.0 for Windows (GraphPad Software, La Jolla, CA, USA).
p-value < 0.05 was considered statistically significant.
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3. Results
3.1. AIM and PSA Expression Levels Are Inversely Correlated in Patients with Prostate Cancer

Initial expression profile probe of the GSE6956 PCa array data (n = 89) showed
that the expression of AIM transcript in ‘normal’ prostate gland samples was higher
than in the PCa samples (1.31-fold, p = 0.91) (Figure 1A). On the other hand, analysis
of the GSE68907 PCa dataset (n = 102) showed that compared to the normal samples,
PSA transcript expression was significantly upregulated in the PCa samples (2.04-fold,
p =838 x 1075) (Figure 1B). Re-analysis of the TCGA PRAD cohort data (1 = 623) showed
that regardless of sample type, the expression of AIM/CD5L and PSA/KLK3 is inversely
correlated (Figure 1C), such that relative to AIM, PSA transcript expression was signif-
icantly overexpressed (7.41-fold, p < 0.0001) (Figure 1D). Immunohistochemistry anal-
ysis of our in-house PCa samples (n = 56), showed that while the expression of PSA
protein increased with higher tumor grade, AIM expression was strong in the normal
prostate samples but a very mild or null expression was observed in PCa samples, re-
gardless of tumor grade (Figure 1E). In corroboration, using the cancer dependency map
(https:/ /depmap.org/portal/interactive/, accessed on 31 January 2021) SHMACS5, P4E6,
NCIH660, PC3, BPH1, SHMAC4, WPEINA22, 22RV1, VCAP, LNCaP clone FGC, and
MDAPCA2B PCa cell lines data, we found an inversely corrected expression pattern be-
tween AIM and PSA transcripts (Pearson r = —0.22, Slope = —0.00069, linregress p = 0.51)
(Figure 1F, left). Furthermore, in the context of their inversely correlated expression, we
probed for likely genetic dependencies between AIM and PSA. Using the cancer depen-
dency map platform (https://depmap.org/portal/interactive/, accessed on 30 January
2021), we observed that CRISPR-induced suppression of aim/cd5! gene effect, elicited upreg-
ulated PSA transcript expression in LNCaP clone FGC, 22RV1, VCAP, P4E6, and BPH1 PCa
cell lines (Pearson r = —0.20, Slope = —7.28, linregress p = 0.75) (Figure 1F, right). These
data indicate, at least in part, that AIM and PSA expression levels are inversely correlated
in patients with prostate cancer.

3.2. Aberrantly Expressed PSA and Significantly Suppressed AIM Expression Characterize
Advanced Stage Prostate Cancer, Regardless of Mutation Status

To gain some insight into the functional relevance of the observed association between
AIM and PSA expression, we evaluated the expression profile of PSA/KLK3 across 32
cancer types (n = 20,386) at different clinical stages using the Institute of Cancer Research
(ICR)-curated dataset [13]. Our results indicate that PSA expression was highest in the PCa
(prostate adenocarcinoma, PRAD) sample; More interestingly, per stage, PSA expression
was highest in patients with advanced stage PCa, compared to the early stage or normal
cases (Figure 2A). Conversely, we found that in this pan-cancer cohort, the least expression
of AIM was found in the PCa/PRAD samples, and more so in the advanced stage cases
(Figure 2B). Because of the implication of gene mutation on its function [14], we queried
the same ICR cancer dataset and found that the psa/klk3 mutation in PCa/PRAD accounted
for ~1.4% of the 168 cases affected by 195 mutations across 25 projects (Figure 2C). On the
other hand, we found that while ~1.0% of 245 cases affected by 252 mutations across 27
projects was attributable to aim/cd5] gene mutation in PRAD, these were associated mainly
with the loss of gene function copy number variation (CNV) (Figure 2D), thus explaining
the very mild or null expression of AIM in Figure 1E. These data indicate that aberrantly
expressed PSA and significantly suppressed AIM expression characterize advanced stage
prostate cancer, regardless of mutation status.
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Figure 1. AIM and PSA expression levels are inversely correlated in patients with prostate cancer. Box and whisker plots
of the differential expression of (A) AIM/CDS5L and (B) PSA/KLK3 transcript expression in the prostate gland or prostate
adenocarcinoma from the GSE6956 and GSE68907 cohort, respectively. (C) Comparative heatmap of the expression of KLK3
and CD5L in TCGA PRAD normal and tumor samples. (D) Box and whisker plots comparing the mRNA expression levels
of AIM/CD5L and PSA/KLK3 in the TCGA PRAD cohort. (E) Representative IHC images showing the differential expression
of AIM and AIM in normal prostate, low-grade, medium grade, and high-grade PCa samples from the TMU-SHH cohort.
(F) Line and dots plot of the correlation between AIM and PSA transcript expression in prostate cancer cell lines from the
DepMap Public 21Q2 dataset (left). Line and dot plot showing the effect of CRISPR-mediated aim gene knockout, on PSA
transcript expression in prostate cancer cell lines from the DepMap Public 21Q2 dataset (right). TCGA, the cancer genome
atlas; PRAD, prostate adenocarcinoma; IHC, immunohistochemistry; TPM, transcripts per million.
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Figure 2. Aberrantly expressed PSA and significantly suppressed AIM expression characterize advanced stage prostate
cancer, regardless of mutation status. Box and whisker and dot plots of the expression profiles of (A) PSA/KLK3 and
(B) AIM/CD5L in normal tissue, early stage, or advanced stage disease across 32 cancer types from the ICR-curated dataset.
Graphical representation of cases affected by (C) psa/klk3 and (D) aim/cd5] mutation (upper) or CNV (lower) in ICR-curated
pan-cancer TCGA cohort data. ICR, Institute of Cancer Research; CNV, copy number variation; TCGA, the cancer genome
atlas; PRAD, prostate adenocarcinoma; red box, PCa/PRAD cohort.

3.3. The Differential Expression of PSA and AIM Is Associated with Disease Recurrence in
Patients with Prostate Cancer but Is Equivocal for Overall Survival

We further explored the clinical relevance of PSA and AIM expression using the
TCGA PRAD cohort (n = 623), and found that compared to patients with low PSA ex-
pression, patients with high PSA expression exhibited worse biochemical recurrence-
free (BRF) survival (X? = 0.27, Prob > X? = 0.60) (Figure 3A). Conversely, patients with
high AIM expression enjoyed a BRF survival advantage compared to their low AIM
peers (X% = 1.04, Prob > X? =0.31) (Figure 3B). However, we observed and find it in-
triguing that the differential expression of PSA or AIM was equivocal for overall sur-
vival in the TCGA PRAD cohort (Figure 3C,D). Furthermore, reanalysis of the GSE40272
PCa cohort data (n = 98) showed that patients with high psa/klk3 expression had an
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elevated prognostic index, and were at significantly higher risk of biochemical recur-
rence (BCR), compared to the low expressors (2.01-fold, p = 7.76 X 10724 (Figure 3E).
However, patients with markedly suppressed aim/cd5] expression were at higher risk of
BCR compared to those with significantly upregulated aim/cd5] expression, which were
wholly in the low-risk group (p = 7.76 x 10~24) (Figure 3F). In the validation analysis
of the Jenkins” GSE46691 dataset (n = 545) originally on genomic classifiers for identi-
fication of aggressive prostate cancer, we found that compared with their non-tumor
peers (gleason score 5), patients at very high risk of early metastatic recurrence (glea-
son score 9) were genotypically AIMI°VPSANBNCDSAWCDE9PWPTPRCY using the
broad_2020_09_c7_immunologic dataset on the R2: Genomics Analysis and Visualiza-
tion Platform (https:/ /hgserverl.amc.nl/cgi-bin/r2/main.cgi, accessed on 26 February
2021) (Figure 3G). These data indicate that the differential expression of PSA and AIM is as-
sociated with disease recurrence in patients with PCa, and has an immunologic undertone.

3.4. PSA-Associated Suppression of AIM Is Implicated in the Enhanced Metastability of Prostate
Cancer and a High AIM/PSA Ratio Is Associated with Strong Castration-Induced Regression

To understand the role of PSA and/or AIM in the metastatic dissemination of PCa cells
and disease progression, we analyzed the GSE7930/GPL96/GDS2865 Affymetrix Human
Genome U133A Array dataset that originally compared poorly and highly metastatic
prostate subcutaneous tumors. Unlike aim/cd5] expression, which is upregulated in poorly
metastatic PCa cells and suppressed in the highly metastatic PCa (Figure 4A), our results
showed that psa/klk3 expression is downregulated in the poorly metastatic in comparison
to its upregulated expression in the highly metastatic samples (Figure 4B). In a parallel
analysis, regardless of the degree of metastability, we found that the expression of aim/cd5l
was lower and psa/klk3 higher, with a 1.29-fold decrease in the AIM/PSA ratio in the highly
metastatic relative to the poorly metastatic cells (p < 0.001) (Figure 4C). Furthermore, our
re-analysis of the GSE21887 / GPL570/GDS4107 Affymetrix Human Genome U133 Plus 2.0
Array originally analyzing samples from androgen-dependent growth (AD), castration-
induced regression nadir (ND), and castration-resistant regrowth (CR) stages to provide
insight into the molecular basis of castration-resistant prostate cancer (CRPC) development,
showed that the expression of aim/cd5] was upregulated in the ND samples compared
to the AD and CR samples (Figure 4D), while psa/klk3 expression was lowest in the ND
samples, relatively upregulated in the AD samples, and highest in the CR group (Figure 4E).
Compared with the AD and CR samples, we found the AIM/PSA ratio increased by
1.11-fold (p < 0.01) and 1.13-fold (p < 0.01), respectively (Figure 4F). We also probed the
GSE46691 data (n = 545) initially on the discovery and validation of prostate cancer genomic
classifiers that predict early metastasis following radical prostatectomy. Our results showed
that upregulated expression of AIM/CDS5L transcripts favored “no metastasis”, while
upregulated PSA/KLK3 expression favored “metastasis” (T = —0.413, r = —0.018, p = 0.68)
(Figure 4G). Next, cognizant of the culpability of androgen receptor (AR) signaling or
TMPRSS2:ERG gene fusion in PCa metastasis and disease progression, we re-analyzed
Robinson et al.’s data on whole-exome and transcriptome sequencing of ~500 metastatic
cancer samples (MET500) [15], and showed that AIM/CD5L mRNA expression was 1.51-fold
(p = 0.28) upregulated in the PCa samples without AR-amplification, compared to the AR-
amplified samples from the MET500 metastatic PRAD cohort (Figure 4H, upper left).
Conversely, we observed a 1.38-fold (p = 0.28) increased PSA/KLK3 expression in the
samples with AR-amplification, compared to those without AR-amplification (Figure 4H,
upper right). We also demonstrated that AIM/CD5L expression was enhanced in the
“without ERG fusion” group, compared to those with ERG fusion (2.94-fold, p = 0.89),
while PSA/KLK3 transcript expression was upregulated in the “with ERG fusion” group,
compared to their peers without (1.19-fold, p = 0.60) (Figure 4H, lower). In corroboratory
in vitro analyses using the ectopic expression of AIM in PC3 or DU145 cells (CD5L_OE),
we demonstrated a 3.19-fold (p < 0.005) and 4.13-fold (p < 0.01) decrease in the number of
invaded PC3_CD5L_OE and DU145_CDS5L_OE cells, in comparison to their wild type (WT)
counterparts (Figure 4I). More so, we found that CD5L_OE significantly attenuated the
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migration of in the PC3_CDS5L_OE cells, relative to the PC3_WT cells (3.68-fold, p < 0.001)
(Figure 4]). These data indicate that PSA-associated suppression of AIM is implicated in
the enhanced metastability of prostate cancer and a high AIM/PSA ratio is associated with
strong castration-induced regression.
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Figure 3. The differential expression of PSA and AIM is associated with disease recurrence in patients with prostate
cancer but is equivocal for overall survival. Kaplan-Meier curves showing the effect of high or low (A) PSA and (B) AIM
expression on BCR-free survival in the TCGA PRAD cohort. Kaplan-Meier curves showing the effect of high or low (C) PSA
and (D) AIM expression on overall survival in the TCGA PRAD cohort. BCR risk group-stratified heatmap (left) and
box-and-whisker plots (right) of (E) PSA/KLK3 or (F) AIM/CD5L expression levels in the GSE40272 cohort. (G) XY plot

showing the differential expression of AIM and PSA in the GSE within the Broad_2020_09_c7_immunologic gene set. BCR,

biochemical recurrence; TCGA, the cancer genome atlas; PRAD, prostate adenocarcinoma.
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Figure 4. PSA-associated suppression of AIM is implicated in the enhanced metastability of prostate cancer and a high
AIM/PSA ratio is associated with strong castration-induced regression. Histograms showing the differential expression of
(A) cd5l/aim and (B) klk3/psa in poorly metastatic or highly metastatic sample from the GDS2865 dataset. (C) Histogram
comparing the cd5! and kik3 expression values in the poorly or highly metastatic samples from the GDS2865 dataset.
Histograms showing the differential expression of (D) cd5l/aim and (E) klk3/psa in androgen-dependent growth, castration-
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induced regression nadir, or castration-resistant regrowth samples from the GDS4107 dataset. (F) Histograms of the cd5I/klk3

ratio in androgen-dependent growth, castration-induced regression nadir, or castration-resistant regrowth samples from
the GDS4107 dataset. (G) Sample percentage bin plot of cd5l and klk3 expression in the GSE46691 cohort stratified by
propensity for metastasis. (H) Box and whisker plots of the differential expression levels of CD5L (upper left) and KLK3

(upper right) in patients with or without AR-amplification in the MET500 PRAD cohort. Box and whisker plots of the

differential expression levels of CD5L (lower left) and KLK3 (lower right) in patients with or without ERG fusion in the

MET500 PRAD cohort. (I) Representative photomicrographs (upper) and quantitative chart (lower) showing the effect

of CD5L_OE on invasion of PC3 or DU145 cells. (J) Representative photomicrographs (upper) and histograms (lower)
showing the effect of CD5L_OE on migration of PC3 cells at indicated time-points. CD5L_OE, overexpression of cd5l; AR,
androgen receptor; F.C., fold change; ** p < 0.01; *** p < 0.001.

3.5. The Functional Association between PSA and AIM Modulates Metastasis and Mirrors the
Immunogenicity in Patients with Prostate Cancer

Corroboratory results from the TNMplot gene chip data (1 = 56,938) [16] showed that
compared to the normal samples, the median expression of aim/cd5] was 2.30- and 3.06-fold
lower in the tumor and metastatic samples, respectively (p = 0.37) (Figure 5A). On the
other hand, psa/klk3 expression was 2.98- and 1.23-fold higher in the tumor and metastatic
samples, respectively (p = 1.93 x 10~7) (Figure 5B). Re-analysis of GSE32269 expression
data for primary localized prostate cancer versus castration-resistant bone metastatic
PCa (n = 55) confirmed that compared to the downregulated expression of AIM/CD5L
transcripts in localized PCa and castration-resistant bone metastatic PCa, regardless of
TMPRSS2-ERG fusion status, upregulation of PSA/KLK3 expression was observed in both
localized and castration-resistant bone metastatic PCa; Interestingly, in the normal samples,
while PSA/KLK3 expression was suppressed, the expression of AIM/CD5L was significantly
enhanced (Figure 5C). Cognizant of the crosstalk between cancerous and immune cells,
as well as the complicity of this interaction in metastasis, we re-probed the TCGA PRAD
cohort data (1 = 623) and found that compared to normal samples, there was concomitant
downregulation of AIM/CD5L, biomarkers of T-cell activation namely CD8A, CCR7 (C-C
motif chemokine receptor 7), PTPRC (protein tyrosine phosphatase receptor type C), CD69,
and M1 phenotype markers IL6 (interleukin 6), FCGR2A (Fc fragment of IgG receptor
Ila), FCGR3A, NOS2 (nitric oxide synthase 2) in the PCa samples, while M2 macrophage-
associated platelet-derived growth factor subunit A (PDGFA) and prostaglandin E synthase
2 (PTGES2) were upregulated (Figure 5D). These data, at least in part, indicate that the
functional association between PSA and AIM modulates metastasis and mirrors the im-
munogenicity in patients with PCa.
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Figure 5. The functional association between PSA and AIM modulates metastasis and mirrors the immunogenicity in
patients with prostate cancer. Box and whisker plots showing the differential expression of (A) cd5l/aim and (B) psa/klk3
genes normal, primary tumor, or metastatic samples from the TNMplot gene chip data. (C) Expression heatmap showing
the correlation between CD5L, KLK3, with biomarkers of cancer stemness, epithelial-to-mesenchymal transition, metastasis,
or T-cell activation in normal, localized PCa, and bone metastatic CRPC in the GSE32269. (D) Graphical representation of
the differential expression of CD5L, KLK3, biomarkers of M1 phenotype, M2 phenotype, and T-cell activation in non-tumor
or tumor samples from the TCGA PRAD cohort.
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3.6. The Inversely Correlated Expression of PSA and AIM Differentially Modulate Treg, T cell, and
Macrophage Activities in Patients with Prostate Cancer

To understand the nature of immunogenicity elicited by or associated with AIM/PSA
signaling, we re-analyzed the GSE32269 expression data for primary localized prostate
cancer versus castration-resistant bone metastatic PCa (1 = 55). Our results showed that
relative to downregulated AIM/CD5L expression, PSA/KLK3 is co-upregulated with reg-
ulatory T-cell (Treg) markers IL7, and VEGFA in localized PCa, or with VEGFA, and
ITGAE in castration-resistant bone metastatic PCa (Figure 6A). However, while PSA/KLK3
was suppressed, AIM/CD5L was concurrently upregulated with biomarkers of positive
T-cell response CD28, CCR2, PTPRC, and Treg markers IL10, PDCD1, FOXP3, LAG3,
CCR4, in normal samples (Figure 6A). Interestingly, different isoforms of TGFB1 were
upregulated in normal, localized PCa and castration-resistant bone metastatic PCa. In a
parallel analysis, we found that, unlike PSA/KLK3, which was upregulated, AIM/CD5L
was co-suppressed with markers of T-cell activation CD8A, TNFRSF9, CD69, PTPRC,
SELL, and CCR7 mRNA in primary localized and castration-resistant bone metastatic
PCa, but markedly enhanced in normal samples (Figure 6B). Furthermore, we observed
that in bone metastatic CRPC, AIM/CD5L, and M1 macrophage markers CD86, FCGR2A,
FCGRI1A, ITGAM, FCGR3A, CD80, were co-downregulated, while PSA/KLK3, and M2
macrophage markers MRC1/CD206, CD163 were concurrently upregulated (Figure 6C).
In addition, PSA/KLK3 was upregulated, but AIM/CD5L downregulated in localized
PCa, while the reverse was the case in normal samples (Figure 6C). For better charac-
terization of the roles of AIM/PSA signaling in PCa, we performed a gene ontology
analysis using the NIAID/NIH DAVID Bioinformatics Resources software version 6.8
(https:/ /david.ncifcrf.gov/, accessed on 20 February 2021). Our functional annotation
clustering showed the AIM and PSA concertedly play essential roles in certain biological
processes, namely, protein maturation (GO:0051604), proteolysis (GO:0006508), zymogen
activation (GO:0031638), and protein processing (GO:0016485), through their hydrolase
(GO:0016787), peptidase (GO:0008233), serine-type endopeptidase (GO:0004252), serine-
type peptidase (GO:0008236), and scavenger receptor (GO:0005044) activities (Figure 6D).
Moreover, gene enrichment-function association studies showed that AIM/CDS5L, PSA /KLK3,
T-cell receptor 3 locus, CD8A, TNFRSF9, CCR7, SELL, PTPRC, CD24, CD44, PROM1,
CDH1, CDH2, and MET are enriched for ‘signal” and ‘signal peptides” which are essential
for protein secretion and sorting [17], while all the above but AIM/CD5L and CD8A, plus
TRA, and CD69, are associated with N-linked glycosylation, a stringent mechanism of
intracellular secondary protein processing which is essential for protein structure, function,
and stability determination, as well as a cellular response to exogenous factors [18]. These
data indicate, at least in part, that the inversely correlated expression of PSA and AIM differ-
entially modulate Treg, T-cell, and macrophage activities in patients with prostate cancer.
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3.7. AIM Binds Directly to PSA, and the AIM-PSA Interactome Reveals Complicity in Immune
Landscape, Macrophage, EMT and CSC Regulation

To gain some mechanistic insight into the role of AIM/PSA signaling in PCa ini-
tiation, immune response, and progression, we performed an automated generation of
AIM-PSA interaction networks based on functional enrichment. We found markers of
epithelial-to-mesenchymal transition (EMT) and metastasis, cadherin 1 (CDH1), snail
(SNAIL), slug (SNAI2), vimentin (VIM), hepatocyte growth factor (HGF), MET, catenin
delta 1 (CTNND1), cbl proto-oncogene (CBL), fibronectin 1 (FN1), anti-inflammatory signal
alpha-2-macroglobulin (A2M), stemness markers kruppel-like factor 4 (KLF4), Nanog
homeobox (NANOG), octamer-binding protein 3/4 (POU5F1, OCT 3/4), sex-determining
region Y-box 2 (5OX2), paired box 6 (PAX6), cell cycle modulator tumor protein 53 (TP53),
and the androgen receptor (AR) were all in the PSA interaction sphere (Figure 7A). The
AIM sphere of interaction included markers of macrophage activity and polarization
MRC1, CD163, PDGFA, PTGES2, NOS2, CD86, CD80, IL6, TNE, CCR7, FCGR1A, FCGR2A,
FCGR3A, ITGAM, biomarkers of T-cell activation and positive response SELL, CD8A, CD69,
CLEC7A, TNFRSF4, TNFRSF9, PTPRC, and stemness markers PROM1/CD133 (Figure 7A).
Upon sorting by direct interaction, we observed that AIM/CDS5L interacts directly with
biomarkers of macrophage activity M1 phenotype markers CD163, FCGR2A, FCGR3A,
CD68, M2 phenotype markers MRC1/CD206, CD68, inflammatory cascade signals CRP,
SNAI2, T-cell activation markers CD8A, CD69, CD86, CD22, TNFRSF9, and androgen
signaling AR (Figure 7B, left; see also Supplementary Table S1). In parallel, PSA /KLK3
interacts directly with androgen signaling AR, stemness marker NANOG, metastasis mark-
ers FEN1, HGF, A2M, and regulator of cell cycle progression TP53 (Figure 7B, right; also see
Supplementary Table S1). Understanding that the co-expression and/or co-localization of
proteins may be indicative of functional interaction, we further investigated the possibility
and nature of AIM-PSA interaction. Using the Schrodinger® PyMOL molecular graphics
software version 2.3.2 (https://pymol.org/2/, accessed on 14 February 2021), we created a
visualization of the molecular interaction between AIM/CDS5L (NCBI Reference Sequence:
NP_005885.1) and PSA /KLK3 (NCBI Reference Sequence: NP_001639.1), thus showing that
AIM directly targets and binds to PSA with a ligand root-mean-square deviation (RMSD)
of 61.13 A, docking score of 15194, AIM/PSA complex interface area of 2198.90 A? and
an atomic contact energy (ACE) of —282.37 kcal/mol (Figure 7C). The ligand transforma-
tion that transforms PSA /KLK3 onto the receptor, AIM/CD5L consists of three rotational
parameters, namely —0.27, —0.38, 0.49, and three translational parameters, —70.70, 91.55,
1.57. The interface residues within 5.0 A from their interacting partner or each other,
and the corresponding distances are shown in Supplementary Table S2. In corroboratory
experiments, using the co-immunoprecipitation (co-IP) assays, we validated the direct
interaction between AIM and PSA (Supplementary Figure S1). These data suggest that
AIM binds directly to PSA, and the AIM-PSA interactome is complicit in the immune
landscape, macrophage activity, EMT, and CSC regulation.
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Figure 7. AIM binds directly to PSA, and the ectopic (re)expression of AIM enhances the anticancer therapeutic effect
of Pembrolizumab against PCa cells. 2D visualization of the auto-generated (A) CD5L-KLK3 interactome showing com-
plicity in the immune landscape, macrophages, EMT and CSC regulation, (B) CD5L interactome, or KLK3 interactome.
(C) Three-dimensional visualization of the direct complex formation by AIM/CD5L (surface model) and PSA /KLK3 (ribbon
model). (D) Line graph showing the effect of CD5L_OE with or without 5 uM Pembrolizumab on PC3 cell proliferation.
(E) Representative photomicrographs (upper) and histograms (lower) showing the effect of CD5L_OE with or without
5 uM Pembrolizumab on PC3 cell invasion. (F) Representative photomicrographs (upper) and quantitative chart (lower)
showing the effect of CD5L_OE with or without 5 pM Pembrolizumab on the tumorsphere formation capability of PC3
cells. (G) Representative IHC photomicrographs (upper) and histograms (lower) of the immunoreactivity of AIM, PSA,
and PDL1 in pembro_responders or pembro_non-responders from the TMU-SHH cohort. (H) Histograms showing the
differential CD8* T-cell count/field in pembro_responders or pembro_non-responders from the TMU-SHH cohort. WT,
wild type; OE, overexpression; * p < 0.05; ** p < 0.01; *** p < 0.001.
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3.8. Ectopic (Re)Expression of AIM Enhances the Anticancer Therapeutic Effect of Pembrolizumab
against PCa Cells

Having demonstrated the critical role of the AIM/PSA signaling in prostate cancer-
ization, anticancer immune response, disease progression, and prognosis, we investigated
the therapeutic actionability of AIM using the gain-of-function approach (PC3_CD5L_OE)
with or without treatment with the anti-PD1 agent, Pembrolizumab (Pembro). Compared
with the PC3_WT, 5 uM Pembro moderately suppressed the proliferation of PC3 cells
(day 5: 1.26-fold, p < 0.05), this was even more so with PC3_CD5L_OE as shown by
a 1.77-fold suppressed cell proliferation (p < 0.01). Interestingly, when combined with
CD5L_OE (PC3_CD5L_OE + Pembro), the anti-proliferative effect of Pembro was signifi-
cantly enhanced compared to Pembro alone (3.42-fold, p < 0.01), or vehicle-treated PC3_WT
(4.34-fold, p < 0.001) (Figure 7D). Moreover, in comparison with the PC3_WT cells, we
observed a 3.85-fold (p < 0.01), 1.41-fold (p < 0.05), and 11.9-fold (p < 0.001) reduction in the
number of invaded PC3_CD5L_OE, PC3_WT + Pembro, and PC3_CD5L_OE+Pembro cells,
respectively (Figure 7E). Similarly, compared with the vehicle-treated and pembro-treated
wild-type cells, tumorsphere formation was profoundly attenuated in the PC3_CD5L_OE
and PC3_CD5L_OE + Pembro cells, quantitatively and tumorsphere size-wise (Figure 7F).
Of therapeutic relevance, we also found that compared to patients who were not re-
spondent to Pembro from our in-house PCa cohort, the Pembro_responders exhibited
significantly higher levels of AIM/CD5L and PDL1 proteins expression, while conversely,
PSA/KLKS3 protein expression was higher in the Pembro_non-responders (Figure 7G).
We also observed that the CD8* T-cell population per visual field was significantly more
in the AIMMPSAI°PDL1Ps/h Pembro_responders than in the AIMI°PSANPDL1pos/lo-neg
Pembro_non-responders (Figure 7H). These data do indicate that the AIM is an action-
able molecular factor, and that the ectopic (re)expression of AIM enhances the anticancer
therapeutic effect of Pembrolizumab against PCa cells.

4. Discussion

Contextualized in the controversial use of PSA as a PCa screening tool, in terms of
biomarker hypersensitivity, overdiagnosis, and over-treatment [7-9], and the reported
role of AIM in host innate and adaptive immunity, inflammatory response regulation,
and immune cell viability [10-12], the present study explored and provides preclinical
evidence of the interaction between AIM and PSA, as well as the putative role of AIM
in the modulation of PSA activity, cancerization, disease progression, anticancer therapy
response, and prognosis.

Herein, we demonstrated that the expression profiles of AIM and PSA are inversely
correlated in patients with PCa, and that concomitant aberrant expression of PSA with
significantly suppressed AIM expression characterizes advanced stage prostate cancer,
regardless of mutation status (Figures 1 and 2). This is in part consistent with contemporary
knowledge that PSA levels are high in PCa cells, and that this is even more so in the
advanced stage or high-grade PCa, wherein the PSA level is usually elevated [7,8,19,20].
More so, high levels of AIM have been reported in normal hepatocytes, while in contrast,
AIM accumulated on the surface of cancerous liver cells inhibits regulators of complement
activation, activates the innate immune system complement cascade, and consequently
induce necrosis/necroptosis of the AIM-bound cancerous liver cells [21]. In line with our
finding, evidence abounds showing that AIM-deficient mice were highly predisposed to
hepatocellular carcinoma, while no AIM-enriched litter-mate developed liver cancer [21].

Cognizant of the usually long course of PCa, and the increasing prevalence of metastatic
disease, as well as the high risk of local recurrence or progression to metastatic disease,
and eventually death, despite initial definitive local treatment [1-3], it is of translational
relevance that we found that a high PSA /AIM expression ratio is associated with enhanced
metastability, and disease recurrence in patients with PCa, whereas, a high AIM/PSA ratio
is associated with strong castration-induced regression (Figures 3 and 4). Concordant with
these findings, in a recent study that prospectively evaluated six candidate biomarkers for
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detection of pelvic lymph node (LN) metastases (pN1) and prediction of BRFS in treated
patients, while KLK2 and KLK3 outperformed the other predictive variables, and correctly
classified all pN1 cases as molecular node-positive, KLK3 exhibited the highest concordance
(96%) with histopathology for detection of LN metastases in the patients with PCa [22,23],
and KLK3 protein expression was significantly enhanced in recurrent PCa tissues compared
to the ‘normal’ tissues [24]. Moreover, Sugisawa et al. [25] attributed the elimination of
HCC cells to the AIM/CD5L produced by liver stellate macrophages/Kupffer cells. They
opined that the “blood AIM released from IgM contributes to suppression of obesity and
fatty liver as in AKI, whereas macrophage-derived non-circulating AIM mainly prevents
HCC development” [25].

Furthermore, corollary to published reports indicating that by binding to human regu-
lator of complement activation (RCA), and blocking the RCA activity, AIM/CD5L facilitates
the immune recognition of cancer cells [21], we also demonstrated that not only does the
functional association between PSA and AIM modulate metastasis, but that it mirrors the
immunogenicity, and differentially modulate Treg, T-cell and macrophage activities in pa-
tients with PCa (Figures 5 and 6). Corroborating our findings, it has been demonstrated that
AIM/CDS5L-deficient mice exhibited reduced T-cell and NKT cell populations in hepatic
granulomas unlike their WT peers challenged with heat-killed C. parvum [26]. Premised
on reports that T-cell-mediated anticancer immune response is regulated by a cascade of
co-stimulatory and co-inhibitory signals, with PCa cells exploiting the co-inhibitory signals
for evasion of immunosurveillance [27], our present study results indicate that, unlike
PSA/KLK3 which is upregulated, AIM/CD5L is concomitantly suppressed with markers
of T-cell activation CD8A, CD28, TNFRSF9, CD69, PTPRC, SELL, and CCR7 mRNA in
primary localized and castration-resistant bone metastatic PCa, but markedly enhanced in
normal samples. This probably explains the acquisition and/or maintenance of metastatic,
castration-resistant phenotype of the PCa cells, as an effective anticancer immune response
requires T-cell activation and co-stimulation by the B7 ligand and CD28 receptor families
on antigen-presenting cells (APC) and T cells, respectively [27]. We posit that PSA skews
the immune landscape towards immunosuppression by suppressing AIM expression and
acting as a co-inhibitory signal which represses T-cell activation, with consequent elicita-
tion of T-cell exclusion, exhaustion, or tolerance in patients with metastatic or recurring
PCa. Co-expressed with classifiers of central memory T cells (Tcy), namely CD8A, CD28,
PTPRC, SELL, and CCRY7, it is probable that AIM plays a vital role in the characteristic rapid
differentiation of the Ty into effector memory (Tgy) and terminal effector (Tgp) T cells,
all of which are relevant to effective immunotherapy [28,29].

Furthermore, our data indicate that in bone metastatic CRPC, AIM/CD5L, and M1
macrophage markers CD86, FCGR2A, FCGR1A, ITGAM, FCGR3A, CD80, were co-downregulated,
while PSA/KLK3, and M2 macrophage markers MRC1/CD206, CD163 were concurrently
upregulated (Figure 6). Tumor-associated macrophages (TAMs) constitute a large portion
of the tumor-infiltrating immune cells and play critical but divergent roles in immunosup-
pression, cancer metastasis, and progression, depending on the phenotype. A recent review
of about 300 studies on the prognostic implication of infiltrated M1 or M2 macrophage
subtypes, concluded that while the M2 macrophages are associated with poor prognosis,
the presence of the M1 macrophages corresponds with a favorable clinical outcome [30]. It
is conceivable that by enhancing the recruitment of CD206*CD163" M2 macrophages, PSA
facilitates an immunosuppressive TME characterized by upregulated Treg and suppressed
dendritic cell pooling, extracellular matrix remodeling, and upregulation of “don’t eat me”
signals [31]. Conversely, we posit that AIM, by enhancing the infiltration of CD80*CD86*
M1 macrophages, activates adaptive immunity, enhances antigen presentation, represses
the “don’t eat me” signal, and thus, reactivates anticancer immune activity [30,31]. This
would be consistent with the concomitant expression of AIM with FCGR2A, FCGR1A,
ITGAM, and FCGR3A, all of which play essential roles in enhanced anticancer immune
responses and are associated with good clinical outcomes [32-35].
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Moreover, it is clinically enigmatic that a large percentage of advanced PCa cases
recur after initial androgen deprivation therapy (ADT), with enhanced risk of progressing
to lethal metastatic CRPC; and while immune checkpoint inhibition with anti-CTLA4 or
anti-PD1/PDL1 elicits durable response/remission in many cancer types, there is accruing
evidence it does not in advanced PCa, metastatic CRPC inclusive [36,37]. We consider
our data demonstrating that the ectopic (re)expression of AIM enhances the anticancer
therapeutic effect of Pembrolizumab against PCa cells (Figure 7) to be of therapeutic rel-
evance, and consistent with the emerging therapeutic paradigm of combining immune
checkpoint inhibition with targeted therapies in the treatment of advanced PCa or CRPC.
Interestingly, we demonstrated that the CD8" T-cell population was significantly more
in the AIMNPSAlopPDL,1pos/hi Pembro_responders than in the AIMPPSAhipD],1p0s/lo-neg
Pembro_non-responders. This is clinically relevant because “although PDL1 positivity
enriches for populations with clinical benefit, PDL1 testing alone is insufficient for pa-
tient selection in most malignancies” [38] and concordant with the recent report that
immunotherapy responders showed higher percentages of T cells positive for ICOS and
PD-1 prior to immunotherapy initiation [39].

5. Conclusions

Herein, we demonstrate that AIM/CD5L binds to PSA and that a high PSA / AIM ratio,
which defines advanced stage PCa (regardless of mutation status), is implicated in enhanced
metastability, and is associated with disease recurrence, while a high AIM/PSA ratio is
associated with strong castration-induced regression. More so, the ectopic expression
of AIM significantly enhances the anticancer effect of the anti-PD1 therapeutic antibody,
Pembrolizumab, and elicits an increased CD8" T-cell count in AIMMPSAPPDL1+ PCa
cases that are respondent to Pembrolizumab treatment. This study lays the groundwork
for future clinical trials on the prognostic accuracy of the AIM/PSA ratio, and further
exploration of the clinical feasibility of immune checkpoint blockade and AIM agonist
combinatorial therapy as a therapeutic strategy in the clinical management of patients with
advanced stage PCa.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/biomedicines9091225/s1, Supplementary Figure S1. Co-immunoprecipitation (co-IP) data
showing the interaction between PSA and AIM in PC3 and DU145 cells. Protein-protein interac-
tions were immunodetected using PSA and AIM monoclonal antibodies. Supplementary Table S1.
CD5L/AIM and KLK3/PSA interactome. Supplementary Table S2. AIM-PSA complex interface residues.
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