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Abstract

Methamphetamine use disorder (MUD) has been associated with broad neurocognitive

impairments. While the cognitive impairments of MUD have been demonstrated, the

neuropathological underpinnings remain inadequately understood. To date, the pub-

lished human diffusion tensor imaging (DTI) studies involving the correlation between

diffusion parameters and neurocognitive function in MUD are limited. Hence, the pre-

sent study aimed to examine the association between cognitive performance and white

matter microstructure in patients with MUD. Forty-five patients with MUD and

43 healthy controls (HCs) completed their demographic information collection, cognitive

assessments, and DTI imaging. DTI images were preprocessed to extract fractional

anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity

(RD) of various fiber tracts. Univariate tests were used to examine group differences in

cognitive assessments and DTI metrics. Linear regression was used to examine the rela-

tionship between these two metrics. The results revealed that patients with MUD had

lower subset scores of the MATRICS Consensus Cognitive Battery (MCCB), which

reflects five cognitive domains: processing speed, attention, verbal learning, visual learn-

ing, problem-solving. Patients with MUD also had significantly higher AD, MD, and RD

values of the left superior longitudinal fasciculus than HCs. Furthermore, the RD value

of the left superior longitudinal fasciculus was a significant predictor of processing

speed and problem-solving ability, as shown by the digit-symbol coding test and NAB-

Mazes scores, respectively. Findings extended our understanding of white matter

microstructure that is related to neurocognitive deficits in MUD and provided potential

targets for the prevention and treatment of this chronic disorder.
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1 | INTRODUCTION

Methamphetamine use disorder (MUD) has been associated with

broad neurocognitive impairments (Dean et al., 2013; Harro, 2015;

Teixeira-Gomes et al., 2015). In a recent meta-analysis, it was found

that MUD was associated with moderate deficits in many cognitive

domains, including attention, language/verbal fluency, memory, and

executive functions (Potvin et al., 2018). In particular, many of these

impairments persist after abstinence (Basterfield et al., 2019), which

reduces daily functioning of patients (Kwon & Han, 2018) and contrib-

utes to poorer treatment outcomes (Downey & Loftis, 2014).

While the cognitive impairments of MUD have been demon-

strated, the neuropathological underpinnings remain inadequately

understood. Previous studies have provided evidence that compro-

mised white matter (WM) tracts significantly impact cognitive func-

tion (Filley, 2010). Diffusion tensor imaging (DTI) is a powerful tool for

detecting WM microstructure changes caused by myelin and axon

injury or increased extracellular water accumulation (Le Bihan

et al., 2001). Generally, there are four DTI measures: fractional anisot-

ropy (FA) is generally regarded as a marker of fiber tract microstruc-

ture; mean diffusivity (MD) is sensitive to edema, cellularity, and

necrosis; axial diffusion (AD) indicates damage to axon terminals; and

radial diffusion (RD) indicates damage to myelin (Alexander

et al., 2007). Recently, DTI has been widely applied to assess the

effect of MA use on the directional organization and microstructure

of WM tracts (Berman et al., 2008). Decreased FA and increased MD

or RD were observed in individuals with MUD (Ottino-Gonzalez

et al., 2022; Uhlmann et al., 2016; Zhuang et al., 2016). A meta-

analysis of DTI studies revealed consistent WM compromise in indi-

viduals with stimulant use disorders, including MA (Beard et al., 2019).

Another recent tract-based spatial statistics revealed higher MD, AD,

and RD values in a wide range of WM tracts, including the superior

longitudinal fasciculus (SLF) and corticospinal tract in individuals with

MUD, as compared with normal controls (Huang, Yang, et al., 2020).

These results have provided evidence that MUD is associated with

altered WM microstructure.

Information obtained from DTI can be used along with cognitive

performance to examine the relationship between changes in WM

microstructure and behavior. To date, there have been limited human

DTI studies on the correlation between diffusion parameters and neu-

rocognitive function in MUD. Kim et al. found a significant negative

correlation between the total error scores of Wisconsin Card Sorting

Test (WCST) and FA values in the genu of the corpus callosum (Kim

et al., 2009). The study conducted by Chung et al. revealed that the

FA value of the right frontal WM was negatively correlated with the

total and nonperseveration error scores of WCST in male MA abusers

(Chung et al., 2007). A study by Fan et al. showed that the MD values

of the right middle temporal gyrus were negatively correlated with

the Digit Symbol Test score in MA addicts with long-term abstinence

(Fan et al., 2019). Roos et al. also found that abnormal FA levels of

children with MA exposure were significantly associated with poorer

executive function, as shown by poorer scores in Kaufman Assess-

ment Battery for Children-II Triangles, Hand movement, and story

completion (Roos et al., 2015).

While the above findings demonstrated a connection between

WM abnormalities and cognitive deficits, it should be noted that they

are primarily focused on single performance domains instead of global

cognitive function. Furthermore, the white matter alterations that

may underlie these cognitive impairments in MUD remain largely

unknown. Hence, the present study aims to fill this gap and examine

the link between global cognitive performance measured by a stan-

dardized neurocognitive battery and WM microstructure in patients

with MUD. To this end, we used DTI to measure WM changes and

conducted multiple regressions to examine the associations between

WM microstructure and cognitive functions. We hypothesized that

MUD might be associated with broader WM microstructural changes,

which might be associated with higher level of cognitive deficits.

2 | METHODS

2.1 | Participants

A total of 69 patients with MUD (the MUD group) and 47 healthy

controls (the HC group) were included in the study. Patients with

MUD were recruited between August 2019 and January 2020 from

the Kangda Voluntary Drug Rehabilitation Centers in Changsha,

Hunan Province, a controlled setting where access to illicit drugs or

alcohol is prohibited through structural and regulatory efforts. Mean-

while, urine drug testing was performed regularly to verify drug absti-

nence. The participants in the center were typically provided with

psychoeducation, physical exercise, group activities, and medically

assisted detoxification treatment during abstinence. The inclusion cri-

teria for MUD group were: (a) Han males aged between 18 and

45 years, (b) having completed at least 6 years of formal education,

(c) with a current diagnosis of methamphetamine use disorder (MUD),

as determined by at least two certified psychiatrists using the Diag-

nostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-

5), (d) with no other substance dependence except nicotine; and

(e) with no other substance use except alcohol, nicotine, and betel nut

for the past 6 months. HCs were recruited from local communities

between September 2019 and March 2020 through a variety of social

media, such as QQ, WeChat, and online flyers, with similar inclusion

criteria applied for MUD except the history of illicit drug use. Partici-

pants with a history of major chronic medical illnesses, neurological

disease, or psychiatric illness before MA use were excluded. Partici-

pants with contraindications to MRI scanning (e.g., claustrophobia,

implants, metallic or electronic devices) were also excluded.

To ensure that the participants met all the inclusion criteria and

none of the exclusion criteria, all the participants underwent a face-

to-face structured clinical interview carried out by two certified

psychiatrists. For the MA users, the interview was conducted when

participants were not intoxicated or in withdrawal delirium (averagely

9.17 ± 5.29 days after the last MA use). After the on-site interview,

15 MA users were further excluded for not meeting DSM-5 criteria

for MUD (9 of them used mainly ketamine, with occasional MA use,

and 6 were diagnosed with MA abuse instead of dependence), as they

were MA users without dependence. Then, the eligible participants

ZHOU ET AL. 305



(54 MA users and 50 HCs) entered cognitive assessments and the DTI

scan. Among the eligible participants, 9 MA users and 7 HCs were

removed from further analysis due to incomplete data or abnormal

scan. A total of 24 MA users and 7 HCs were removed, resulting in a

final sample size of 45 patients with MUD and 43 HCs.

All participants were fully informed about the study procedures,

and their personal information was kept confidential. This study was

approved by the Ethics Committee of the Kangda Voluntary Drug

Rehabilitation Centers in Changsha, Hunan Province.

2.2 | Measures

2.2.1 | Demographics

Demographic information, including age, gender, ethnicity, height,

weight, employment status, marital status, years of schooling com-

pleted, and average monthly income, were documented. Additionally,

we kept a record of drug use measures (yes/no, duration) for nicotine,

alcohol, and betel use. As the fourth most consumed psychoactive

substance, betel nut is a recreational substance that is widely used in

South and Southeast Asian countries and the Asia Pacific tropical

regions (Tang & He, 2021); in China, there is also a large number of

people chewing betel nut for recreation and refreshing. The durations

of MA use (years) and abstinence (days) were also recorded for

patients with MUD. See Table 1 for more details.

2.2.2 | Cognitive assessment

We used a set of standardized neurocognitive tests called MATRICS

Consensus Cognitive Battery (MCCB) (Shi et al., 2015) to evaluate

cognitive functions in patients with MUD and HCs. The MCCB pro-

vides 10 measures in 7 cognitive domains: speed of processing, atten-

tion/vigilance, working memory, verbal learning, visual learning,

problem-solving, and social cognition. Speed of processing was exam-

ined with the digit-symbol coding test (DSCT), Category Fluency Test

(CF), and Trail Making Test-Part A (TMT-A); attention was measured

TABLE 1 Demographic information and substance use status of participants

M (SD) or n (%) HC (N = 43) MUD (N = 45) t or χ2 value p value

Age 26.05 (6.89) 31.33 (5.47) t(86) = 4.00 <.001

Height 171.63 (5.47) 170.60 (6.41) t(86) = 0.81 .42

Weight 68.67 (9.42) 72.58 (10.85) t(86) = 1.80 .075

Education (year) 13.98 (3.23) 11.36 (3.14) t(86) = 3.86 <.001

Marital status (%)

Divorced 0 (0.00) 6 (13.33) χ2(2) = 21.77 <.001

Married 10 (23.26) 26 (57.78)

Single 33 (76.74) 13 (28.89)

Employment (%)

Employed 19 (44.19) 25 (55.56) χ2(3) = 35.36 <.001

Freelance 3 (6.98) 11 (24.44)

Student 21 (48.84) 0 (0.00)

Unemployed 0 (0.0) 9 (20.00)

Income (CNY, %)

<2000 18 (41.86) 3 (6.67) χ2(3) = 16.18 <.001

2000-5000 9 (20.93) 18 (40.00)

5000–10,000 14 (32.56) 18 (40.00)

>10,000 2 (4.65) 6 (13.33)

Substance use

Smoking (yes/no) 19/24 (44.19%) 43/2 (95.56%) χ2(1) = 25.46 <.001

Duration of smoking (years) 3.31 (5.88) 12.13 (5.32) t(86) = 7.38 <.001

Drinking (yes/no) 14/29 (32.56%) 23/22 (51.11%) χ2(1) = 2.39 .12

Duration of drinking (years) 1.70 (3.30) 4.62 (5.29) t(86) = 3.09 .0027

Betel use (yes/no) 17/26 (39.53%) 29/16 (64.44%) χ2(1) = 4.52 .034

Duration of betel use (years) 1.47 (2.28) 5.56 (5.95) t(86) = 4.32 <.001

Duration of MA use (years) — 6.08 (3.16) — —

Duration of MA abstinence (days) — 61.60 (40.30) — —

Abbreviations: HC, healthy control; MUD, methamphetamine use disorder.
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using the Continuous Performance Test-Identical Pairs (CPT-IP);

working memory was tested using the Visual Memory Spatial Span

(SSP) and Letter–Number Span (LNSP); verbal learning was tested

using the Hopkins Verbal Learning Test-Revised (HVLT-R); visual

learning was tested using the Brief Visuospatial Memory Test-Revised

(BVMT-R); planning and foresight, that is, problem solving, was

assessed using the Neuropsychology Assessment Battery-Mazes

(NAB-Mazes); and social cognition was assessed using the

Mayer-Salovey-Caruso Emotional Intelligence Test: Managing Emo-

tions (MSCEIT-ME).

2.3 | DTI data acquisition

The MRI scan was performed using a 3.0T Siemens Skyra MRI scanner

(Siemens, Munich, Germany) equipped with a 16-channel head coil in

Hunan Children's Hospital. For the scanning, the participants were

placed in a supine position, with foam pads and earplugs to minimize

head motion. A single-shot echo-planar imaging (EPI) sequence was

applied for obtaining whole-brain diffusion tensor imaging data with

the following parameters: TR = 9100 ms, TE = 84 ms, slice number =

75, orientation: transversal (axial), slice thickness = 2 mm, slice gap =

0 mm, slice order: interleaved, field of view = 224 � 224 mm, voxel

size = 2 � 2 � 2 mm3, phase partial Fourier factor = 6/8, and 3 b-

values = 9 + 1, 64, and 1000 s/mm2.

T1-weighted images for anatomical localization were acquired

using a 3D magnetization preparing rapid acquisition gradient echo

(MPRAGE) sequence with the following parameters: TR = 2530 ms,

TE = 2.98 ms, flip angle = 7�, number of slices = 176, slice

thickness = 1 mm, slice gap = 0 mm, field of view = 256 � 256 mm,

and voxel size = 1 � 1 � 1 mm3. All the images were reviewed by a

senior radiologist to ensure that there was no structural abnormalities,

ghosting artifacts, or excess subject motion.

2.4 | DTI data preprocessing and analysis

The DTI images were processed and analyzed through the following

steps: (1) boundary-based registration between the b0 image (the first

volume without diffusion weighting) and the T1 image was performed

using FreeSurfer's bbregister (Greve & Fischl, 2009); (2) a whole brain

mask was created using FSL's bet (Smith, 2002); (3) Eddy correction,

motion correction and outlier replacement were performed using FSL's

eddy_openmp (Andersson & Sotiropoulos, 2016); (4) diffusion tensor

model was fitted at each voxel using FSL's dtifit; FA, MD, AD and RD

measures were calculated based on the eigenvalues of diffusion tensor

to represent the white matter microstructure; (5) T1 image was first

registered into the MNI152 template using ANTs (Tustison

et al., 2014), and the resultant T1-MNI152 transformation was com-

bined with the b0-T1 registration result to transform the FA/MD/AD/

RD maps into the MNI152 space; (6) mean FA/MD/AD/RD values

were extracted based on the JHU white-matter tractography atlas sup-

plied by FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), consisting

of 20 white matter structures (Hua et al., 2008); and (7) visual quality

check of raw T1/DTI images, brain extraction and registration.

2.5 | Statistical analysis

Intergroup differences in demographic information and clinical charac-

teristics were analyzed using independent-samples t tests or χ2 test of

independence as appropriate. We analyzed intergroup differences in

cognitive performance and FA, MD, AD, and RD values, and select

only significant variants for further regression analysis. Hence, analy-

sis of covariances (ANCOVA), with age, years of education, smoking,

drinking, and betel use as covariates, was used to investigate the

inter-group differences on cognitive performance. The same

ANCOVA was also used to investigate inter-group differences on FA,

MD, AD, and RD values. Bonferroni correction was used to correct

for multiple ANCOVA of cognitive performance (k = 10) and DTI met-

rics (k = 80 for 20 fibers and 4 metrics). Finally, significant variants

were used in a multiple linear regression to predict cognitive scores

using diffusion metrics. The same covariates, that is, age, years of edu-

cation, smoking, drinking, and betel use, were used in a covariates-

only model, followed by adding the significant diffusion metrics into

the second model.

Assumptions for the ANCOVA and linear regression were

checked before running the analysis. For ANCOVA, linearity, normal-

ity, and homogeneity of variance were checked. Multivariate normal-

ity, homoscedasticity, and multicollinearity for linear regressions were

also checked using histograms, qq-plot, predicted values-standardized

residual plot, and variance inflation factor (VIF).

3 | RESULTS

3.1 | Demographic information and clinical
characteristics

The demographic information and clinical characteristics of the partic-

ipants are presented in Table 1. Participants of the two groups did not

differ in height, weight, drinking status (yes/no), and duration of drink-

ing (years). However, the MUD group had higher age, lower education

level, higher level of smoking (in terms of both amount and duration),

and higher level of betel use (in terms of both amount and duration),

as compared with those of HCs.

3.2 | Cognitive performance

Assumption checks revealed no violations for assumptions for all cog-

nitive performance except BVMT-R (F[1, 86] = 4.85, p = .030).

Checking of variances by groups showed that they were not far apart

from each other (SDHC = 20.30, SDMUD = 14.80). Hence, we decided

to continue with ANCOVA for BVMT-R instead of running nonpara-

metric version of ANOVA, that is, Kruskal–Wallis test, which could
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not account for covariates. After adjusting for age, education, drinking

status, smoking status, and betel use, and after correction for multiple

testing, there were group differences in DSCT (F[1, 81] = 15.67, p =

.0013), CPT-IP (F[1, 81] = 34.46, p < .001), HVLT-R (F[1, 81] =

12.47, p = .0069), and NAB-Mazes (F[1, 81] = 11.20, p = .012). The

estimated marginal means of the neuropsychological test results after

accounting for the covariates are presented in Table 2.

In short, after controlling for the covariates, HC had (1) higher

DSST scores (Mlsmeans ± SE = 52.90 ± 2.24, 95% CI = [48.40, 57.30])

than MUDs (Mlsmeans ± SE = 41.00 ± 2.79, 95% CI = [35.40, 46.50]),

(2) higher CPT-IP scores (Mlsmeans ± SE = 53.00 ± 2.14, 95% CI =

[48.80, 57.30]) than MUDs (Mlsmeans ± SE = 35.40 ± 2.67, 95% CI =

[30.10, 40.70]), (3) higher HVLT-R scores (Mlsmeans ± SE = 49.60

± 2.10, 95% CI = [45.40, 53.80]) than MUDs (Mlsmeans ± SE = 37.70

± 2.62, 95% CI = [32.50, 42.90]), and (4) higher NAB-Mazes scores

(Mlsmeans ± SE = 54.20 ± 1.71, 95% CI = [50.80, 57.60]) than MUDs

(Mlsmeans ± SE = 45.10 ± 2.21, 95% CI = [40.80, 49.30]).

3.3 | Group differences in WM microstructure

Assumption checks revealed no violations for assumptions for all dif-

fusion metrics. After correcting for k = 80 ANCOVA models, the

ANCOVA showed significant group differences in AD (F[1, 81] =

11.29, p = .024), MD (F[1, 81] = 17.44, p = .001), and RD (F[1, 81] =

15.05, p = .002) of the left SLF, after adjusting for age, education,

drinking status, smoking status, and betel use, and after correction for

multiple testing (Figure 1). The other 77 ANCOVA models, including

the FC of the left SLF, showed no significant results after Bonferroni

correction. To complete the analysis of the left SLF, we also reported

the ANCOVA model for the FA value of the left SLF. The ANCOVA

found no significant group differences in the FA value (F[1, 81] =

6.56, p = .246) after Bonferroni correction.

Estimated marginal means showed that MUDs have (1) higher AD

values (Mlsmeans ± SE = 0.001082 ± 0.0000056, 95% CI = [0.001071,

0.001094]) than HC (Mlsmeans ± SE = 0.001058 ± 0.0000045, 95%

CI = [0.001049, 0.001067]), (2) higher MD values (Mlsmeans ± SE =

0.0007337 ± 0.0000046, 95% CI = [0.0007244, 0.0007429]) than

HC (Mlsmeans ± SE = 0.0007087 ± 0.0000037, 95% CI = [0.0007013,

0.0007161]), and (3) higher RD values (Mlsmeans ± SE = 0.0005595

± 0.0000051, 95% CI = [0.0005494, 0.0005697]) than HC

(Mlsmeans ± SE = 0.000534 ± 0.0000041, 95% CI = [0.0005259,

0.0005422]).

3.4 | Association between left SLF and cognition

After checking for ordinary least-squares linear regression assumptions,

we found high variance inflation factors (VIF) in AD (VIF = 771.44), MD

(VIF = 4936.00), and RD (VIF = 2534.79) values of the left SLF. By

examining the correlations, we found that the correlations between AD

and MD values (r = .81, p < .001), between MD and RD values (r = .95,

p < .001), and between AD and RD values (r = .58, p < .001) were sig-

nificant. Therefore, we removed the MD values of the left SLF from the

regression model and ran the linear regressions with age, education,

drinking status, smoking status, and betel use as covariates, and AD and

RD values of the left SLF as predictors (Figure 2).

For DSCT, the predictors from the covariates model accounted

for a significant additional 8.76% of the variance in DCST [ΔF(2, 79) =

5.58, p = .0054, ΔR2 = 0.0876], resulting in a total R2 = 0.38 for the

DCST regression model. The RD (β = �.40, t = �3.48, p = .0013)

value of the left SLF was a significant predictor of DCST. The AD

value of the left SLF, however, was not a significant predictor of DCST

(β = .22 = 1.82, p = .073).

For CPT-IP, the predictors from the covariates model accounted

for an additional 1.34% of the variance in CPT-IP [ΔF(2, 79) = 0.84,

TABLE 2 Cognitive profile of participants

Estimated marginal

means ± SD (95% CI) HC (N = 43) MUD (N = 45) F-ratio p value

DSCT 52.88 ± 2.24 [48.42, 57.33] 40.97 ± 2.79 [35.42, 46.53] F(1, 81) = 11.01 .014

CF 50.13 ± 1.44 [47.26, 52.99] 44.42 ± 1.8 [40.85, 47.99] F(1, 81) = 6.11 .16

TMT-A 57.79 ± 1.93 [53.95, 61.63] 55.95 ± 2.4 [51.17, 60.74] F(1, 81) = 0.35 .99

CPT-IP 53.04 ± 2.14 [48.77, 57.31] 35.39 ± 2.67 [30.07, 40.72] F(1, 81) = 26.36 <.001

SSP 47.13 ± 2.42 [42.31, 51.95] 38.43 ± 3.02 [32.41, 44.44] F(1, 81) = 5.03 .28

HVLT-R 49.58 ± 2.1 [45.39, 53.76] 37.68 ± 2.62 [32.46, 42.89] F(1, 81) = 12.47 .0069

LNSP 49.33 ± 1.66 [46.04, 52.63] 43.19 ± 2.07 [39.07, 47.3] F(1, 81) = 5.35 .23

BVMT-R 43.63 ± 3.04 [37.58, 49.69] 31.45 ± 3.8 [23.89, 39] F(1, 81) = 6.24 .15

NAB-Mazes 54.22 ± 1.71 [50.82, 57.61] 45.07 ± 2.13 [40.83, 49.3] F(1, 81) = 11.20 .012

MSCEIT-ME 60.22 ± 2.49 [55.27, 65.18] 55.99 ± 3.11 [49.81, 62.17] F(1, 81) = 1.12 .99

Note: The table shows the estimated marginal means of the neuropsychological tests after accounting for age, education, drinking status, smoking status,

and betel use. p values have been corrected using Bonferroni correction. BVMT-R, Brief Visuospatial Memory Test-Revised; CF, category fluency; CPT-IP,

continuous performance test-identical pairs; DSCT, digit-symbol coding task; HC, healthy control; HVLT-R, Hopkins Verbal Learning Test-Revised; LNSP,

Letter-number span; MSCEIT, Mayer-Salovey-Caruso Emotional Intelligence Test: Managing Emotions; MUD, methamphetamine use disorder; NAB-

Mazes, Neuropsychological Assessment Battery-Mazes; SSP, spatial span; TMT-A, trail-making test part A.
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p = .44, ΔR2 = 0.0134], resulting in a total R2 = 0.37 for the CPT-IP

regression model. AD (β = .15, t = 1.25, p = .22) and RD (β = �.11,

t = �0.93, p = .36) values of the left SLF were not significant predic-

tors of CPT-IP.

For HVLT-R, the predictors from the covariates model account

for an additional 2.30% of the variance in HVLT-R [ΔF(2, 79) = 1.32,

p = .28, ΔR2 = 0.023], resulting in a total R2 = 0.32 for the HVLT-R

regression model. AD (β = .09, t = 0.72, p = .47) and RD (β = �.20,

F IGURE 1 The figure displays the
lsmean and standard error of the AD, MD,
and RD values of the left SLF for the two
groups. For all diffusivity values, the MUD
group has higher AD, MD, and RD values
of the left SLF than the HC group after
controlling for age, level of education,
drinking status, smoking status, and betel
use, and after Bonferroni correction for

multiple testing. The bottom right panel
shows the left SLF. AD, axial diffusivity;
HC, healthy control; MD, mean diffusivity;
MUD, methamphetamine use disorder;
RD, radial diffusivity; SLF, superior
longitudinal fasciculus

F IGURE 2 The figure shows the
association between cognitive domains of
the significant MCCB and the AD and RD
values of the left SLF. Only RD value of
the left SLF was predictive of DCST and
MAB-mazes scores. AD, axial diffusivity;
CPT-IP, continuous performance test-

identical pairs; DSCT, digit-symbol coding
task; HC, healthy control; HVLT-R,
Hopkins verbal learning test-revised;
MCCB, MATRICS consensus cognitive
battery; MUD, methamphetamine use
disorder; NAB-mazes, neuropsychological
assessment battery-mazes; RD, radial
diffusivity; SLF, superior longitudinal
fasciculus
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t = �1.62, p = .11) values of the left SLF were not significant predic-

tors of HVLT-R.

Finally, for NAB-Mazes, the predictors from the covariates model

accounted for an additional 5.28% of the variance in NAB-Mazes [ΔF

(2, 79) = 3.17, p = .047, ΔR2 = 0.0528], resulting in a total R2 = 0.34

for the NAB-Mazes regression model. The RD (β = �.28, t = �2.30,

p = .024) value of the left SLF was a significant predictor of NAB-

Mazes, while the AD value of the left SLF was not a significant predic-

tor of NAB-Mazes (β = .04, t = 0.31, p = .76).

4 | DISCUSSION

The primary aim of this study was to investigate white matter tracts

associated with cognitive deficits in patients with MUD. Our behav-

ioral results indicated that patients with MUD had lower DSCT, CPT-

IP, HVLT-R, and NAB-Mazes scores than HCs. Similarly, our neuroim-

aging results demonstrated higher AD, MD, and RD values of the left

SLF in patients with MUD, as compared with HCs. Regression ana-

lyses revealed that the RD value of the left SLF was negatively associ-

ated with DCST and NAB-Mazes scores.

4.1 | Differences in cognitive profiles

Our behavioral results revealed significant group differences in many

aspects of cognition, including processing speed, sustained attention,

verbal leaning, and problem solving after adjusting for education,

drinking status, smoking status, and betel use, and after correction for

multiple testing. We added these covariates, specifically drinking,

smoking, and betel use due to their associations with cognitive pro-

files and WM microstructure (Hampton et al., 2019). For example,

consistent research has documented the association between alcohol

use (Spindler et al., 2022), smoking (Gray et al., 2020), betel use (Yuan

et al., 2017), and WM microstructure. Patients with MUD had lower

DSCT scores, indicating that they had lower processing speed. This is

consistent with a recent meta-analysis demonstrating poorer proces-

sing speed in individuals with MUD, as compared to HCs (Potvin

et al., 2018). This marked difference might be related to poorer func-

tions in other cognitive domains, such as attention and working mem-

ory. Recent advancements in DCST have also suggested that the

DSCT is associated with and is sensitive to other cognitive functions,

including attention, visuospatial attention, and executive functions

(Jaeger, 2018). However, despite its high sensitivity, the low specific-

ity of the DCST obscures the impairments in specific cognitive

domains (Jaeger, 2018), and whether poorer functions in processing

speed and attention are interrelated in the context of MUD is still

unclear. Currently, our findings could only demonstrate that patient

with MUD had poorer processing speed.

Our study also demonstrated that patients with MUD had lower

CPT-IP scores than HCs, indicating poorer sustained attention in

MUD. Attention is crucial as it affects other cognitive functions such

as language, memory, and problem-solving; it also reflects the

complex interplay of multiple independent systems in the brain

(Burgoyne & Engle, 2020; Fan et al., 2005; Pessoa et al., 2003).

Reduced sustained attention (London et al., 2005; Pocuca et al., 2020;

Rubenis et al., 2018) has been reported in previous studies, suggesting

that MUD might be associated with sustained attentional deficits.

Poor sustained attention is also indicative of limited improvement in

motivation during early rehabilitation programs, suggesting its impor-

tance in the prediction of treatment outcome (Rubenis et al., 2018).

Therefore, improving sustained attention in rehabilitation may be ben-

eficial for patients with MUD.

Patients with MUD also exhibited poorer verbal learning, as

shown by lower HVLT-R scores. A previous review reported that

MUD often performed equally poor on verbal learning (Janke van

Holst & Schilt, 2011) and memory (Potvin et al., 2018), suggesting that

these deficits did not come from poor consolidation. Some other stud-

ies suggested that these deficits came from poor learning strategies

(Woods et al., 2005) or compromised dopaminergic transmission and

hippocampal microstructure, which led to poor verbal learning

(Shukla & Vincent, 2021). Yet, the mechanisms underlying poor verbal

learning is still unclear.

Finally, patients with MUD also exhibited poorer NAB-Mazes

scores than HCs. NAB-Mazes require patients to plan and organize

steps through a maze and is sensitive to frontal lobe dysfunction (Shi

et al., 2015). A study conducted in rats found that methamphetamine

caused apoptosis, resulting in atrophy of the prefrontal cortex

(Tehrani et al., 2019). Humans with severe MUD also had lower pre-

frontal cortical volume, and this was associated with higher impulsiv-

ity，which is an indicator of poor planning and foresight, that is,

problem solving (Huang, Dai, et al., 2020). Repetitive transcranial mag-

netic stimulation (rTMS) to the left prefrontal cortex was shown to

improve the score of the Groton maze learning task (a task assessing

problem solving abilities, similar to the NAB-Mazes) (Su et al., 2020).

This change was also associated with changes in γ-aminobutyric acid

(GABA) levels in patients who underwent rTMS, but not in those who

underwent sham-rTMS, suggesting a direct neurochemical association

between methamphetamine, prefrontal cortex, and problem solving.

Generally, our findings are consistent with those of previous stud-

ies, suggesting that MUD is associated with a broad range of cognitive

deficits. However, further research on the mechanisms of these defi-

cits is required, as they are still debatable.

4.2 | Importance of the SLF in processing speed
and problem solving in MUD

The SLF is a major intra-hemispheric fiber tract that connects the pari-

etal, temporal, and frontal lobes. Damage to the SLF could lead to dys-

function in attention, visuospatial abilities, and processing speed

(Makris et al., 2005). Recently, it has been found that the SLF was

associated with visuospatial cognitive function and working memory

performance (Koshiyama et al., 2020). However, very few studies

have investigated or found significant associations between the SLF

and cognitive functions in MUD. According to Huang et al., the FA,
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AD, RD, and MD values were altered in bilateral SLF, but these values

were not associated with any dimensions of cognition, including

attention (Huang, Yang, et al., 2020).

The present study revealed higher AD, MD, and RD values of the

left SLF in patients with MUD, as compared with HCs. Similarly, a

recent study found that MA addicts had significantly higher AD, RD,

and MD values in the bilateral SLF compared with controls (Huang,

Yang, et al., 2020). Changes in AD, RD and FA were also found in

many brain regions in children prenatally exposed to MA, especially in

the SLF (Chang et al., 2012). In addition, findings from the ENIGMA-

Addiction working group revealed that MUDs had higher RD in sev-

eral WM tracts, including the SLF (Ottino-Gonzalez et al., 2022). RD is

indicative of perpendicular diffusion and is often used as a proxy of

myelin density, and thus higher RD values might suggest low myelin

content (Song et al., 2002; Song et al., 2005); MD indicates the mean

amount of water that is diffused, and might be suggestive of increased

cellularity in the brain (Fellgiebel et al., 2004). This often occurs with

edema or necrosis. On the other hand, AD indicates the mean diffu-

sion coefficient of water molecules diffusing parallel to the tract,

reflecting parallel diffusion. Lower AD values typically imply axonal

damage, that is, cellular debris and injured structures of the axon bar-

ricade the diffusion of water making diffusion less coherent. Higher

AD values are indicative of greater fiber alignment or density, and

could have an underlying pathological cause when FA is low and RD

and MD values are high as it may indicate neurofibrillary damage. We

did not find any significant group differences in FA values, and thus

cannot assume any white matter damage in any of the microstructure

(Jones et al., 2013). At most, we could only suggest greater permeabil-

ity and lower myelin in MUD compared to HC. Thus, more systematic

studies are required to examine changes in white matter microstruc-

ture in MUD.

More importantly, our findings further suggested that the left

SLF might be an important substrate of cognitive deficits in MUD,

which was shown by significant associations between the RD value

and processing speed as well as problem solving. The processing

speed, as assessed by the DSCT, was closely related to the micro-

structure of WM tracts associated with the frontal, parietal, and

temporal cortices. The SLF is the main tract subserving fronto-

parietal integration, contributing significantly to the processing

speed (Turken et al., 2008). Several previous studies have examined

the relationship between the SLF and processing speed. One study

reported that the SLF was a significant predictor of processing

speed in inter-episode bipolar patients (McKenna et al., 2015).

Investigation of SLF fiber complexity in recent-onset psychosis

revealed its significant effects on processing speed (Szeszko

et al., 2018). In the current study, we found that the RD value of the

left SLF was a significant predictor of processing speed, as shown

by DSCT. In accordance with those of the above previous studies,

the findings may be used as additional evidence for the association

between the SLF and processing speed.

The NAB-Mazes test examines problem solving, where those with

typical frontal-lobe syndromes are likely to fail. Prolonged MA use

causes abnormalities in the frontal lobes (Wu et al., 2018) and could

have caused damage to the short-range fibers along the prefrontal

cortex. As shown by our results, this change could have led to deficits

in problem solving. Considering the influence of polysubstance use on

white matter microstructure (Kaag et al., 2017), including frontal lobe

functions (Pando-Naude et al., 2021), as shown in previous studies,

we accounted for the use of other drugs as covariates. Even with the

above measure, we still found significant association between the left

SLF and NAB-Mazes scores, indicating the importance of the SLF in

problem solving.

The findings that the RD value of the left SLF was associated with

poorer problem solving connect to a broader memory and learning

deficit in MUD. A previous study found that verbal memory impair-

ments in individuals with MUD were related to poor strategic control

(Woods et al., 2005), as these individuals failed in planning their learn-

ing strategies during verbal encoding or retrieving. However, we did

not find any associations between verbal memory (HVLT-R) and white

matter microstructure of the left SLF. Notably, the structural connec-

tivity of the SLF is distributed among subregions and white matter

tracts, that is, SLF-I, SLF-II, SLF-III, and the arcuate fascicle (Nakajima

et al., 2020). In our analysis, we did not divide the SLF into several

parts to examine the association between the parts of SLF and cogni-

tive performance, which may have led to null findings for HVLT-R. A

second reason could be that there were no real associations between

WM microstructure of the left SLF and CPT-IP and HVLTT-R even

though there were significant group differences in both WM micro-

structure of the left SLF and CPT-IP and HVLT-R. Furthermore, poly-

substance use may add complexity to the analysis (Hampton

et al., 2019). Even after adjusting for alcohol, smoking, and betel use,

we still found negligible associations between the AD and RD of the

left SLF and CPT-IP AND HVLT-R. In future studies, the SLF in MUD

can be explored in greater detail to provide more precise markers of

cognitive dysfunctions in MUD.

4.3 | Limitations

Several limitations should be noted. First, we only selected tracts from

our initial univariate analysis to reduce the number of regression

models. Thus, only the left SLF was included in our regression models.

Second, as the demographic information and clinical profiles differed

between patients in compulsory and voluntary drug rehabilitation cen-

ters in China (Huang et al., 2021), the results of this study may not be

representative enough. Third, we opted for an exploratory analysis

using Bonferroni correction due to the limited literature. Hence, there

could be associations between different white matter tracts and cog-

nitive profiles even though no significant inter-group differences had

been found regarding these measures. Thus, more studies are needed

to build a better foundation on the association between white matter

microstructure and cognitive changes in MUD. Finally, future works

on the impact of gender and longitudinal studies should be consid-

ered, and studies are also needed to determine whether there is any

association between DTI metrics and MA use, in order to better

understand the characteristics of MUD.
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4.4 | Conclusion

In conclusion, the present study demonstrated that MUD was associ-

ated with a variety of cognitive deficits. Patients with MUD often

have compromised left SLF microfibers, specifically in AD, MD, and

RD. This study also revealed that only the RD value was negatively

associated with processing speed and problem solving, as shown by

the DCST and NAB-Mazes scores, respectively. Our findings may pro-

vide further evidence for the important role of the left SLF in proces-

sing speed and problem solving. Further functional imaging studies on

the SLF in MUD may extend our understanding of how this tract

breaks down in MUD and how it impacts the cognitive function of

patients.
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