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Neurodegenerative diseases are associated with the accumulation of misfolded proteins
in the endoplasmic reticulum (ER), leading to ER stress. To adapt, cells initiate the
unfolded protein response (UPR). However, severe or unresolved UPR activation
leads to cell death and inflammation. The UPR is initiated, in part, by the trans-
ER membrane kinase PKR-like ER kinase (PERK). Recent evidence indicates ER
stress and inflammation are linked, and we have shown that this involves PERK-
dependent signaling via Janus Kinase (JAK) 1. This signaling provokes the production
of soluble inflammatory mediators such as interleukin-6 (IL-6) and chemokine C-C
motif ligand 2 (CCL2). We, therefore, hypothesized that JAK1 may control widespread
transcriptional changes in response to ER stress. Here, using RNA sequencing of
primary murine astrocytes, we demonstrate that JAK1 regulates approximately 10% of
ER stress-induced gene expression and is required for a subset of PERK-dependent
genes. Additionally, ER stress synergizes with tumor necrosis factor-α (TNF-α) to
drive inflammatory gene expression in a JAK1-dependent fashion. We identified that
JAK1 contributes to activating transcription factor (ATF) 4-dependent gene expression,
including expression of the genes growth arrest and DNA damage (GADD) 45α and
tribbles (TRIB) 3 that have not previously been associated with JAK signaling. While
these genes are JAK1 dependent in response to ER stress, expression of GADD45α

and TRIB3 are not induced by the JAK1-activating cytokine, oncostatin M (OSM).
Transcriptomic analysis revealed that JAK1 drives distinct transcriptional programs in
response to OSM stimulation versus ER stress. Interestingly, JAK1-dependent genes
induced by ER stress in an ATF4-dependent mechanism were unaffected by small
molecule inhibition of JAK1, suggesting that, in response to UPR activation, JAK1
initiates gene expression using non-canonical mechanisms. Overall, we have identified
that JAK1 is a major regulator of ER stress-induced gene expression.

Keywords: inflammation, astrocytes, unfolded protein response, protein misfolding, neurodegeneration, Janus
kinase, RNA seq, cytokine
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INTRODUCTION

Prevalent diseases including neurodegenerative disorders, cancer,
obesity and diabetes are associated with the accumulation
of misfolded proteins in the endoplasmic reticulum (ER)
(Oakes and Papa, 2015). Under normal conditions, molecular
chaperones within the ER fold proteins, an essential step
in the maturation of proteins destined for membranes or
secretion. Misfolded proteins can result from a multitude of
origins including inflammation, reactive oxygen species (ROS),
or genetic mutations (Zhang and Kaufman, 2008; Walter and
Ron, 2011). Misfolding can ultimately result in loss of protein
function and deleterious effects to the cell. In eukaryotes,
the ER has an intricate monitoring system to ensure each
protein is properly folded before being exported to its ultimate
destination. If a protein is misfolded, mechanisms are in place
to re-fold or degrade the aberrant polypeptide. However, when
misfolded proteins overwhelm these mechanisms, this results in a
disruption of homeostasis, referred to as ER-stress and activation
of the unfolded protein response (UPR). The UPR is a highly
conserved stress response tasked with restoring homeostasis or
initiating apoptosis (Hetz, 2012).

The UPR is mediated by three ER transmembrane sensor
proteins: inositol requiring enzyme-1 (IRE1), protein kinase
R-like ER kinase (PERK), and activating transcription factor
(ATF) 6. Under unstressed conditions, the molecular chaperone
glucose regulated protein (GRP78) interacts with and maintains
each of these proteins in an inactive conformation. When
unfolded proteins accumulate, GRP78 is recruited away from
these ER transmembrane proteins, promoting oligomerization
and conformational changes in PERK and IRE1, which then
likely interact with misfolded polypeptides initiating enzymatic
activity (Kimata et al., 2007; Gardner and Walter, 2011;
Walter and Ron, 2011; Hetz, 2012; Gardner et al., 2013).
Once active, PERK phosphorylates eukaryotic initiation factor
2α (eIF2α) to reduce protein translation and alleviate the
influx of nascent polypeptides into the ER (Harding et al.,
1999). Concomitantly, the UPR promotes the activation and/or
expression of transcription factors such as ATF6, X-box
binding protein 1 (XBP1) and ATF4 to drive the expression
of ER chaperones to restore function (Walter and Ron,
2011). ER stress has been widely studied in neurons because
it is often associated with neuronal death in models of
neurological diseases. Increasing evidence indicates ER stress
also affects astrocytes. Astrocytes are the most populous
glial cell and respond to external stimuli by promoting
production of inflammatory cytokines (Sofroniew and Vinters,
2010). In previous studies, humanized ApoE4 and amyloid-
β drive ER stress and astrocyte dysfunction. α-synuclein and
mutant LRRK2, associated with PD, work together to drive
ER stress and Ca2+ disruption in astrocytes (Lee et al.,
2019). Inflammation and expression of the human endogenous
retrovirus protein, syncytin-1, promote ER stress in astrocytes
in MS (Deslauriers et al., 2011). Consistent with this, our
previous work has indicated that neuroinflammation and STAT3
phosphorylation concomitant with ER stress in the MS mouse
model of experimental autoimmune encephalomyelitis (EAE)

(Meares et al., 2014). Additionally, we have recently shown
that ER stress is transmissible between cells of the CNS.
We showed that neurons experiencing ER stress can alert
neighboring cells, including astrocytes, by inducing an ER
stress response in those cells (Sprenkle et al., 2017). Together,
these studies suggest that astrocytes are impacted by ER
stress in neurological diseases, and may contribute to the
associated pathologies.

In addition, the UPR stimulates an inflammatory response
to possibly alert neighboring cells to an impending danger
and to recruit immune cells (Zhang and Kaufman, 2008;
Sprenkle et al., 2017, 2019). However, this inflammation may
contribute to the pathology of diseases involving ER stress (Zhang
and Kaufman, 2008; Martinon and Glimcher, 2011; Grootjans
et al., 2016). The UPR has been linked to primary signaling
molecules contributing to inflammation such as nuclear factor
κB (NF-κB), the mitogen activated protein kinase (MAPK)
c-Jun N-terminal kinase (JNK), and simulates an acute phase
response (Grootjans et al., 2016). The UPR has also been
shown to promote the production of cytokines and chemokines,
including the pleiotropic cytokine, IL-6 (Li et al., 2005; Meares
et al., 2014; Keestra-Gounder et al., 2016). Typically, IL-6
exerts its action by binding to its cell membrane receptor
and activating a Janus kinase (JAK) and signal transducer and
activator of transcription (STAT) cascade to modulate gene
expression (O’Shea and Plenge, 2012). We have previously shown
a PERK-dependent mechanism of JAK1 activation leading to IL-
6 production, uncovering another connection between ER-stress
and inflammation (Meares et al., 2014).

The JAK-STAT pathway is an integral signal transduction
pathway in modulating inflammatory gene expression and
immunological function (Villarino et al., 2015). Loss of function
studies have shown that the 4 JAKs (JAK1, JAK2, JAK3, and
Tyk2) and 7 STATs (STAT1, STAT2, STAT3, STAT4, STAT5a,
STAT5b, and STAT6) are essential for lymphoid development,
T and B cell development, erythropoiesis, defense against viral,
and bacterial infections, as well as neural function (Igaz et al.,
2001; Nicolas et al., 2013). While the majority of effects elicited
by JAK activation are attributed to the activation of STAT
proteins, JAKs also integrate with other signaling pathways
including phosphatidylinositol 3-kinase (PI3K) signaling and
the MAPK pathway (Eulenfeld et al., 2012). Furthermore, cell
stressors such as hypoxia, reactive oxygen/nitrogen species, and
ER stress activate JAK signaling through receptor-dependent and
independent mechanisms (Guzik et al., 2003; Dudley et al., 2004,
2005; Meares et al., 2014).

It is well established that JAK1 is required for responsiveness
to interferons, the IL-6 family of cytokines and IL-2, among
others, as well as various forms of cell damage. Considering the
integral relationship between ER stress and inflammation, we
hypothesized that JAK1 may also be a critical signaling node
controlling transcriptional changes in response to ER stress.
Consistent with this hypothesis, we have identified that JAK1
regulates approximately 10% of the genes induced by ER stress. In
addition to its traditional role downstream of cytokine receptors,
JAK1 modulates expression of a distinct subset of genes in
response to ER stress.
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MATERIALS AND METHODS

Mice and Primary Cell Preparations
C57Bl/6, PERK floxed and CAGG-CreETM mice were purchased
from The Jackson Laboratory and bred and housed in
the animal facility at West Virginia University under the
care of the animal resources program. Primary murine
astrocytes were prepared as previously described (Meares et al.,
2013). Astrocytes were cultured in Dulbecco’s modified eagle
medium (DMEM; Gibco) with 10% fetal bovine serum (FBS;
Atlanta Biologicals), 16 mM 4-(2-Hydroxyethyl) piperazine-
1-ethanesulfonic acid, N-(2-Hydroxyethyl) piperazine-N′-(2-
ethanesulfonic acid) (HEPES; Gibco), 1X non-essential amino
acids (Corning), 2 mM L-Glutamine, 100 units/ml penicillin,
100 µg/ml streptomycin (Gibco), and 50 µg/ml gentamicin
(Lonza). Astrocytes were separated from microglia by shaking
at 200 RPM for 1.5 h. Cells were then trypsinized (0.05%,
Gibco) for 5 min at 37◦C, collected in media and centrifuged for
5 min at 300g. Cells were then seeded into multi-well plates and
stimulated after 48–72 h.

Antibodies and Reagents
Primary antibodies used were: Anti JAK1 (3344), JAK2
(3230), P-eIF2α (3398), eIF2α (5324), P-STAT3 (9145), STAT3
(12640), Lysine-specific histone demethylase 1 (LSD1) (2184),
ATF4 (11815) from Cell Signaling; Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) (MAB374) from Millipore; JAK1
(610231) from BD Transduction Laboratories; transferrin
receptor (TfR) H68.4 (13-6800) from Thermo Fisher; and
CCAAT-enhancer-binding protein homologous protein (CHOP)
(sc-7351) from Santa Cruz. Cytokines used were: oncostatin
(OSM) M and tumor necrosis factor (TNF) – α from
R&D systems. Thapsigargin and tunicamycin used were from
EMD Millipore and AZD1480 was supplied from Santa Cruz
Biotechnology. Puromycin was supplied from Fisher Scientific.

Immunoblotting
Cells were washed twice with phosphate buffered saline
(PBS) and lysed with lysis buffer (20 mM 2-Amino-2-
(hydroxymethyl)-1,3-propanediol (Tris), pH 7.5; 150 mM NaCl;
2 mM Ethylenediaminetetraacetic acid (EDTA); 2 mM Ethylene-
bis (oxyethylenenitrilo) tetraacetic acid (EGTA); 0.5% Non-idet
P-40 (NP-40) containing 1X phosphatase and protease inhibitor
cocktail (Pierce) as previously described (Meares et al., 2004).
Protein concentrations were determined using the bicinchoninic
acid assay (Pierce). Equal amounts of protein from each sample
were solubilized in Laemmli sample buffer and heated for 5 min
at 95◦C. Proteins were separated by SDS-polyacrylamide gel
electrophoresis, transferred to nitrocellulose, and the membranes
were blocked in 5% milk/tris buffered saline with tween-20
(TBST), followed by an overnight incubation at 4◦C with primary
Ab diluted in 5% bovine serum albumin (BSA) or milk in TBST,
according to the manufacturer’s recommendation. Horseradish
peroxidase-conjugated donkey anti-rabbit or donkey anti-mouse
(1:4000 dilution) secondary Ab (Jackson Immuno Research)
were incubated for 1 h at room temperature, followed by

detection with enhanced chemiluminescence. Membranes were
imaged digitally using a ChemiDoc Touch (Biorad). Immunoblot
images were analyzed using ImageLab software (BioRad). When
applicable, quantification of immunoblot images were quantified
by obtaining volumetric measurements in ImageLab.

qRT-PCR
RNA was isolated using 1 ml of TRIzol (Sigma-Aldrich)
according to the manufacturer’s instructions. RNA was quantified
using a NanoDrop (NanoDrop Technologies), and 1 µg of
RNA was used for cDNA synthesis using Moloney Murine
Leukemia Virus reverse transcriptase (Promega). The cDNA
was analyzed by quantitative PCR performed using probe-based
gene expression assays (IDT or Themo Fisher) in a Stratagene
MX3005P or Applied Biosystems Quant Studio 3. Reactions were
carried out in 20 µL and analyzed using the 11Ct method.

Protein Translation
Protein synthesis was estimated by measuring puromycin
incorporation using a modified method based on (Schmidt et al.,
2009). Briefly, cells were incubated with puromycin (5 µg/ml)
for 5 min followed by washing in cold PBS and lysed with lysis
buffer. One microgram of protein was spotted in duplicate or
triplicate on nitrocellulose and allowed to dry. The membrane
was then immunoblotted (dot blot) using an anti-puromycin
antibody (Millipore) at 1:5000 dilution in 5% milk/TBST. Dots
were quantified using ImageLab software (Biorad).

RNA Sequencing and Bioinformatics
RNA was quantified by Qubit fluorometer. RNA quality was
assessed by Bioanalyzer Nano chip. All RIN values were
greater than 8. Libraries were built using 750 ng RNA and
KAPA stranded mRNA kit as per manufacturers protocol. The
libraries were then quantified with the Qubit and run on the
Bioanalyzer using a High Sensitivity DNA chip to determine
average size. They were then pooled at an equimolar ratio and
sequenced (paired end (PE) 100 bp) on the HiSeq 2500 at
Marshall University. RNA seq was also performed externally
by Genewiz. Analysis was performed using CLC Biomedical
Genomics Workbench and Ingenuity Pathway Analysis (Qiagen).
Non-coding or non-annotated genes were not included in
analysis. Gene ontology was analyzed using ShinyGO v0.60
http://bioinformatics.sdstate.edu/go/(Ge and Jung, 2018). Full
data sets are available at NCBI Sequence Read Archive
(SRA) # SRP129889.

Immunoprecipitation
Protein lysates were collected in lysis buffer. Anti-rabbit
Dynabeads (15 µl per sample, Invitrogen) were coated with 1 µg
of α-ATF4 antibody overnight. Beads with the α-ATF4 antibody
were washed with PBS with 0.1% BSA 3 times. Protein (750 µg)
was then incubated with the Dynabeads for 3 h and washed two
times with 0.5% NP-40 lysis buffer and two times with PBS with
0.1% BSA. Protein was eluted by incubating the Dynabeads in 1X
Laemelli Buffer at 95◦C for 5 min.
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Cellular Fractionation
Nuclear and cytoplasmic fractions were obtained by collecting
cells in 0.05% NP-40 buffer (10 mM Tris pH 7.4, 10 mM NaCl,
3 mM MgCl2, 1 mM EGTA, 0.05% NP-40 with 1X protease and
phosphatase inhibitors) and centrifuged at 2700 × g for 10 min
at 4◦C. Supernatants were collected and centrifuged at 17,000× g
for 15 min at 4◦C to obtain cytoplasmic fractions. The pellet
containing nuclei was washed twice in 200 µl of wash buffer
(5 mM HEPES, pH 7.4, 3 mM MgCl2, 1 mM EGTA, 250 mM
sucrose, 0.1% BSA, with 1X protease and phosphatase inhibitors).
The pellet was then resuspended in wash buffer and layered on
top of 1 ml of 1 M sucrose (with protease and phosphatase
inhibitors), and centrifuged at 2700 × g for 10 min at 4◦C. The
nuclear pellet was washed in the 0.05% NP-40 lysis buffer. The
nuclear proteins were extracted by resuspending the pellet in
nuclear extraction buffer (20 mM HEPES pH 7.4, 1.5 mM MgCl2,
0.2 mM EDTA, 10 mM β-glycerophosphate, 300 mM NaCl with
1X protease and phosphatase inhibitor) and incubating on ice
for 30 min. The nuclear fractions were subsequently centrifuged
at 17,000 g for 15 min at 4◦C. The supernatant was saved as
nuclear extract.

siRNA Transfections
Primary astrocytes were transfected with the indicated small
interfering (si) RNA (50 pmols per 35 mm well) using
Lipofectamine RNAiMAX (Life Technologies) according to
the manufacturer’s protocol. Cells were used for experiments
48–72 h after transfection. The siRNAs used in this study
include Control (non-targeting) siRNA, JAK1 siRNA #1
(sequence: GCUCCGAACCGAAUCAUCA), JAK1 siRNA #2
(sequence: CACUGAUUGUCCACAAUAUTT), JAK2 siRNA
(sequence GGACUAUAUGUGCUACGAUTT), ATF4 siRNA #1
(sequence: GCUGCUUACAUUACUCUAATT), ATF4 siRNA #2
(sequence: GCCUAGGUCUCUUAGAUGATT).

ELISA
Culture supernatants (100 µL, undiluted) were collected and
assayed by ELISA for murine IL-6 (Biolegend) according to the
manufacturer’s protocol.

Statistics
Data are the means of at least three independent experiments.
Significance, indicated by ∗where p < 0.05, was determined by
one-way analysis of variance (ANOVA) with post hoc analysis or
by Student’s t-test. RNA-seq significance was determined using
Empirical Analysis of Differential Gene Expression (EDGE) test
(Robinson and Smyth, 2008; Robinson et al., 2010).

RESULTS

In this study, we have used primary murine astrocytes as a
model to study the role of JAK1 in the ER stress response.
Astrocytes are resistant to the cytotoxic effects of prototypical
ER stress inducing agents but respond with a robust UPR
and inflammatory response (Meares et al., 2014), making them
ideal to study signaling and gene expression without overt cell

death. We have previously shown that ER stress-induced IL-
6 expression requires PERK and JAK1 in astrocytes (Meares
et al., 2014). To extend these findings, we tested if JAK2 could
also regulate IL-6. We focused on testing JAK1 and JAK2
because other JAKs (JAK3 and Tyk2) are lowly expressed in
astrocytes (Zhang et al., 2014). As shown in Figure 1A, ER
stress induced by thapsigargin (thaps) drives production of IL-6
and siRNA-mediated knockdown of JAK1 abrogated ER stress-
induced IL-6 production, while JAK2 knockdown had no effect
in comparison to the control (non-targeting) siRNA. Other JAK
proteins, Tyk2, and JAK3, are lowly expressed in astrocytes,
suggesting they do not play an appreciable role in ER stress-
induced signaling (Zhang et al., 2014). Next, to understand how
JAK1 affects ER stress-induced signaling, we tested if JAK1 or
JAK2 could modulate canonical PERK signaling. JAK1 or JAK2
was knocked down in astrocytes, and the cells were exposed
to thaps for 4 h to induce ER stress. Knockdown of JAK1
and JAK2 was highly effective and selective, but this had no
significant impact on PERK-dependent eIF2α phosphorylation
or CHOP expression (Figure 1B). Because JAK2 had no effect
on driving thaps-induced IL-6 production and did not affect the
UPR signaling pathway, we chose to focus our studies solely on
JAK1. Moreover, eIF2α phosphorylation leads to translational
repression, and this is also unaffected by JAK1 knockdown
(Figure 1C). JAK/STAT signaling drives transcriptional changes,
therefore, we tested if JAK1 could regulate expression of
UPR signal transducers and ER chaperones. As shown in
Figure 1D, ER stress increased the expression of PERK, ATF6,
and the oxidoreductase ER oxidoreductin-like beta (Ero1lb)
dependent on JAK1. These data indicate that JAK1 activation
is dispensable for PERK dependent signaling that leads to
translational repression, and imply a unique role for JAK1 in the
regulation of the ER stress response. UPR signaling has also been
shown to augment already ongoing inflammatory responses,
including NF-κB signaling (Hotamisligil, 2010; Kitamura, 2011;
Tam et al., 2012). To determine if JAK1 plays a role in
mediating synergy between inflammatory and UPR signaling,
we treated astrocytes with thaps and the proinflammatory
cytokine, TNF – α, which engages NF-κB signaling (Schütze
et al., 1995). Here, we also chose a second JAK1-targeting
siRNA to corroborate our findings that this response is specific
to JAK1. We show that inflammatory gene expression (IL-6,
CCL2, and CCL20) responds in a synergistic manner to ER
stress and TNF-α. Further, this synergy is JAK1 dependent,
highlighting the role of ER stress in influencing astrocyte-
dependent inflammatory responses (Figure 1E). We have defined
synergy here, as ER stress having a more than additive effect on
the TNF-α stimulated inflammatory response. Overall, these data
suggest that JAK1 drives transcriptional regulation during UPR
activation in astrocytes.

These findings, with our previous work showing that JAK1
regulates IL-6, CCL2 and CCL20 expression, led us to hypothesize
that JAK1 has an important role in regulating the transcriptional
response to ER stress (Meares et al., 2014). To test this globally,
we used RNA sequencing (RNA-seq). Astrocytes were transfected
with control or JAK1 siRNA followed by treatment with thaps for
4 h. Global changes in the transcriptome were then analyzed by
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FIGURE 1 | JAK1 is required to drive ER stress-induced IL-6 expression and does not affect canonical PERK signaling. (A) Primary astrocytes were transfected with
control (CTL), JAK1, or JAK2 siRNA for 48 h and then treated with thapsigargin (thaps) (1 µM) for 24 h and analyzed by immunoblot and ELISA. (B) Astrocytes were
transfected as in (A) followed by thaps (1 µM) treatment for 4 h and analyzed by immunoblot. (C) Astrocytes were transfected with CTL or JAK1 siRNA and treated
with thaps (1 µM) for 90 min. In the last 5 min of treatment, puromycin (5 µg/ml) was added to cultures. Cell lysates were analyzed by dot blot using anti-puromycin
antibody and quantified. UT = Untreated. (D) Astrocytes were transfected as in (A), treated with thaps (1 µM) for 4 h then analyzed by RT-qPCR. UT = Untreated.
(E) Primary astrocytes were transfected with one of two distinct JAK1 siRNAs and treated with thaps (1 µM), TNF-α (5 ng/ml), or both thaps and TNF-α for 4 h and
analyzed by RT-qPCR. N = 3. ∗p ≤ 0.05. Data are represented as means ± standard deviation.
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RNA-seq. As shown in the volcano plot in Figure 2A, ER stress
induces transcriptional reprograming including upregulation of
the prototypical UPR genes CHOP (ddit3), ATF4 and XBP1
(Supplementary Figure S1). When JAK1 was knocked down in

ER stressed cells, this appeared to change the expression of many
genes when compared to thaps alone based on t-test p-values
(Figure 2B). These data suggested that both ER stress and JAK1
had a significant impact on the overall gene expression profile.

FIGURE 2 | JAK1 regulates approximately 10% of ER stress-induced gene expression. (A) Primary astrocytes were transfected with control (CTL) or JAK1 siRNA for
48 h followed by treatment with thaps (1 µM) for 4 h and analyzed by RNA-seq. Volcano plots represent fold change and p-values for approximately 25,000
expressed genes. (B) Results were analyzed as in (A) between thaps-treated samples without or with JAK1 knockdown. (C) Principle Component Analysis (PCA) of
RNA-seq treatment groups. (D) Venn diagram showing overlap of genes upregulated in response to thaps treatment and downregulated by JAK1 knockdown (left).
Venn diagram of top 50 ER stress-induced genes overlapping with JAK1-dependent genes (right). (E) Functional classification of genes identified to be
JAK1-dependent (Venn diagram overlap – 56 genes) in response to ER stress using Ingenuity Pathway Analysis. The number of JAK1-regulated genes in each
pathway is indicated adjacent to each bar.
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To test this, we used principal component analysis (PCA)
which revealed that each of the treatment groups had a unique
expression profile, indicating that JAK1 regulates the overall
response to ER stress (Figure 2C). We next investigated the
global impact of JAK1 on ER stress-induced gene expression
using stringent statistical analysis. We identified all of the genes
significantly (EDGE test p < 0.05) upregulated by 1.5-fold or
greater in response to ER stress. We then identified all the
ER stress-induced genes that are JAK1 dependent. These were
genes significantly upregulated by ER stress and significantly
reduced by 1.5-fold or greater by JAK1 knockdown. Overall, more
than 450 genes were increased by ER stress and approximately
10% of these genes were regulated by JAK1 (Figure 2D). These
data indicate that JAK1 has a significant [p = 2.01 × 10−14 by
hypergeometric probability (Fury et al., 2006)] and unexpectedly
large role in the regulation of ER stress-induced gene expression.
To examine the most strongly induced genes, we identified the
top 50 ER stress-induced genes (Supplementary Figure S1).
This list included well-established genes known to be robustly
induced by ER stress including tribbles 3 (TRIB3), CHOP,
and ATF3 (Han et al., 2013). We then compared this gene
set to the ER stress induced genes that are JAK1-dependent
(Supplementary Figure S1). This identified CCL20, which we
previously identified as JAK1-dependent as well as many genes
not previously associated with JAK1 signaling. By comparing
these two analyses, we identified that 15 (30%) of the top 50 ER
stress-induced genes are JAK1 dependent (Figure 2D). This is a
highly significant overlap (p = 6.14 × 10−21 by hypergeometric
probability). These included adrenomedullin 2 (Adm2), CCL20,
Prostaglandin-endoperoxide synthase 2 (Ptgs2), Nuclear Protein
1 (Nupr1) and Regulator of G Protein Signaling (RGS) 16 among
others, which have previously been shown to be induced by ER
stress (Hidvegi et al., 2007; Cho et al., 2011; Huang et al., 2011;
Meares et al., 2014; Kovaleva et al., 2016). To identify the general
pathways regulated by JAK1, we used Ingenuity Pathway Analysis
(IPA). As shown in Figure 2E, growth arrest and DNA damage
(GADD) 45α signaling and other stress-responsive pathways,
including the UPR, were significantly regulated by JAK1. These
data indicate that JAK1 has a central role in the regulation of
transcriptional reprograming induced by ER stress.

We have previously shown PERK-dependent activation of
JAK1 (Meares et al., 2014). Therefore, we expected that
JAK1 would be important for PERK-dependent transcriptional
responses. To test this, we selected several genes including IL-
6 and CCL2 that we know to be PERK and JAK1 dependent.
We also selected, based on the RNA-seq data, the DNA damage
induced protein GADD45α and the pseudokinase TRIB3. As
shown in Figure 3A, ER stress induces the expression of IL-
6, CCL2, GADD45α, and TRIB3. Genetic deletion of PERK
significantly reduced ER stress induced expression of each
of these genes, indicating they are PERK dependent. JAK1
knockdown also significantly suppressed each of these genes,
indicating they are JAK1 dependent (Figure 3A). Importantly,
not all PERK-dependent gene expression relies on JAK1. As
shown in Figure 3B, ER stress-induced expression of ATF4,
CHOP and the chemokine C-X-C motif ligand 1 (CXCL1)
are PERK dependent but are unaffected by JAK1 knockdown.

These data demonstrate that JAK1 is essential for full engagement
of PERK-dependent gene expression in response to ER stress.
These data suggest, for the first time, that GADD45α and
TRIB3 are JAK1 dependent. GADD45α and TRIB3 are known
to be induced by ER stress, however, have not been previously
associated with JAK-STAT signaling. To confirm that ER stress
upregulates GADD45α and TRIB3 expression in a JAK1-
dependent manner, we utilized a different ER stress-inducing
agent (tunicamycin) and a second distinct JAK1 siRNA. In
Figure 3C, we corroborated that JAK1 knockdown reduces
ER stress-induced expression of IL-6, GADD45α, and TRIB3,
providing further evidence that these genes are JAK1-dependent.

Next, we tested if a JAK1-activating cytokine could also
drive GADD45 and TRIB3 expression. We used the IL-6 family
cytokine, oncostatin M (OSM), which signals through JAK1-
STAT3-dependent mechanisms in astrocytes (Zhang et al., 2014).
JAK1 siRNA knockdown in astrocytes led to an abrogation
of OSM-mediated phosphorylation of STAT3, confirming the
requirement of JAK1 (Figure 4A). Stimulation of astrocytes
with OSM induced a concentration-dependent increase of IL-
6, as expected. However, OSM had no effect on GADD45α or
TRIB3 expression (Figure 4B). Next, we took a transcriptome-
wide approach to compare the set of JAK1-dependent genes
in response to OSM versus ER stress (Figure 2B). Here, we
used RNA-seq to identify significantly induced (EDGE test
p-value < 0.05) genes by OSM. These genes had a fold change
of 1.5 or greater when compared to untreated samples. Next,
we identified genes that were significantly downregulated (EDGE
test p-value < 0.05, fold change < -1.5) with JAK1 knockdown.
These criteria allowed us to identify the 183 OSM-induced
JAK1-dependent genes. We then compared the genes that are
induced by ER stress and OSM in a JAK1-dependent fashion.
This revealed strikingly disparate gene expression profiles, with
only four genes in common (Figure 4C). The genes that are
JAK1 dependent in response to both OSM and ER stress are
pentraxin 3 (Ptx3), nuclear protein 1 (Nupr1), Regulator of G
Protein Signaling (Rgs) 16, and chemokine (C-C motif) ligand
(CCL) 7. These data suggest that, in astrocytes, cytokines and ER
stress induce distinct JAK1-dependent gene expression changes.
Next, we performed gene ontology analysis which assigns genes
to groups based on their molecular and functional characteristics
previously defined in the literature. Gene ontology showed
JAK1 regulates gene expression corresponding to different
biological process depending on the stimulus (OSM or ER stress)
(Figure 4D). OSM-induced JAK1 dependent genes generally
induce immune and inflammatory related genes. However, ER
stress-induced JAK1 dependent genes are related to cell death
and apoptosis. This highlights that ER stress engages JAK1 to
control a distinct transcriptional profile in comparison to the
well-established role of JAK1 downstream of cytokine receptors
that we have modeled using OSM stimulation.

Previous work has shown that GADD45α and TRIB3 are
ATF4 dependent (Jiang et al., 2007; Liew et al., 2010). ATF4 is a
transcription factor known to be induced by cell stress, including
ER stress. Expression of ATF4 is initiated downstream of PERK
activation, requiring the phosphorylation of eIF2α (Wek et al.,
2006). Further, we determined that many genes are regulated
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FIGURE 3 | JAK1 is required for full engagement of PERK-dependent gene expression. (A,B) Astrocytes were isolated from PERKfl/fl mice without or with
tamoxifen-inducible cre (CAGG-CreERTM). Cells were treated with tamoxifen for 48 h to delete PERK followed by thaps (1 µM) treatment for 4 h and RT-qPCR
analysis. Astrocytes were transfected with CTL or JAK1 siRNA #1 for 48 h, treated with thaps (1 µM) for 4 h, and analyzed by RT-qPCR. (C) Astrocytes were
transfected with a second JAK1 siRNA, and ER stress was induced by treating with thaps (1 µM) or tunicamycin (tunic) (5 µM) for 4 h, followed by RT-qPCR
analysis. Data are represented as means ± standard deviation. N = 3. ∗p ≤ 0.05.

by both JAK1 and ATF4 in response to ER stress and identified
that 12 (out of 56) ER stress-induced JAK1-dependent genes
have been previously reported as ATF4-dependent (Passe et al.,
2006; Lange et al., 2008; Oyadomari et al., 2008; Cho et al., 2011;

Brüning et al., 2013; DeNicola et al., 2015; Kovaleva et al., 2016)
(Figure 5A). To confirm that GADD45α and TRIB3 are ATF4-
dependent, we used siRNA to knockdown ATF4. As shown
in Figure 5B, ATF4 knockdown abrogated ER stress-induced
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FIGURE 4 | ER stress induces a unique JAK1-dependent gene expression profile that is distinct from OSM-induced JAK1-dependent gene expression. (A) Primary
astrocytes were transfected with Control (CTL) or one of two distinct JAK1 siRNAs for 48 h and stimulated with OSM for 30 min followed by immunoblotting.
(B) Astrocytes were stimulated with OSM at the indicated concentrations for 4 h. Gene expression was measured by RT-qPCR. Data are represented as
means ± standard deviation. N = 3. ∗p ≤ 0.05. (C) Astrocytes were transfected with CTL or JAK1 siRNA#2 and treated with OSM (2.5 ng/ml) for 4 h. Gene
expression was then measured by RNAseq to identify the JAK1-dependent genes. Venn diagram of JAK1 dependent genes in response to ER stress or OSM.
(D) Gene ontology analysis of the genes represented in (C).

GADD45α and TRIB3, but failed to reduce expression of IL-6,
consistent with our previous work (Guthrie et al., 2016). These
findings were confirmed using a second, distinct siRNA targeting
ATF4 (Supplementary Figure S2). This suggests that JAK1 and

ATF4 may cooperatively regulate gene expression. To determine
if JAK1 regulated protein expression of ATF4, we quantified
ATF4 immunoblots of thaps-treated astrocytes with or without
JAK1 knockdown. JAK1 knockdown had no significant effect
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FIGURE 5 | JAK1 and ATF4 cooperatively regulate a subset of ER stress-induced genes. (A) List of genes that are both JAK1 and ATF4 dependent in response to
ER stress as determined by RNA-seq and reported by others. (B) Astrocytes were transfected with control (CTL) or ATF4-targeting siRNA for 48 h and treated with
thapsigargin for 4 h. Indicated gene expression was analyzed by RT-qPCR. UT = untreated. (C) Astrocytes were transfected with CLT or one of two JAK1 siRNAs
and immunoblotted for ATF4. Immunoblots were quantified and normalized to GAPDH expression. (D) Astrocytes were transfected with CTL or JAK1 siRNA for 48 h
and then treated with thapsigargin for 4 h. Cytosolic and nuclear fractions were isolated and analyzed by immunoblot. (E) Primary astrocytes were treated with thaps
(1 µM) for 4 h. Protein lysates reserved or immunoprecipiated with α-ATF4 antibody before immunoblotting. (F) Quantification of JAK1 co-immunoprecipiated with
ATF4 as shown in the top panel of (E). Data are represented as means ± standard deviation. N = 3. ∗p ≤ 0.05.

on ATF4 protein levels in response to ER stress (Figure 5C).
Previously, proteins related to JAK1 and ATF4, JAK2, and CREB,
respectively, have been shown to interact and translocate to

the nucleus (Lefrancois-Martinez et al., 2011). Although JAK1
knockdown does not affect ATF4 expression, we next tested if
JAK1 expression is required for nuclear translocation of ATF4.
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We found that ATF4 is expressed in the nucleus in response to
thaps treatment independent of JAK1 expression, indicating that
JAK1 does not influence the expression or nuclear translocation
of ATF4 (Figure 5D). Although JAK1 appeared in the nuclear
fraction under these conditions, analyzing cytosolic, nuclear, and
plasma membrane markers indicated that the nuclear fraction
also contained plasma membrane (detected by the presence of
transferrin receptor, Supplementary Figure S3). JAK1 is largely
associated with the plasma membrane (Behrmann et al., 2004).
To test if JAK1 and ATF4 physically interact, protein lysates from
thaps-treated astrocytes were immunoprecipitated using anti-
ATF4 antibody and immunoblotted for ATF4 and JAK1. Here, we
found that JAK1 coimmunoprecipitates with ATF4, suggesting a
physical interaction between these two molecules (Figures 5E,F).
Altogether, these data suggest that JAK1 and ATF4 cooperatively
regulate ER stress-induced gene expressions.

The role of JAK1 to direct transcription factor activity in
response to cytokines and growth factors is well established to
rely on tyrosine phosphorylation. JAKs phosphorylate STATs
to induce dimerization and translocation to the nucleus to
initiate gene expression (Schwartz et al., 2017). Because we
have shown that JAK1 and ATF4 regulate common genes and
coimmunoprecipitate, we hypothesize that ATF4 could be an
alternative transcription factor that JAK1 can phosphorylate to
alter activity in response to UPR activation. To determine if the
kinase activity of JAK1 is necessary to promote ER stress-induced
ATF4-dependent gene expression, astrocytes were treated with
the JAK1/2 kinase inhibitor AZD1480 and thaps. As shown
in Figure 6A, AZD1480 effectively abrogates OSM-induced
phosphorylation of STAT3. Expression of known JAK1/STAT3-
dependent genes IL-6 and CCL2 were increased by thaps and
kinase inhibition of JAK1 attenuated expression of these genes
(Figure 6B). However, GADD45α and TRIB3 were not sensitive
to JAK1 kinase inhibition (Figure 6B). These results imply that
JAK1 elicits non-canonical signaling in response to ER stress
that may not rely on the kinase activity of JAK1. These data
suggest that JAK1, through physical interaction, can influence
ATF4-dependent gene expression.

DISCUSSION

In this study, we have shown that JAK1 controls the expression of
an unexpectedly large number of genes in response to ER stress.
Many of the genes regulated are associated with inflammation,
consistent with the critical and well-established role of JAK1
in immune function (O’Shea and Plenge, 2012; Villarino et al.,
2015). We and others have shown that UPR signaling integrates
with multiple pathways regulating inflammation (Zhang and
Kaufman, 2008; Sprenkle et al., 2017). We have established
that the PERK-JAK1 axis drives inflammatory gene expression
including IL-6 in murine astrocytes and other cell types (Meares
et al., 2014; Guthrie et al., 2016) while IRE1 drives IL-6 through
a nucleotide binding oligomerization domain 1/2 (NOD1/2)
dependent mechanism in macrophages and in the periphery
in vivo (Keestra-Gounder et al., 2016). JAK1 also regulated genes
involved in the ER stress response including the key signal

transducing molecules PERK and ATF6. Further, our previous
work has shown that JAK1 interacts with PERK and that PERK
is phosphorylated by JAK1. Our current work demonstrates that
JAK1 is a critical mediator of PERK-dependent gene expression
but does not regulate phosphorylation of eIF2α or subsequent
attenuation of protein translation. These data suggest a reciprocal
interaction in which PERK drives JAK1 activation, which in
turn, drives PERK expression. This work also suggests that
PERK-dependent activation of JAK1 and phosphorylation of
eIF2α are distinct signaling branches. While PERK appears
to initially stimulate independent pathways through JAK1 and
eIF2α, we have shown that ER stress-induced IL-6, CCL2,
and CCL20 expression require both JAK1 and translational
attenuation independent of ATF4 (Guthrie et al., 2016). Further,
we have shown that JAK1 mediates synergistic gene expression
between ER stress and the proinflammatory cytokine TNF-α. Our
findings, here, are summarized in Figure 7. This is consistent
with other reports that ER stress is able to augment ongoing
inflammatory responses (Liu et al., 2012; Rao et al., 2014; Keestra-
Gounder et al., 2016; Reverendo et al., 2019), and for the first
time, have shown that JAK1 is integral for this synergy in
astrocytes. We have now identified that JAK1 modulates ATF4-
dependent gene expression, indicating that JAK1 integrates at
multiple points downstream from PERK. In some contexts, ER
stress has been reported to inhibit JAK/STAT signaling (Gunduz
et al., 2012; Kimura et al., 2012). However, additional studies
are needed to determine if JAK1 also drives non-canonical gene
expression in those cell types and conditions.

Our current work demonstrates that JAK1 is a critical
signaling node in response to ER stress in astrocytes. However, we
cannot distinguish if the JAK1-dependent effects are immediate
to ER stress signaling or result from basal regulation in the
expression of critical signaling molecules. The data indicate that
JAK1 can drive stimulus-dependent gene expression programs.
We have shown that JAK1 dependent genes in response to
cytokine (OSM) stimulation is distinct from ER stress driven
JAK1-dependent gene expression. We show this JAK1 promoted
the expression of genes such as GADD45α and TRIB3 in
response to ER stress but not following cytokine stimulation.
It is currently unknown if this differential JAK1-dependent
gene expression program is an adaptive response or part of
a maladaptive response to ER stress and potentially other
pathogenic stimuli. Moreover, pathway analysis implicated
JAK1 in the regulation of several stress-activated pathways
not investigated in the present study, such as sirtuin signaling,
PI3K/AKT signaling, aryl hydrocarbon receptor signaling,
and protein ubiquitination pathways (Figure 2E). JAK1 has
broad involvement in mediating the biological actions of many
cytokines such as the IL-6 family, IL-10 family, and interferons
(Müller et al., 1993; Finbloom and Winestock, 1995; Riley et al.,
1999; Bousoik and Montazeri Aliabadi, 2018). Additionally, JAK1
inhibitors are under investigation for treatment of cancers and
autoimmunity (Schwartz et al., 2017). However, this treatment
may promote immunosuppression; upper respiratory tract and
urinary tract infections were among the most common side
effects reported in psoriasis patients using JAK1 inhibitors
(Hsu and Armstrong, 2014). Therefore, a complete
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FIGURE 6 | A subset of ER stress-induced JAK1-dependent signaling is insensitive to kinase inhibition of JAK1. (A) Astrocytes were pretreated with JAK1/2 kinase
inhibitor AZD1480 (1 µM) for 1 h before 0.5 h treatment with oncostatin M (OSM). Protein lysates were collected and analyzed by immunoblot. (B) Astrocytes were
pretreated with AZD1480 for 1 h and then treated with thaps for 4 h. Gene expression was analyzed by RT-qPCR. Data are represented as means ± standard
deviation. N = 3. ∗p < 0.05.

understanding of the JAK1-dependent mechanisms induced
by both cytokines and cellular stress may provide broad
insight into the mechanisms that underlie pathology-associated
signaling pathways.

The nature of the novel JAK1 signaling activity is currently
unknown but, as we have shown, may involve interaction with
the stress-inducible transcription factor ATF4. We have shown

that JAK1 and ATF4 regulate many of the same genes in response
to ER stress and that JAK1 coimmunoprecipitates with ATF4.
However, as suggested in Figure 6, the JAK1-mediated regulation
of ATF4 may not involve the well-characterized kinase activity
of JAK1. Although we used a kinase inhibitor of JAK1 that
also inhibits kinase activity of JAK2, we do not believe that
JAK2 plays an appreciable role in regulated ER stress-induced
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FIGURE 7 | Summary of ER stress-induced JAK1-dependent signaling.

gene expression (Figure 1A). Expanded studies to confirm this
kinase-independent interaction between JAK1 and ATF4 are
currently underway. Other potential mechanisms include JAK1
nuclear localization (Zhu et al., 2017) and modulation of gene
expression or a structural/adaptor function to facilitate key
signaling events such as the activation of other transcription
factors, like ATF4. JAK1 contains functional domains including
a FERM domain and a pseudokinase domain which may
mediate important non-catalytic functions of JAK1 (Yamaoka
et al., 2004). In models of diffuse large B cell lymphoma,
others have recently elucidated that JAK1 has a classical nuclear
localization sequence between its FERM and SH2 domains,
demonstrating that JAK1 may influence transcriptional changes
using various mechanisms that are independent of STAT
phosphorylation at the site of cytoplasmic cytokine receptors
(Zhu et al., 2017). Further, a non-canonical role for JAK1 has

been described in epigenetic modulation of gene expression.
JAK1 has been shown to directly phosphorylate the histone
protein, H3, to promote STAT-independent gene expression
(Rui et al., 2016).

While we have revealed an important and previously unknown
role for JAK1 in response to ER stress, there are several
caveats. First, this work was completed using a single type of
cultured cells (primary astrocytes) and high concentrations of
pharmacological agents to induce ER stress. It is unknown from
these data if JAK1 has a similarly important role in vivo under
physiological conditions. These studies are currently underway.
Additionally, we focused on measuring gene expression at the
mRNA level because of the tools available for whole genome
transcriptomics. Considering that most translation is inhibited by
ER stress-induced eIF2α phosphorylation (Harding et al., 1999),
it is likely that many of the transcripts we have measured are
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not translated into proteins. Nonetheless, this transcriptional
reprograming may be important following resolution of ER
stress and resumption of translation. Overall, our data indicate
that JAK1 is a central mediator of transcriptional reprograming
during ER stress.
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