
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Machine Learning with Applications 6 (2021) 100138

C
D
H
J
O
a

b

c

d

V

A

K
C
D
T
X
S

1

R
(
S
c
2
d
t
c

o
s
m

B

s
(
(
(

h
R
A
2
(

Contents lists available at ScienceDirect

Machine Learning with Applications

journal homepage: www.elsevier.com/locate/mlwa

OVID-19 detection in X-ray images using convolutional neural networks
aniel Arias-Garzón a,∗,1, Jesús Alejandro Alzate-Grisales a,1, Simon Orozco-Arias b,c,
arold Brayan Arteaga-Arteaga a, Mario Alejandro Bravo-Ortiz a, Alejandro Mora-Rubio a,
ose Manuel Saborit-Torres d, Joaquim Ángel Montell Serrano d, Maria de la Iglesia Vayá d,∗,
scar Cardona-Morales a, Reinel Tabares-Soto a,∗

Department of Electronics and Industrial Automation, Universidad Autonóma de Manizales, Manizales 170001, Colombia
Department of Computer Science, Universidad Autonóma de Manizales, Manizales 170001, Colombia
Department of Systems and Informatics, Universidad de Caldas, Manizales 170004, Colombia
Unidad Mixta de Imagen Biomédica FISABIO-CIPF. Fundación para el Fomento de la Investigación Sanitario y Biomédica de la Comunidad
alenciana, Valencia 46020, Spain

R T I C L E I N F O

eywords:
OVID-19
eep learning
ransfer learning
-ray
egmentation

A B S T R A C T

COVID-19 global pandemic affects health care and lifestyle worldwide, and its early detection is critical to
control cases’ spreading and mortality. The actual leader diagnosis test is the Reverse transcription Polymerase
chain reaction (RT-PCR), result times and cost of these tests are high, so other fast and accessible diagnostic
tools are needed. Inspired by recent research that correlates the presence of COVID-19 to findings in Chest
X-ray images, this papers’ approach uses existing deep learning models (VGG19 and U-Net) to process these
images and classify them as positive or negative for COVID-19. The proposed system involves a preprocessing
stage with lung segmentation, removing the surroundings which does not offer relevant information for the
task and may produce biased results; after this initial stage comes the classification model trained under the
transfer learning scheme; and finally, results analysis and interpretation via heat maps visualization. The best
models achieved a detection accuracy of COVID-19 around 97%.
. Introduction

Coronavirus illness is a disease that comes from Severe Acute
espiratory Syndrome (SARS) and Middle East Respiratory Syndrome
MERS). A novel coronavirus, COVID-19, is the infection caused by
ARS-CoV-2 (Zhang, 2020). In December 2019, the first COVID-19
ases were reported in Wuhan city, Hubei province, China (Xu et al.,
020). World Health Organization (WHO) declared COVID-19 a pan-
emic (Ducharme, 2020) on March 11 2021, up to July 13 of 2021
here are 188,404,506 reported cases around the world, which have
aused 4,059,220 deaths (Worldometer, 2020).

These diseases cause respiratory problems that can be treated with-
ut specialized medicine or equipment. Still, underlying medical issues
uch as diabetes, cancer, cardiovascular and respiratory illnesses can
ake this sickness worse (World Health Organization, 2020). Reverse
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transcription Polymerase chain reaction (RT-PCR), gene sequencing for
respiratory or blood samples are now the main methods for COVID-
19 detection (Wang et al., 2020). Other studies show that COVID-19
has similar pathologies presented in pneumonic illness, leaving chest
pathologies visible in medical images. Research shows RT-PCR correla-
tion with Chest CT (Ai et al., 2020), while others study its correlation
with X-ray chest images (Kanne et al., 2020). Typical opacities or
attenuation are the most common finding in these images, with ground-
glass opacity in around 57% of cases (Kong & Agarwal, 2020). Even
though expert radiologists can identify the visual patterns found in
these images, considering monetary resources at low-level medical
institutions and the ongoing increase of cases, this diagnostic process
is quite impractical. Recent research in Artificial Intelligence (AI),
especially in Deep Learning approaches, shows how these techniques
applied to medical images performed well.
ttps://doi.org/10.1016/j.mlwa.2021.100138
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There are only a few large open access datasets of COVID-19 X-
ray images; most of the published studies use as a foundation the
COVID-19 Image Data Collection (Cohen et al., 2020), which was
constructed with images from COVID-19 reports or articles, in collab-
oration with a radiologist to confirm pathologies in the pictures taken.
Past approaches use different strategies to deal with small datasets
such as transfer learning, data augmentation or combining different
datasets, finding good results in papers as Civit-Masot et al. (2020)
using a VGG16 with 86% accuracy; Ozturk et al. (2020) with a Dark
Covid Net presents 87% accuracy classifying three classes in which is
included Covid; Yoo et al. (2020) used a ResNet18 obtaining a 95%
accuracy; Sethy et al. (2020) used a ResNet50 for a 95.33% accuracy,
and Minaee et al. (2020) used Squeeze Net for a 95.45% accuracy;
Panwar et al. (2020) achieved 97.62% using a nCovnet; Apostolopoulos
and Mpesiana (2020) improved the results using a VGG19-MobileNet
with a 97.8% accuracy, and finally higher results are found in Jain et al.
(2020) using a ResNet101 with 98.95% and Khan et al. (2020) with a
99% accuracy using CoroNet a model based on an Xception.

This paper presents a new approach using existing Deep Learning
models. It focuses on enhancing the preprocessing stage to obtain accu-
rate and reliable results classifying COVID-19 from Chest X-ray images.
The preprocessing step involves a network to filter the images based on
the projection it is (lateral or frontal), some common operations such as
normalization, standardization, and resizing to reduce data variability,
which may hurt the performance of the classification models, and a seg-
mentation model (U-Net) to extract the lung region which contains the
relevant information, and discard the information of the surroundings
that can produce misleading results (de Informática, 2020). Following
the preprocessing stage comes the classification model (VGG16-19),
using the transfer learning scheme that takes advantage of pre-trained
weights from a much bigger dataset, such as ImageNet, and helps the
training process of the network in performance and time to conver-
gence. It is worth noting that the dataset used for this research is at
least ten times bigger than the ones used in previous works. Finally,
the visualization of heatmaps for different images provides helpful
information about the regions of the images that contribute to the
prediction of the network, which in ideal conditions should focus on the
appearance of the lungs, backing the importance of lung segmentation
in the preprocessing stage. After this section, the paper follows the next
order: first, the Methodology applied for these approaches, followed by
the experiments and results obtained, a discussion of the products, and
lastly the conclusions.

2. Methodology

Our methodology consists of three main experiments to evaluate the
performance of the models and assess the influence of the different
stages of the process. Each experiment follows the workflow shown
in Fig. 1. The difference between experiments is the dataset used.
In all instances, the same images for COVID-19 positive cases were
used. Meanwhile, three different datasets for negative cases were used.
In that order, Experiment 1 and 2 consists of evaluating positive vs.
negative cases datasets, and Experiment 3 involves Pre-COVID era
images (images from 2015-2017).

2.1. Datasets

A total of 9 Chest X-ray images datasets were used in different
stages:

2.1.1. COVID-19 classification datasets
The following datasets were used to train the classification mod-

els: BIMCV-COVID19+(Vayá et al., 2020), BIMCV-COVID- (Medical
Imaging Databank of the Valencia region BIMCV, 2020), and Spain
Pre-COVID era dataset. These datasets were provided by the Medical
Imaging Databank of the Valencia Region (BIMCV). Also, for compar-

ing these processes with other previous works, we use another two

2

databases. For positive cases, the COVID-19 Image Data Collection by
Cohen et al. (2020), and negative cases compound by Normal, Viral
Pneumonia and Bacterial Pneumonia database by Daniel Kermany et al.
(2018), these last databases can be found (COVID-19 X rays, 2020).

2.1.2. Image projection filtering
The images from the COVID-19 datasets have a label corresponding

to the image projection: frontal (posteroanterior and anteroposterior)
and lateral. Upon manual inspection, several mismatched labels were
found, affecting model performance, given the difference between the
information available from the two views and that not every patient
had both views available. In order to automate the process of filtering
the images according to the projection, a classification model was
trained on a subset of BIMCV-Padchest dataset (Bustos et al., 2020),
with 2481 frontal images and 815 lateral images. This model allowed
us to filter the COVID-19 datasets efficiently and keep the frontal
projection images that offer more information than lateral images.

Finally, to train COVID-19 classification models, the positive dataset
(BIMCV-COVID19+), once separated, has 12,802 frontal images. In Ex-
periment 1, images from BIMCV-COVID-dataset were used as negative
cases, with 4610 frontal images. BIMCV-COVID — was not organized;
also, some of the patients from this dataset were confirmed as COVID-
19 positive in a posterior evaluation. Therefore, the models trained on
this data could have a biased or unfavorable performance based on
dataset size and false positives identified by radiologists. Experiment
2 used a curated version of BIMCV-COVID — for negative patients to
avoid this bias, by eliminating patients’ images that correlate with the
positive dataset, a total of 1370 images were excluded. Finally, Exper-
iment 3 used a Pre-COVID dataset of images collected from European
patients between 2015 and 2017. There are 5469 images; this dataset
was obtained from BIMCV, but it has not been published yet.

2.1.3. Lung segmentation
Three datasets were used to train the U-Net models for these seg-

mentations: Montgomery dataset (Jaeger et al., 2020) with 138 images,
STR (Shiraishi et al., 2020) with 240, and NIH (Tang et al., 2020)
ith 100. Despite the apparent small amount of data, the quantity and
ariability of the images was enough to achieve a useful segmentation
odel.

.2. Image separation

For the classification task, data were divided into a train (60%),
alidation (20%), and test (20%) partitions, following the clinical
nformation to avoid images from the same subject in two different
artitions, which could generate bias and overfitting in the models.
ccordingly, the data distribution was as follows:

• For the classification model to filter images based on the projec-
tion, the data was composed of frontal images, 1,150, 723, and 608
for train, test, and validation partitions. In contrast, in the same
partitions, the separation of lateral images was 375, 236, and 204
images.

• For the COVID-19 classification model, the positive cases dataset
has 6475 images for train, 3454 for test, and 2873 for the valida-
tion set. Meanwhile, for the negative cases datasets, the BIMCV-
COVID dataset is divided into 2342, 1228, and 1040 images for
train, test, and validation. After the BIMCV-COVID-dataset was
curated, there were 1645 images, 895, and 700 for the train,
test, and validation sets. Finally, the Pre-COVID era dataset was
divided into 2803 images, 1401, and 1265 for the train, test, and
validation sets.

• For the COVID-19 comparison with previous works, the COVID
cases dataset has 286 images for train, 96 for the test, and 96
for the validation set. Meanwhile, for the negative cases datasets,
Normal images are divided into 809 for training, 270 for test and
validation sets. For Pneumonia, there are 2329 images for the

train, 777 for the other two groups each.
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Fig. 1. Experiment diagram: a is the first classification task, b is the lung segmentation task, c is a covid prediction with standard images, d is a covid prediction with only lungs
part in the images, and e is covid prediction without lungs in images.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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The image quantity was considerably less for the segmentation task,
so creating a test dataset was avoided, leaving the distribution of 80%
(382 images) for the train set and 20% (96 images) for validation data.

2.3. Preprocessing

As the images come from several datasets with different image sizes
and acquisition conditions, a preprocessing step is applied to reduce or
remove effects on the performance of the models due to data variability.
For instance, the BIMCV-Padchest dataset was collected all from the
same hospital. In contrast, COVID-19 datasets have images mainly from
the Valencian region in Spain, other parts of Spain, and other European
countries. On the other hand, the Montgomery and NIH segmentation
datasets come from US images, while JSRT is a Japanese dataset. In
general, this implies that there were many types of X-ray devices used
to take the images, with different technologies and resolutions. The
preprocessing layer is shown orange in Fig. 1., it consists of three steps:
resize all images to 224 × 224 pixels in one channel (grayscale). In
he second step, Eq. (1) shows the normalization of datasets where 𝑥
epresents the original images and 𝑁 , the normalized image. Finally,

we standardized datasets according to Eq. (2), being 𝑍 the standardized
image and 𝑁 the normalized image. When applying standardization to
the validation and test sets, the mean and standard deviation (std) from
the training set were used to unify the data distribution.

𝑁𝑖 =
𝑥𝑖 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
(1)

𝑍𝑖 =
𝑁𝑖 − 𝑚𝑒𝑎𝑛(𝑁)

𝑠𝑡𝑑(𝑁)
(2)

.4. Segmentation

There are multiple ways to perform image segmentation; this paper
ses a Deep Learning model based on U-Net architecture (Ronneberger
t al., 2020). Previous articles show that U-Net architecture is accurate
or the segmentation of medical images. This kind of model receives the
arget in the form of an image mask with ones (1) on the reconstruction
rea and zeros (0) on the rest; consequently, in a production setting,
odel input is an X-ray chest image, and the output is the predicted
ask. Fig. 2. shows the structure of U-Net.

For experimental purposes, we tested three different amounts of
ilters on convolutional layers to find the optimal for this task. The
 B

3

umber of filters in contraction blocks are computed according to
q. (3), where 𝐹0 is the number of the initial filters, 𝑖 corresponds to the
umber of contraction blocks. Eq. (4) shows the number of filters for
ach block for Expansion blocks: 𝐹𝑓 is the number of filters at the last
ontraction block, and 𝑖 is the number of the corresponding expansion
lock. In the expansion block, the transposed convolution layer uses
he same number of filters as convolutional layers.

𝐹 𝑖𝑙𝑡𝑒𝑟𝑠𝑐𝑜𝑛𝑡 = 𝐹0 ∗ 2𝑖−1 (3)

𝐹 𝑖𝑙𝑡𝑒𝑟𝑠𝑒𝑥𝑝𝑎𝑛 =
𝐹𝑓

2𝑖
(4)

The values used for 𝐹0 were 16, 112, and 64, the models will be
identified as U-Net 1,2, and 3, respectively.

2.4.1. Hyperparameters
Kernel size in convolutional layers is 3 × 3 with a kernel initializa-

ion he-normal and padding same. In Maxpooling layers, the pool size
s 2 × 2, the Dropout rate in the first two Expansion and contraction
locks is 0.1, while in three and four of 0.2, and for contraction block
ive is 0.3. Transposed convolutional layers use kernel size of 2 × 2,
trides of 2 × 2, and padding same. Finally, the last convolutional layer
ses one filter and a kernel size of 1 × 1.

.5. Classification

There are two classification tasks in this research, first to separate
rontal and lateral Chest X-ray images, and the second one to dis-
inguish COVID-19 positive cases from negative ones. For both tasks,
GG16 and VGG19 (Simonyan & Zisserman, 2020) Deep Learning
odels were used. The networks were trained using transfer learning

Bravo Ortíz et al., 2021) with pre-trained weights from the Imagenet
ataset (Deng et al., 2020). These were trained, using millions of images
o predict more than 1000 classes. The use of pre-trained models takes
dvantage of features learned on a larger dataset so that a new model
onverges faster and performs better on a smaller dataset (Aggarwal,
020). Pre-trained models come from the Tensorflow+Keras library,
hese weights come from 3 channels images, and the X-ray data comes
n one channel. The following weights were used to convert the RGB
alues from 3 channels to 1 channel: Red 0.2989, Green 0.5870, and
lue 0.1140.
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Fig. 2. U-Net used for segmentation task.
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able 1
ccuracy of part a models.
Model Train Validation Test

VGG16 0.9908 0.9803 0.9687
VGG19 0.9973 0.9975 0.9937

3. Experiments and results

Regarding Fig. 1, in part a, the dataset is filtered by a VGG19
odel to find whether a Chest X-ray image is lateral or frontal. This
etwork will be referred to as VGG19 FL to distinguish it from the
ther classification model. In part b, lung segmentation was performed
ith a U-Net model, only with the images that pass as frontal from

he previous stage. A VGG19 classification model was used in parts
, d, and e, to predict COVID-19 positive and negative cases. For
ifferentiation with the other VGG19 model, we use the name VGG19
ovid. In variation c, the datasets passed through the classification
ithout lung segmentation. Variation d was using the segmented im-
ges, obtained by multiplying the predicted mask from part b and the
riginal images, and passing them through the VGG19 Covid classifier;
inally, in variation e, the mask from part b was inverted and applied
o the original images to be passed through VGG19 Covid classifier;
hese three variations allowed us to assess the importance of the
egmentation stage, by giving the model full or partial information and
nalyzing which part of the images contributes to the prediction.

.1. VGG19 FL

To filter frontal and lateral images, a subset of samples from BIMCV-
adchest and BIMCV-COVID-datasets were labeled manually; exper-
ments were performed using the VGG16 and VGG19 models with
re-trained weights from the Imagenet dataset. Table 1 shows the
ccuracy for these experiments leaving the best results in VGG19,
aking that model the one to be used for future parts in the Experiment
iagram. Each model was trained for 30 epochs with a batch size of 64.

.2. U-Net

Lungs segmentation was performed with a U-Net model using a
ombination of three datasets. Three different models were applied,
hanging filter number in convolutional layers for each U-Net as shown
n section 2.4 Segmentation. Table 2 shows Dice and Intersection over
 C

4

able 2
ice coefficient an Interception over union (IoU) for U-Net models of part b.
Model Dice IoU

Train Validation Train Validation

U-Net 1 0.9869 0.9645 0.9609 0.9416
U-Net 2 0.9828 0.9609 0.9520 0.9322
U-Net 3 0.9867 0.9648 0.9591 0.904

Fig. 3. U-Net mask reconstructions of BIMCV COVID19 + dataset particular images.

Union (IoU) metrics for evaluating segmentation tasks for each model.
All networks were trained for 200 epochs with a batch size of 64.

Fig. 3 shows an example of image reconstruction for a specific type
f image in BIMCV-COVID19+ dataset. Despite U-Net 1 achieving a
igher value of IoU, some images are missing a lung portion. Instead,
-Net 3 reconstructs the lungs better in most cases. U-Net 3 was used

or all future processes.

.3. VGG19 covid

For each of the three variations, the implementation for COVID case
rediction was by selecting the best model between VGG16 and VGG19.
or all of them, the model was trained for 30 epochs with a batch size
f 64.

.3.1. Experiment 1
Table 3 shows the results of part c in which data has not segmen-

ation applied. Meanwhile, Table 4 shows the results of part d and
ung segmentation used over this data. Furthermore, Table 5 shows
he results of part e in which segmentation masks were inverted and
pplied to images. For all Tables above, the models used were a VGG16
nd a VGG19.

Table 6 shows accuracy, sensitivity, specificity, and F1 score in the
OVID label of parts c,d, and e with a threshold of 0.5.
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Table 3
Accuracy of part c models in Experiment 1.

Model Train Validation Test

VGG16 0.9883 0.8898 0.8274
VGG19 0.9863 0.9478 0.8996

Table 4
Accuracy of part d models in Experiment 1.

Model Train Validation Test

VGG16 0.9835 0.9036 0.8767
VGG19 0.9628 0.9379 0.9113

Table 5
Accuracy of part e models in Experiment 1.

Model Train Validation Test

VGG16 0.9872 0.9366 0.8983
VGG19 0.9954 0.9639 0.9538

Table 6
Performance metrics of parts c, d , and e in COVID-19 label for Experiment 1.

Part Accuracy Sensitivity Specificity F1 Score

c 0.939 0.972 0.883 0.965
d 0.933 0.968 0.871 0.961
e 0.956 0.967 0.917 0.969

Table 7
Accuracy of part c models in Experiment 2.

Model Train Validation Test

VGG16 0.9886 0.8970 0.8739
VGG19 0.9743 0.9546 0.9241

Fig. 4. The ROC curve of COVID-19 test dataset in parts c, d and e, for Experiment
1.

Fig. 4. shows the Receiver Operating Characteristic (ROC) curve of
part c, d, and e for the rest of the thresholds, while Fig. 5. shows the
same parts’ precision–recall curve for Experiment 1.

Figs. 6–8 show heatmaps of the last layers for some well pre-
dicted positive and negative cases in part c, d, and e, respectively, for
Experiment 1.

3.3.2. Experiment 2
Table 7 shows the results of part c. Currently, Table 8 shows the

results of part d. Additionally, Table 9 shows the results of part e. For
all of them, the models used were a VGG16 and a VGG19.

Table 10 shows COVID label accuracy, sensitivity, specificity, and

F1 score for parts c,d, and e with a threshold of 0.5 for Experiment 2.

5

Fig. 5. The Precision–Recall curve of COVID-19 test dataset in parts c, d and e, for
Experiment 1.

Fig. 6. Heatmaps of last layer in some images for part c experiment, for Experiment
1.

Fig. 7. Heatmaps of last layer in some images for part d experiment, for Experiment
1.

Table 8
Accuracy of part d models in Experiment 2.

Model Train Validation Test

VGG16 0.9774 0.8914 0.8705
VGG19 0.9669 0.9359 0.9344

Fig. 9. shows the ROC curve of part c, d, and e for the rest of the

thresholds. Meantime, Fig. 10. shows the precision–recall curve for the

same parts, both figures for Experiment 2.
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b

Fig. 8. Heatmaps of last layer in some images for part e experiment, for Experiment
1.

Fig. 9. The ROC curve of COVID-19 test dataset in parts c, d and e, for Experiment
2.

Table 9
Accuracy of part e models in Experiment 2.

Model Train Validation Test

VGG16 0.9774 0.8914 0.8705
VGG19 0.9669 0.9359 0.9344

Table 10
Performance metrics of parts c, d , and e in COVID-19 label for Experiment 2.

Part Accuracy Sensitivity Specificity F1 Score

c 0.942 0.982 0.858 0.973
d 0.963 0.951 0.913 0.964
e 0.952 0.987 0.882 0.978

Table 11
Accuracy of part c models in Experiment 3.

Model Train Validation Test

VGG16 0.9927 0.8385 0.8447
VGG19 0.9929 0.9645 0.8704

Figs. 11–13 show heatmaps of areas model set for prediction for
oth cases in parts c, d, and e, respectively, for Experiment 2.

3.3.3. Experiment 3
Tables 11–13 show the results of parts c, d, and e, respectively, for

models VGG16 and VGG19.
Table 14 presents COVID positive label accuracy, sensitivity, speci-

ficity, and F1 score metrics for parts c,d, and e with a threshold of 0.5
for Experiment 3.
6

Fig. 10. The Precision–Recall curve of COVID-19 test dataset in parts c, d and e, for
Experiment 2.

Fig. 11. Heatmaps of last layer in some images for part c experiment, for Experiment
2.

Fig. 12. Heatmaps of last layer in some images for part d experiment, for Experiment
2.

Table 12
Accuracy of part d models in Experiment 3.

Model Train Validation Test

VGG16 0.9958 0.9376 0.9299
VGG19 0.9937 0.9449 0.9363

Fig. 14. shows the ROC curve of part c, d, and e for the COVID label
for the rest of the thresholds. Fig. 15. shows the precision–recall curve
for the same parts and case, both for Experiment 3.

Figs. 16–18 show heatmaps predicted for correct predictions in
COVID and No-COVID cases for parts c, d, and e, respectively, in
Experiment 3.
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Fig. 13. Heatmaps of last layer in some images for part e experiment, for Experiment
2.

Fig. 14. The ROC curve of COVID-19 test dataset in parts c, d and e, for Experiment
.

able 13
ccuracy of part e models in Experiment 3.
Model Train Validation Test

VGG16 0.9495 0.9388 0.9118
VGG19 0.9725 0.9690 0.9705

Table 14
Performance metrics of parts c, d , and e in COVID-19 label for Experiment 3.

Part Accuracy Sensitivity Specificity F1 Score

c 0.962 0.973 0.935 0.973
d 0.973 0.928 0.956 0.954
e 0.969 0.981 0.946 0.979

Table 15
Performance metrics of parts c, d , and e in COVID-19 label for comparison dataset.

Part Accuracy Sensitivity Specificity F1 Score

c 0.991 0.995 0.986 0.966
d 0.993 0.971 0.996 0.965
e 0.993 0.986 0.996 0.973

3.4. Results of comparison dataset

Table 15 presents COVID positive label accuracy, sensitivity, speci-
ficity, and F1 score metrics for parts c,d, and e with a threshold of 0.5
for comparison with previous models.
7

Fig. 15. The Precision–Recall curve of COVID-19 test dataset in parts c, d and e, for
Experiment 3.

Fig. 16. Heatmaps of last layer in some images for part c experiment, for Experiment
3.

Fig. 17. Heatmaps of last layer in some images for part d experiment, for Experiment
3.

3.5. Hardware and software

To develop this project, we used Python 3.8.1. All models were de-
signed with TensorFlow 2.2.0 using the Keras library. We used Google
Colaboratory for most of the experiments. In this case, Tensor Processor
Unit (TPU) was used when possible; otherwise, we used the Graphic
Processor Unit (GPU) depending on the Colaboratory assignation. RAM
available in all instances was 12.72 GB. When Colaboratory was insuf-
ficient, we used a machine with Ubuntu 20.04 LTS as the operating
system and a GeForce RTX 2080 Ti GPU, with 11 GB to 250 W. CUDA
Version 11.0, and an AMD Ryzen 9 3950𝑋16-Core Processor, RAM with
128 GB (4 modules of 32 GB with 2666 Mhz).
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Fig. 18. Heatmaps of last layer in some images for part e experiment, for Experiment
3.

3.6. Future works

For more accurate results, we identified two main future work
opportunities, first semantic segmentation of pathologies on lungs,
especially the identification of Consolidation and Ground Glass Opacity
pathologies. The second part consists of extending COVID datasets to
generalize information and overcome the problems of using different
image sources.

4. Discussion

For the classification tasks proposed in this research, the better
results achieved were using the model VGG19. The first classification
task was needed to filter data, as it was a real problem within the
datasets, and as their size increases over time, the manual preprocessing
becomes unmanageable. More than that is a powerful tool to prevent
feeding images from lateral Chest X-ray to the model’s training process.
It is appropriate to say that this classification does not avoid glitches
from images different from frontal or lateral Chest X-ray ones.

For the previous study, by following experiment order is seen that
for Experiment 1, first test accuracy, Table 4 shows better performance
than Table 3, meaning segmentation works, but also Table 5 has better
accuracy. In this case, lungs are out of images, meaning models use
other image characteristics rather than lungs pathologies for classi-
fying. As shown in Table 6, the COVID-19 positive label has higher
accuracy for all parts. In general, these models use to mismatch more
the negative cases than positive ones; ROC and Precision–Recall curves
enhance Tables 3–5 by showing that using a different threshold, the
model predicts better with a continuous leading of part e. Heatmaps
found attractively marked zones. Part c images see the model use any
feature except the lungs for classifying, making these types not useful
for other applications rather than this classification task. Meanwhile,
part e commonly uses information in the lungs near surrounding or
as COVID images in Fig. 8, also features in the removed lungs areas.
Finally, in part d, Fig. 7 identifies similar zones in the lungs for classifi-
ation. These experiments have correlation cases in the negative dataset
elated to the positive ones, so the model has difficulties recognizing
hose cases. Also, these can make mismatch predictions for outside
ataset images. To solve those problems, correlation cases were taken
ut of the negative dataset and left Experiment 2.

Experiment 2 shows better classification results in almost all exper-
ments than Experiment 1, except on part e. Accuracy in the COVID-19

positive label presents the same behavior as the previous experiment.
In which the model used to mismatch more No-COVID patients, the
Results in ROC and Precision–Recall curves are also enhanced com-
pared to the last experiment. In these cases, the heatmaps show that the
COVID images model initially focuses on lung information features. As
the top-left image in Fig. 11 presents, these features are not used in all
8

Table 16
Performance metrics of proposed method with other previous works using the
comparison database.

Model Accuracy F1 score Recall Precisión

Proposed Method 99.06 99.06 99.06 99.07
CoroNet (Khan et al., 2020) 99 98.5 99.3 98.3
VGG19 (Apostolopoulos & Mpesiana, 2020) 98.75 93.06 92.85 93.27

cases. Part e results are similar to the last experiment in which imme-
diate surroundings and missing lung zones. In contrast to Experiment
1 results, part d heatmaps focus on the considerable lungs portion for
prediction. As No-COVID images show, the model focuses on out of lung
area images because there is no relevant information inside, meaning
in these cases, the model sets on lungs pathologies.

Finally, Experiment 3 shows the Pre-COVID era incident in this
model; the first three tables show different results from experiments
1 and 2 but with the same tendency. Hence, segmentation enhances
classification but taking the lungs out presents even better results.
Even accuracy for the COVID label is better in these cases in lung
segmentation images. On the other hand, ROC and Precision–Recall
curves have better outcomes for part c and e experiments rather than
part e, meaning that with a different threshold, it can perform better.
eaving the heatmaps as valuable information, the first experiment
odel uses inside the lungs information and outside info to represent

ias noise testing in other images. Fig. 18 uses mainly information at
he top-right of the pictures to classify COVID cases simultaneously
or No-COVID use info near the lungs area. Finally, Fig. 17 shows
nformation inside the lungs is taking into account for type COVID and
utside of it for the contrary case.

In general, experiments demonstrate how segmentation helps the
odel focus on relevant information. As lung characteristics and dis-

ribution around datasets are different, the segmentation task provides
nformation related to shape and size to the parts d and e. Hence, the

mere fact of performing a segmentation of the lungs highlights relevant
details of the images for better classification. Regarding part e, where
models show unexpectedly high results, indicates how the information
of the images surrounding the lungs alters the result by predicting the
correct label for an image without even having the data used to perform
a medical diagnosis. It is worth mentioning that the lung segmentation
is not always perfect, leaving small lung regions in some cases. The
segmentation model used for all experiments, U-Net 3, corresponds to
the architecture presented in the original paper.

Finally, Table 16 shows the comparison of our development with
other previous works.

As shown, the results are better using similar conditions. Mean-
while, it is a remarkable declaration that because the Cohen dataset
was growing on the development of previous works, we have more
images. The same happens with the Normal and Pneumonia dataset,
plus choosing the images randomly. We can say it is not an ideal
comparison.

5. Conclusions

This approach shows how existing models can be helpful for multi-
ple tasks, especially if it is considered that the changed U-Net models
do not have better performance. Also is shown how image noise can
generate bias in the models. Most metrics show the images without
segmentation as better for classifying COVID disease. Further analysis
shows that even if metrics are better, these models are based on visible
pathologies across lungs as clear evidence of COVID, so real accurate
models must center on lungs parts for classifying. In this case, seg-
mentation is needed for reliable results by reducing this bias. Transfer
learning was vital for the results presented. As shown, classification
models using this technique need between 20 and 30 epochs to con-

verge, while segmentation models without transfer learning need about
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200. Was presented a series of models to determine COVID-19 Disease
in Chest X-ray images with a general accuracy of 92.72%, classifying
COVID and NO-COVID images. Meanwhile, Only for the COVID label,
the approach has a 95.63% accuracy in the test dataset for a threshold
of 0.5. Changing the threshold shows an increase in the accuracy of
models up to 98%.

The segmentation task shows a high probability of providing extra
information to part d and e in all experiments, culminating in improved
results by segmenting lungs and adding information combined with
lungs surrounding noise. This noise is associated with cables, captured
devices, patient’s age or gender, making images without lungs have
more details for classifying in these cases. Either future application
using models without lungs could have the highest chances of misla-
beling images because of noise bias. Further investigation is required
to segment pathologies identified by the expert radiologist to ensure
any noise is a factor for bias. It is also essential to highlight that results
presented do not necessarily mean the same performance in all datasets.
For example, primary datasets come from European patients; other
world patients may show minor data capture changes or pathologies,
assuming a better classification is needed using worldwide datasets. In
addition, separating the datasets by gender will provide more informa-
tion on the model’s scope, as the soft tissues of the breast may hide
parts of the lungs, and it is unknown whether this is considered a bias
in the prediction of the model.
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