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Abstract 

Background:  Cancer is a heterogeneous disease in which tumor genes cooperate 
as well as adapt and evolve to the changing conditions for individual patients. It is a 
meaningful task to discover the personalized cancer driver genes that can provide 
diagnosis and target drug for individual patients. However, most of existing methods 
mainly ranks potential personalized cancer driver genes by considering the patient-
specific nodes information on the gene/protein interaction network. These methods 
ignore the personalized edge weight information in gene interaction network, leading 
to false positive results.

Results:  In this work, we presented a novel algorithm (called PDGPCS) to predict the 
Personalized cancer Driver Genes based on the Prize-Collecting Steiner tree model by 
considering the personalized edge weight information. PDGPCS first constructs the 
personalized weighted gene interaction network by integrating the personalized gene 
expression data and prior known gene/protein interaction network knowledge. Then 
the gene mutation data and pathway data are integrated to quantify the impact of 
each mutant gene on every dysregulated pathway with the prize-collecting Steiner 
tree model. Finally, according to the mutant gene’s aggregated impact score on all 
dysregulated pathways, the mutant genes are ranked for prioritizing the personalized 
cancer driver genes. Experimental results on four TCGA cancer datasets show that PDG‑
PCS has better performance than other personalized driver gene prediction methods. 
In addition, we verified that the personalized edge weight of gene interaction network 
can improve the prediction performance.

Conclusions:  PDGPCS can more accurately identify the personalized driver genes and 
takes a step further toward personalized medicine and treatment. The source code of 
PDGPCS can be freely downloaded from https://​github.​com/​NWPU-​903PR/​PDGPCS.

Keywords:  Driver gene, Personalized cancer, Gene interaction network, Prize-
collecting Steiner tree
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Background
Cancer is an evolutionary process in which normal cells accumulate various kinds of 
epigenomic alterations and genomic variations, such as chromosomal aberrations, sin-
gle nucleotide variations [1]. Some of these alterations/ variations confer growth and 
positive selection advantage to the mutant cells, resulting in intensive proliferation and 
tumors [2]. During tumor progression, majority of the  altered genes are passengers that 
do not contribute to the oncogenic process, while a small part of genomic and transcrip-
tomic altered genes is known as cancer driver genes that modify transcriptional pro-
grams [3]. It is a challenge to distinguish the driver mutations that promote the cancer 
development from those passenger mutations without selective advantages [4]. Recently, 
many computational methods have been proposed to identify driver genes from can-
cer genomics data. According to the significant features, these computational methods 
of identifying cancer driver genes can be cataloged into two groups: methods in large 
cohorts, and methods for individual patients. (1) Methods of identifying cancer driver 
gene in large cohorts. These computational methods mainly integrate multi-omics data 
from large cohorts and the topology properties of the gene–gene association (or pro-
tein–protein interaction) networks from the large-scale mixed experimental data rather 
than cell type specific, tissue specific or condition specific data [5–11]. However, due 
to the limited number of personalized sample information (e.g., the personalized omics 
data), it is difficult to apply these methods for effectively identifying the individual can-
cer patient-specific driver genes. (2) Methods of identifying cancer driver gene for indi-
vidual patients. With the rapid development of high-throughput biological molecule 
screening, the emergence of systems biology has raised the possibility of exploring the 
personalized cancer driver genes from a network perspective for individual patient treat-
ment. Thus, some computational methods of Prodigy [1], SCS [12], DawnRank [13], 
driveR [14] and IMCDriver [15] have been developed for identifying the personalized 
cancer driver genes from multi-dimensional genomic data. However, most of existing 
computational methods mainly rank the potential personalized cancer driver genes 
by considering the patient-specific node information on the gene–gene association 
(or protein–protein interaction) networks, which ignore the personalized edge weight 
information. Therefore, these existing methods may miss the important driver genes of 
individual cancer patients.

To address these methodological limitations, here we proposed an effective method 
(called PDGPCS) to identify the Personalized cancer Driver Genes with Prize-Collecting 
Steiner tree by considering the personalized edge weight information in gene interaction 
network to assess the impact of mutant genes. In detail, PDGPCS firstly used a paired 
single sample network construction approach (called paired-SSN) [3] to construct the 
personalized weighted gene interaction network for capturing the co-expression differ-
ence between normal state and tumor state on the gene/protein interaction network. The 
personalized weighted gene interaction network is a graph, in which the nodes represent 
the genes, and edges denote the significant co-expression difference between normal 
state and tumor state. Then, on the personalized weighted gene interaction network, we 
identified the differentially expressed genes, and defined the pathways with significantly 
enrich differentially expressed genes as dysregulated pathways, and also selected the per-
sonalized co-mutated genes as key mutant genes of an individual patient by adopting the 
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random walk with restart (RWR) strategy [12] and hub genes selection strategy. Finally, 
a mutation-dysregulation network was constructed by using a mutant gene and a dys-
regulated pathway. In view of the individual differences, we used the gene expression 
data of individual patients to measure the edge weight of personalized weight gene inter-
action network, and then adopted the Prize-Collecting Steiner Tree (PCST) model to 
quantify the impact of mutant genes on the dysregulated pathway, so as to predict the 
individual cancer driver genes. PDGPCS also allows us to apply the Condorcet method 
to determine the ranking of genes in a patient population, and top-50 ranks candidates 
are selected as the driver mutations for the patient population. We evaluated the perfor-
mance of PDGPCS in predicting the personalized cancer driver genes on four different 
benchmark datasets of Bladder Urothelial Carcinoma (BLCA), Colon adenocarcinoma 
(COAD), Head and Neck squamous cell carcinoma (HNSC), Breast invasive carcinoma 
(BRCA).

Results and discussion
Overview of the method

The algorithm of PDGPCS consists of three steps, depicted in Fig. 1. In step 1, we used 
the paired-SSN method [3] to construct the personalized weighted gene interaction net-
work from gene expression data of individual patient. In step 2, from the gene expression 
data of tumor and normal samples of a patient, we identified the differentially expressed 

Fig. 1  Schematic diagram of PDGPCS for prioritizing the personalized driver genes
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genes by fixing a threshold of fold change, and pick out the dysregulated pathway with 
hypergeometric distribution test. Then, we adopted the random walk with restart (RWR) 
algorithm to screen the key mutant genes. In step 3, for a mutant gene and a dysregu-
lated pathway, we built its weighted mutation-dysregulation subnetwork, and then used 
the Prize-Collecting Steiner tree model to quantify the impact score of mutant gene. 
Finally, we ranked all mutant genes with their aggregated impact score on all dysregu-
lated pathways to prioritize the personalized cancer driver genes.

We should note that our PDGPCS is a method which can predict the personalized 
driver genes of individual patients. Because the known gold-standard of personalized 
driver genes is not available, we cannot directly evaluate the performance of PDGPCS in 
terms of predicting personalized driver genes directly. Here, we used the common strat-
egies adopted in current personalized cancer driver prediction methods [1] to evaluate 
the performance of PDGPCS. That is, we obtained the prediction results of PDGPCS in 
the entire cohorts by using Condorcet voting method to integrate the results of different 
individual patients, and thus evaluated our PDGPCS’s performance with the gold-stand-
ard of cancer driver genes for the entire cohorts (i.e., Cancer Genes census [16]). Here, 
we selected top 50 ranked mutant genes in the population as the candidate driver genes 
for assessing the performance of our PDGPCS.

Performance of PDGPCS for identifying cancer driver genes

To access the performance of our PDGPCS, we compared PDGPCS with other state-of-
the-art methods of PRODIGY [1], SCS [12] and three centrality measures (i.e., Degree, 
Betweenness and Closeness) on the genomics data of individual patients from four 
TCGA cohorts, such as BLCA, BRCA, COAD and HNSC (19, 100, 27 and 43 patients, 
respectively). For PRODIGY and SCS method, we used the same multi- genomics data 
of individual patients as our PDGPCS including gene mutation data (i.e., SNV and 
CNV), gene expression data (tumor and normal data), and protein interaction network. 
In addition, for all mutant genes, the same screening strategy (i.e., RWR and hub genes 
selection strategy) to select the candidate mutant genes as our PDGPCS was used for 
PRODIGY method.

From the prediction results of PDGPCS, PRODIGY, SCS and three centrality meas-
ures methods, we selected top 50 ranking genes as the cancer driver genes. Figs. 2, 3, 4 
showed the precision, recall and F1-score of our PDGPCS, PRODIGY and three cen-
trality measures methods on BLCA, BRCA, COAD and HNSC cancers, respectively. 
The ranking genes for PDGPCS, PRODIGY and three centrality measures methods on 
BLCA, BRCA, COAD and HNSC cancers were added in Additional file  2. From the 
results of Figs.  2, 3, 4, we can see that the values of precision, recall and F1 are con-
sistent for different method. Furthermore, we can see that PDGPCS has better predic-
tion performance than other methods on BLCA, BRCA, COAD and HNSC cancers. For 
example, in Fig. 2 if we selected top 50 ranking gene as the cancer driver genes, then the 
precision of our PDGPCS on BRCA cancer is 0.24, which is 0.06, 0.24, 0.18, 0.14 and 0.22 
higher than that of PRODIGY, SCS, Degree, Betweenness and Closeness, respectively.

Furthermore, we also calculated the results of PDGPCS when choosing the KEGG 
pathways source dataset [17] and Reactome pathway source dataset, and compared 
these results with other methods. The precision, recall and F-score of these methods 
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with Reactome pathways on four cancers were shown in Additional file 1: Fig. S1. From 
Additional file  1: Fig. S1, we can see that the performance of PDGPCS is better than 
PRODIGY [1], SCS [12] and three centrality measures (i.e., Degree, Betweenness and 
Closeness) no regardless of pathway datasets.

Recently some newer methods such as IMCDriver [18] has been proposed to predict 
personalized driver genes. However, these methods are the supervised learning meth-
ods, which need the information of known driver genes in benchmark data. Therefore, 
it is not improper to compare our PDGPCS with these supervised learning methods in 
terms of the precision results. Nevertheless, we compared our PDGPCS with IMCDriver 
in predicting cancer biomarker genes with significant survival analysis in the following 
section of “survival analysis for PDGPCS”.

Robustness of PDGPCS for identifying the driver genes

To demonstrate the robustness of our PDGPCS to the number of reference samples on 
an individual patient, we calculated the proportion of non-significant edges when select-
ing a certain proportion of reference samples (i.e., normal samples) to construct the cor-
responding gene interaction network. The computational details are shown as below: 
(1) Firstly, we randomly selected a certain proportion of reference samples (i.e., normal 
samples) to construct the corresponding null distribution of gene interaction network 
(e.g., 30%), and this procedure was repeated by 100 times. (2) Then, we obtained the null 
distribution for the weights of all edges. (3) Finally, we calculated P-value of each edge 
that demonstrates whether the edge weight of the original personalized gene interaction 
network is significantly different from the null distribution.

Fig. 2  Precision of PDGPCS, PRODIGY, SCS and three centrality measures methods for predicting the driver 
genes on BLCA, BRCA, COAD, and HNSC cancers. a BLCA, b BRCA, c COAD, and d HNSC
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Fig. 3  Recall of PDGPCS, PRODIGY, SCS and three centrality measures methods for predicting the driver 
genes on BLCA, BRCA, COAD, and HNSC cancers

Fig. 4  F-score of PDGPCS, PRODIGY, SCS and three centrality measures methods for predicting the driver 
genes on BLCA, BRCA, COAD, and HNSC cancers
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We considered edges with P-value larger than 0.05 as non-significant edges in the per-
sonalized gene interaction network. Figure 5 showed the error bar of robustness value of 
all patients under 10%, 30%, 50%, 70% and 90% of all reference samples on four cancers, 
respectively. As shown in Fig.  5, we can see that as the number of reference samples 
increases, the robustness value gradually increases. Furthermore, when the number of 
samples is large (≥ 70%), the performance of PDGPCS tends to be stable.

The weighted strategy in personalized gene interaction network improving 

the performance of PDGPCS

The main advantage of our PDGPCS is that we used the gene expression data of indi-
vidual patients to assign the personalized edge weights (or costs) in gene interaction 
network, and this weighted strategy is called as the PDGPCS weight strategy. The per-
sonalized edge weights in gene interaction network reflects the gene interactions with 
significant co-expression differences between normal and tumor samples of an individ-
ual patient. In order to verify the effectiveness of this strategy, we randomly assigned the 
weights (in the range of 0–1) to the edges in gene interaction network, and implemented 
our PDGPCS on BLCA, BRCA, COAD and HNSC cancer datasets, and this weighted 
strategy is called as the random weight strategy. After repeating 10 times, we compared 
the results of gene expression weighted strategy and random weighted strategy in a 
patient population. We also assigned the weight of all edges in gene interaction network 
to 1, and implementing PDGPCS on four cancer datasets, and this weighted strategy is 
called as the same weight strategy. In fact, here we used the physical interactions with 

Fig. 5  Robustness of PDGPCS with different reference sample numbers for BLCA, BRCA, COAD and HNSC. a 
BLCA, b BRCA, c COAD, d HNSC
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confidence score > 0.7 that were validated experimentally from other curated databases 
in the reference gene/protein interaction network data [1]. Therefore, we also assigned 
the weights of edges in gene interaction network as its original network score, and 
implementing PDGPCS on four cancer datasets, and this weighted strategy is called as 
the original network weight strategy. The comparison results were shown in Figs. 6, 7 
and 8.

As shown in Figs. 6, 7 and 8, we can see that the precision, recall and F-score of PDG-
PCS weighted strategy (i.e., gene expression weighted strategy) were significantly higher 
than those of random weighted strategy on these four cancer datasets. For example, if 
we selected top 50 ranking gene as the cancer driver genes, then the precision of gene 
expression weighted strategy for BRCA is 0.24, which is 0.06, 0.06 and 0.14 higher than 
that of original network score strategy, same weight strategy and random weight strat-
egy, respectively. Therefore, the results in Figs. 6, 7 and 8 showed that it is effective by 
using the PDGPCS weight strategy of individual cancer patients to measure the person-
alized edge weights in gene interaction network.

The paired samples approach improving the performance of PDGPCS

A characteristic of our PDGPCS is that we used paired samples (i.e., tumor sample 
data and normal sample data) of each individual patient to construct the personal-
ized weight gene interaction network. To verify the effect of the paired samples 
approach on PDGPCS, we compared the results of PDGPCS with tumor sample alone 
and PDGPCS with paired samples. To obtain the results of PDGPCS with the tumor 

Fig. 6  Precision of PDGPCS with the PDGPCS weight strategy, random weight strategy, same weight strategy 
and original network weight strategy for predicting cancer driver genes on BLCA, BRCA, COAD and HNSC 
cancers, respectively. For random weighted strategy, the precision is the error bar result of 10 runs. a BLCA, 
b BRCA, c COAD, and d HNSC
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Fig. 7  Recall of PDGPCS with the PDGPCS weight strategy, random weight strategy, same weight strategy 
and original network weight strategy for predicting cancer driver genes on BLCA, BRCA, COAD and HNSC 
cancers, respectively. For random weighted strategy, the precision is the error bar result of 10 runs. a BLCA, b 
BRCA, c COAD, and d HNSC

Fig. 8  F-score of PDGPCS with the PDGPCS weight strategy, random weight strategy, same weight strategy 
and original network weight strategy for predicting cancer driver genes on BLCA, BRCA, COAD and HNSC 
cancers, respectively. For random weighted strategy, the precision is the error bar result of 10 runs. a BLCA, 
b BRCA, c COAD, and d HNSC
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sample, for an individual patient, we firstly removed the normal sample of this patient 
and used all other normal samples to construct the reference network in step 1 of 
PDGPCS. Then, we only used the tumor sample of this patient to construct personal-
ized weighted gene interaction network by using the SSN method for this individ-
ual patient. The weight of edge eij is calculated as wij = �PCCij Tumor

 . Finally, on 
BLCA, BRCA, COAD and HNSC cancer datasets, we implemented step 2 and step 3 
in PDGPCS to obtain the potential cancer driver genes.The comparison results were 
shown in terms of the precision, recall and F-score metric for PDGPCS with paired 
samples approach and single tumor sample in Figs. 9, 10 and 11.

As shown in Figs.  9, 10 and 11, we can see that the precision, recall and F-score 
of PDGPCS with the paired samples approach is higher than those of PDGPCS with 
tumor sample alone trick on these four cancer datasets. The results in Figs. 9, 10 and 
11 demonstrated that the paired samples approach can improve the performance of 
our PDGPCS. Furthermore, to let readers see the detailed results, in Tables 1, 2 and 
3 we gave the overall results of average precision, recall and F-score among the top 
k (k = 1, 2,…, 50) ranking predicted driver genes for each type of cancer, and these 
results were also shown in Figs. 2, 3, 4, 6, 7, 8, 9, 10 and 11. The detailed results in 
terms of the precision, recall and F-score shown in the Figs. 2, 3, 4, 6, 7, 8, 9, 10 and 
11 are also provided in Additional files 3, 4 and 5.

Fig. 9  Precision of PDGPCS with tumor sample alone trick and the paired samples approach to predict the 
potential cancer driver genes on BLCA, BRCA, COAD and HNSC cancers,respectively. a BLCA, b BRCA, c COAD, 
and d HNSC
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Fig. 10  Recall of PDGPCS with tumor sample alone trick and the paired samples approach to predict the 
potential cancer driver genes on BLCA, BRCA, COAD and HNSC cancers, respectively. a BLCA, b BRCA, c COAD, 
and d HNSC

Fig. 11  F-score of PDGPCS with tumor sample alone trick and the paired samples approach to predict the 
potential cancer driver genes on BLCA, BRCA, COAD and HNSC cancers, respectively. a BLCA, b BRCA, c COAD, 
and d HNSC
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Effects of using different strategies to screen the key mutant genes in PDGPCS

To identify the personalized driver genes, a key step in our PDGPCS method is the 
utility of RWR and hub genes selection strategies to screen the key mutant genes (i.e., 
step 2 in PDGPCS). In Tables 4, 5 and 6, we evaluated the effects of using the RWR 
strategy, hub genes selection strategy, and their combination for our PDGPCS in 

Table 1  Results of average precision of PDGPCS and other methods (or strategies) on BLCA, BRCA, 
COAD and HNSC cancers

Method/Strategy BLCA BRCA​ COAD HNSC

PDGPCS 0.3623 0.2968 0.4534 0.5512

PRODIGY 0.3311 0.2265 0.2479 0.5134

SCS 0.0152 0 0.0162 0

Degree 0.0262 0.1214 0.0735 0.0807

Betweenness 0.2260 0.0828 0.2198 0.2241

Closeness 0.0101 0.0250 0.0290 0.0163

Same weight 0.2330 0.1678 0.2545 0.3064

Original network weight 0.3160 0.2265 0.4292 0.4314

Random weight 0.2383 0.0358 0.1589 0.1802

Tumor sample 0.0077 0.0027 0.0235 0.0102

Table 2  Results of average Recall of PDGPCS and other methods (or strategies) on BLCA, BRCA, 
COAD and HNSC cancers

Method/Strategy BLCA BRCA​ COAD HNSC

PDGPCS 0.018 0.0126 0.0185 0.0221

PRODIGY 0.0177 0.0103 0.0145 0.0208

SCS 0.0011 0 0.001 0

Degree 0.0022 0.0041 0.0043 0.0050

Betweenness 0.01308 0.0051 0.0066 0.01118

Closeness 0.0008 0.0014 0.0022 0.0013

Same weight 0.0136 0.0087 0.0128 0.0148

Original network weight 0.0174 0.0103 0.0181 0.01908

Random weight 0.0125 0.0028 0.0073 0.0096

Tumor sample 0.01537 0.0102 0.0170 0.0186

Table 3  Results of F-scores of PDGPCS and other methods (or strategies) on BLCA, BRCA, COAD and 
HNSC cancers

Method/Strategy BLCA BRCA​ COAD HNSC

PDGPCS 0.0343 0.0236 0.0348 0.0418

PRODIGY 0.0332 0.0194 0.0272 0.0393

SCS 0.0020 0 0.0021 0

Degree 0.0041 0.0077 0.0081 0.0093

Betweenness 0.0245 0.0095 0.0125 0.0208

Closeness 0.00153 0.0027 0.00420 0.0024

Same weight 0.0255 0.0164 0.0241 0.0278

Original network weight 0.0327 0.0194 0.0341 0.0358

Random weight 0.0237 0.0053 0.0138 0.0181

Tumor sample 0.0288 0.0192 0.0320 0.0350
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terms of average precision, recall and F-score among the top k (k = 1, 2,…, 50) rank-
ing predicted driver genes for each type of cancer. From the results in Table 1, we can 
see that average precision, recall and F-score of the combination of two strategies is 
significantly higher than that of any one strategy and the strategy of using all mutant 
genes. For example, the average precision of combination strategy on BLCA is 0.3623, 
which is 0.0276, 0.1335 and 0.2056 higher than that of the RWR strategy alone, hub 
genes selection strategy alone and strategy of using all mutant genes, respectively. 
These results showed that the combination strategy of RWR and Hub gene selection 
can improve the performance of PDGPCS.

In addition, in order to demonstrate the necessity of hub genes selection strategy, 
we counted the number of genes whose degree is greater than the mean of degree in 
the gene interaction network, and then we randomly selected the same number of 
genes in the gene interaction network (e.g., 1000 times) and calculated the null distri-
bution of the number of these genes in CGC dataset for each individual patient. We 
calculated the enrichment of the number of genes whose degree is greater than the 
mean of degree in the gene interaction network in CGC dataset for each individual 
patient. The results were shown in Fig. 12.

Table 4  Average precision of using different strategy to screen the key mutant genes in PDGPCS for 
BLCA, BRCA, COAD and HNSC cancers

Strategy BLCA BRCA​ COAD HNSC

RWR + Hub genes selection 0.3623 0.2968 0.4534 0.5512

RWR​ 0.3347 0.1678 0.4018 0.2701

Hub genes selection 0.2288 0.1398 0.2666 0.1570

Using all mutant genes 0.1567 0.0704 0.1013 0.0443

Table 5  Average recall of using different strategy to screen the key mutant genes in PDGPCS for 
BLCA, BRCA, COAD and HNSC cancers

Strategy BLCA BRCA​ COAD HNSC

RWR + Hub genes selection 0.0180 0.0126 0.0185 0.0221

RWR​ 0.0138 0.0069 0.0166 0.0112

Hub genes selection 0.0094 0.0058 0.0110 0.0065

Using all mutant genes 0.0065 0.0029 0.0042 0.0018

Table 6  Average F-score of using different strategy to screen the key mutant genes in PDGPCS for 
BLCA, BRCA, COAD and HNSC cancers

Strategy BLCA BRCA​ COAD HNSC

RWR + Hub genes selection 0.0343 0.0236 0.0348 0.0418

RWR​ 0.0266 0.013 0.0320 0.0215

Hub genes selection 0.0182 0.0111 0.0212 0.0125

Using all mutant genes 0.0124 0.0056 0.0080 0.0035
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As shown in Fig. 12, the genes with a degree greater than the mean of degree in the 
gene interaction network are significantly enriched in CGC dataset on four cancer 
datasets, indicating that the driver genes usually have a larger degree in the network. 
Thus, hub genes selection strategy is reasonable.

The effects of parameter β to identify the DEGs on PDGPCS

Another key step in our PDGPCS is that we used the personalized DEGs to identify the dys-
regulated pathways of individual patients. In PDGPCS, we firstly calculated the fold change 
between the normal sample and the tumor sample of individual patients, and then selected 
the genes with 

∣

∣log2 fold change
∣

∣ > β(here, we set β = 1 ) as the personalized DEGs. In 
fact, the threshold of 

∣

∣log2 fold change
∣

∣ to identify the DEGs was adopted in many previous 
research works [12, 19–21]. We also considered different values to evaluate the influence of 
the threshold β on the precision of predicted driver genes. To assess the influence of param-
eter β on our PDGPCS, we set β with different values in range of [0.5, 1.5] . Average preci-
sion, recall and F-score of PDGPCS for four cancers with different β values were shown on 
Fig. 13. As shown in Fig. 13, the parameter β has a certain influence on the prediction per-
formance of PDGPCS. When β = 1 , PDGPCS has the highest average precision, recall and 
F-score for BLCA, BRCA, COAD and HNSC, thus we set β = 1 in this work.

Fig. 12  The enrichment of genes with a degree greater than the mean of degree in CGC dataset on BLCA, 
BRCA, COAD and HNSC cancers

Fig. 13  Average precision, recall and F-score of PDGPCS with different β values among the top 
k(k = 1, 2, . . . , 50) ranking predicted driver genes for BLCA, BRCA, COAD and HNSC cancers
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Enrichment analysis for PDGPCS

To test whether the predicted driver genes of PDGPCS are related with specific biologi-
cal functions or pathways, we performed KEGG pathway enrichment analysis on top 
50 ranking candidate driver genes predicted with PDGPCS by using R package cluster-
Profiler [22]. The results of pathway enrichment analysis on four cancer datasets were 
shown in Fig. 14. As shown in Fig. 14, we can see that most significant pathway among 
top 20 ranking pathways for BLCA, BRCA, COAD and HNSC is “pathways in cancer”, 
demonstrating that the predicted driver genes with our PDGPCS are significantly related 
with cancers. We also identified other cancer-related pathways for BLCA, BRCA, COAD 
and HNSC, such as “PI3K-Akt signaling pathway” [23] and “ErbB signaling pathway” 
[24] for BLCA, “MAPK signaling pathway” [25] and “Jak-STAT signaling pathway” [26] 
for BRCA, “Rap1 signaling pathway” [27] for COAD, and “VEGF signaling pathway” for 
HNSC [28].

Survival analysis for PDGPCS

To further provide more biological evidences, we performed survival analysis on top 
50 ranking candidate driver genes predicted with PDGPCS for four cancers by using an 
online tool GEPIA2 [29]. GEPIA2 (http://​gepia2.​cancer-​pku.​cn/#​survi​val) can support 
the survival analysis on TCGA cancer datasets by providing gene symbols in multiple 
cancer types, and led to the identification of potential biomarkers. Furthermore, we 
also analyzed the survival results on top 50 ranking candidate driver genes predicted 
with IMCDriver on four cancers by using an online tool GEPIA2 [30]. The survival 
results of PDGPCS and IMCDriver on four cancers were shown in Additional file  6, 
from which we can see that for BLCA, BRCA, COAD and HNSC cancers, our PDG-
PCS identified 7, 9, 4 and 7 significant biomarker genes with logrank P-value < 0.05, 
while IMCDriver identified 5, 2, 4 and 8 significant biomarker genes. Furthermore, 

Fig. 14  Results of KEGG pathway enrichment analysis on top 50 ranking candidate driver genes predicted 
with our PDGPCS for BLCA, BRCA, COAD and HNSC cancers. a BLCA, b BRCA, c COAD, and d HNSC

http://gepia2.cancer-pku.cn/#survival
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among these significant survival genes, PDGPCS identified 5, 8, 3 and 5 novel biomarker 
genes, while IMCDriver identified 1, 2, 2 and 1 novel significant biomarker genes (i.e., 
significant biomarker genes not in CGC dataset). Therefore, for cancer survival analysis, 
PDGPCS performs better than IMCDriver on BLCA, BRCA, COAD and HNSC cancer 
data sets. It is worth noting that IMCDriver is a supervised method that depends on the 
previous known driver genes for identifying personalized driver genes, and may ignore 
other important driver genes not within the previous known driver genes (e.g., some 
meaningful biomarker genes not within the previous known driver genes for survival 
analysis). Therefore, PDGPCS as an unsupervised method can discover complementary 
meaningful biomarker genes for survival analysis compared with IMCDriver method. In 
addition, Additional file 1: Figs. S2–S5 gave the survival analysis curves of the biomarker 
genes for BLCA, BRCA, COAD and HNSC, respectively. These results showed that our 
PDGPCS can effectively predict the cancer biomarker genes.

Conclusions
Considering the edge weight information of gene interactions for individual cancer 
patients, we proposed a novel method (namely PDGPCS) to predict the cancer driver 
genes by building the prize-collecting Steiner tree on personalized weight gene interac-
tion network. PDGPCS can predict the personalized driver genes of individual patients. 
Since the gold-standard of the personalized driver genes is not available, here we used 
Condorcet voting method on PDGPCS for obtaining the prediction results of PDGPCS 
in the entire cohorts. Thus we evaluated our PDGPCS’s performance with the gold-
standard of cancer driver genes for the entire cohorts (i.e., Cancer Genes census). Firstly, 
we used the gene expression data from the cancer tissues and normal tissues of indi-
vidual cancer patients to construct a personalized weighted gene interaction network, 
taking advantage of the individual gene expression data to measure the weights of edges. 
Then, we identified the differentially expressed genes and dysregulated pathways in the 
personalized weighted gene interaction network, screening the reliable mutant genes. 
Thirdly, the mutant genes, dysregulated pathways and individual differential co-expres-
sion networks were used to construct a mutation-dysregulation network, and the prize-
collecting Steiner tree model was adopted to quantify the influence of mutant genes on 
dysregulated pathways. In the end, PDGPCS realized the cancer drive gene prediction. 
The experimental results on four cancers show that: (1) PDGPCS has a better predic-
tion performance than other existing individual driver gene prediction methods; (2) it 
is effective by using the strategy of using the individual gene expression data to assign 
edge weights; (3) when cancer patients have the paired normal and tumor sample data, 
using the paired samples approach can improve the performance of DGPCS; (4) the 
cancer driver genes predicted with PDGPCS are significantly enriched in the pathways 
related with cancers, and some driver genes can significantly affect the survival of cancer 
patients.

In conclusion, compared with other existing methods, the main advantage of our 
PDGPCT in handling the patient-specific network is that it focuses on both patient-spe-
cific node and edge weight information. In contrast, most of existing methods mainly 
consider the patient-specific nodes information and ignore the patient-specific edges 
(i.e., gene interactions) information. The experimental results also validated that the 
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edge weight in the personalized gene interaction network can improve the performance 
of PDGPCS. However, our PDGPCS predicts the cancer driver genes by constructing 
an undirected network, and ignores the directed transmission information of edges in 
biological networks. Therefore, extending the PCST model to a directed network and 
studying the regulation mechanism of cancer driver genes on pathways is one of the 
directions for future improvement.

Materials and methods
Datasets

The datasets mainly consist of the personalized multi-omics data of individual patients, 
gene/protein interaction data and pathway data. The muti-omics data of individual 
patients are two types of genomic data (i.e., gene expression and gene mutation) of 189 
cancer patients on 4 cancers from the TCGA data portal. The gene expression data 
includes the cancer sample data and normal sample data for each individual patient, and 
the gene mutation data contains the single nucleotide variation (SNV) data and copy 
number variation (CNV) data. For each patient, we collected the gene expression data of 
paired tumor and normal samples and gene mutation data (i.e., SNV and CNV) of tumor 
samples. We used gene mutation data (i.e., SNV and CNV) of individual samples which 
were collected by Bertrand et al [30]. The CNV_data contains a tab-separated file with 
individual patients as columns and genes as rows. Each entry of this matrix holds either 
a value of − 1/0/1. A value of − 1/1 indicates a deletion/amplification event in the gene 
of that particular individual’s sample. The SNV_data contains of a tab-separated file with 
individual patients as columns and genes as rows. Each entry of this matrix holds either 
the binary values of 0/1. The value 1 indicates the presence of a single nucleotide vari-
ation in the gene of that particular individual’s sample. For SNV data and CNV data of 
each column (i.e., each individual patient), we considered the gene with nonzero value as 
the mutated genes.

These 189 cancer patients from 4 cancers consist of 19 patients for bladder cancer 
(BLCA), 100 patients for breast cancer (BRCA), 27 patients for colon cancer (COAD), 43 
patients for head and neck squamous cell carcinoma (HNSC). Gene/protein interaction 
network data was taken from STRING v10.5 [31]. We used only the physical interactions 
that were validated experimentally, and interactions from other curated databases with 
confidence score > 0.7 [1]. The network consists of 11,289 genes and 273,210 edges. The 
pathway data was collected from curated Kyoto Encyclopedia of Genes and Genomes 
(KEGG) dataset, and the Pathview tool [32] was used to extract 244 pathways in total.

PDGPCS algorithm

The biological motivation of PDGPCS consists of two respects as follows: (1) the regu-
lation weight of personalized driver genes varies among individual patients during the 
phase transition between normal state and tumor state; (2) the influence of driver genes 
is disseminated along pathways and is manifested by differentially expressed genes on 
the personalized weighted gene interaction network [1]. Figure 1 is the schematic dia-
gram of PDGPCS, which is described in detail as follows.
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Step 1 Construct the personalized gene interaction network

For an individual patient, we used paired-SSN method [3] for constructing the per-
sonalized gene interaction network. The Paired-SSN uses Single Sample Network 
(SSN) method [33] to obtain the co-expression P-values of the gene interactions for 
normal sample and tumor sample, respectively. The P-value of an edge for a single 
sample can be obtained from the statistical Z-score by measuring ΔPCC. ΔPCC and 
Z-score of an edge between genes i and j are calculated with the following formulas:

where PCCn
ij is the Pearson Correlation Coefficient (PCC) between gene i and j in the 

gene expression profile matrix of n reference samples, and PCCn+1
ij  is the PCC between 

gene i and j in the perturbed gene expression profile matrix which contains n refer-
ence samples (i.e., all normal samples) and one additional sample (i.e., normal sample or 
tumor sample for each patient). Based on the above equation, we can use Z-test [34] to 
calculate the P-value of each edge in the gene interaction network.

To illustrate how much by adding just one gene expression to the existing gene 
expression data sets will affect the amount of Pearson correlation coefficient (PCC) 
between genes, we simulated the distribution of PCC perturbation (i.e., ΔPCCn) when 
adding just one gene expression to the existing gene expression data sets. The PCC 
perturbation ΔPCCn can be calculated with the Eq. 1. Firstly, we generated two series 
of reference numbers, and the correlation of the two series of numbers was a fixed 
value (PCCn = 0). The length n of the two series (i.e., the number of the reference 
samples) was chose as 20, 50, 100 and 200. Based on the generated two series of refer-
ence numbers, we randomly generated one series of two numbers (gene expression 
value of two genes for one sample) and obtained the distribution of PCC perturbation 
ΔPCCn. The ΔPCCn demonstrates the perturbed degree value when adding just one 
gene expression to the existing gene expression data sets affects the amount of Pear-
son correlation between genes. The random simulation was repeated 2,000,000 times, 
where the value of ΔPCCn with a significant P-value of 0.05 in the two-tails area was 
selected from every distribution of simulation (Additional file 1: Fig. S6). As is shown 
in Additional file 1: Fig. S6, we can see that: (1) the range of ΔPCCn decreases when 
the number of reference samples increases; (2) the distribution of ΔPCCn can be 
approximated by a normal distribution. Based on simulated distribution of ΔPCCn 
(Eq. 1) (Additional file 1: Fig. S6), the Z-score of ΔPCCn with a significant P-value of 
0.05 in the two-tails area could be obtained.

To further obtain the simulational Z-score of ΔPCCn for different values of PCCn, we 
firstly divided PCCn = [− 1:1] into ten intervals uniformly. Then we randomly selected 
a value from each interval to simulate the simulated distribution of ΔPCCn. Based on 
simulated distribution of ΔPCCn, the Z-score of ΔPCCn with a significant P-value of 
0.05 in the two-tails area could be obtained for a value of each interval. We repeated this 

(1)�PCCij = PCCn+1
ij − PCCn

ij

(2)
Zij =

�PCCij
(

1−
(

PCCn
ij

)2
)/

(n− 1)
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process 100 times and obtained the average simulational values for different intervals 
and theoretical results for Z-score of ΔPCCn with a significant P-value of 0.05 in the 
two-tails area (Additional file 1: Fig. S7). In fact, we can obtain the theoretical value for 
Z-score of ΔPCCn with a significant P-value of 0.05 in the two-tails area with the Eq. 2.

As shown in Additional file 1: Fig. S7, the Z-scores of the simulation and the theo-
retical calculation have little difference when PCCn is larger than − 0.04. However, 
when PCCn is less than − 0.04, there is a big difference between the simulation 
and the theoretical calculations. By deleting the edges with PCCn < -0.4 in the per-
sonalized gene interaction network (PGIN), we reran our PDPCS on BLCA, BRCA, 
COAD and HNSC cancer data sets and obtained the corresponding results of preci-
sion, recall and F-score among top k (k = 1,2,3,…,50) ranking driver genes (Additional 
file 1: Figs. S8–S10). Additional file 1: Figs. S8–S10 show that deleting the edges with 
PCCn < − 0.4 will improve the prediction results for COAD and HNSC cancer data 
sets. Therefore, in the future, we can develop effective strategies for SSN method to 
delete these noise of PGIN.

We should note that the Z-score of Eq. 2 is no longer valid if the Pearson correlation 
between gene i and gene j in the gene reference state is + 1 or − 1. Therefore, in this 
study, our PDGPCS removed these edges whose Pearson correlations in the gene ref-
erence state are + 1 or − 1. To demonstrate the effect of this procedure on the discov-
ery of cancer driver genes, we extracted the sub-network whose Pearson correlation 
in the gene reference state is + 1 or − 1, and then calculated the ratio of these nodes 
to all nodes in the gene interaction network on four cancer datasets (Additional file 1: 
Fig. S11). As shown in Additional file 1: Fig. S11, we can see that the number of genes 
related with edges whose Pearson correlation in the gene reference state is + 1 or − 1 
only account for minority on four cancer datasets. For example, for BLCA and HNSC, 
the number of genes account for less than 1% and there are no genes whose Pearson 
correlation in the gene reference state is + 1 or − 1 for BLCA and HNSC.

For BLCA and HNSC, we also calculated the P-value of these genes enriched in 
cancer census genes by hyper-geometric test,

where N denotes the total number of genes in the gene interaction network; o is the num-
ber of genes related with edges whose Pearson correlation in the gene reference state 
is + 1 or − 1; s is the number of intersected genes between these genes with PCCn = 1 
or − 1 and the gold standard driver genes from the Cancer Gene Census (CGC). The 
P-value results of these genes enriched in cancer census genes were shown in Additional 
file 1: Fig. S12. Additional file 1: Fig. S12 shows that P-values of these genes enriched in 
cancer census genes on BLCA and HNSC are larger than 0.05, indicating that removing 

(3)p−value =

o
∑
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these edges whose Pearson correlations in the gene reference state are + 1 or − 1 does 
not affect the discovery of cancer driver genes.

According to co-expression P-value of the gene interactions from normal sample 
and tumor sample, we constructed the personalized gene interaction network for 
each patient by using the paired-SSN method [3] and the known PPI network [1]. In 
the personalized gene interaction network, if the co-expression P-value of the inter-
action edge in gene interaction network of tumor sample is less than (or greater than) 
0.05, and that greater than (or less than) 0.05 in the gene interaction network of nor-
mal sample, there is an edge between gene i and gene j . That is, we calculated the 
co-expression differences P-value of the edges in known PPI network between normal 
and tumor samples for an individual patient, and then extracted the overlap between 
significant co-expression edges and known gene/protein interaction network. There-
fore, a personalized gene interaction network can reflect the gene interactions with 
significant differences between normal and tumor samples of an individual patient.

Taking the individual differences into account, we calculated the edge weight wij 
between gene i and j to construct the personalized weighted gene interaction network 
G = (V ,E).

(5)wij =
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∣
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Fig. 15  Overview of paired-SSN for constructing personalized weight gene interaction networks for a 
given cancer patient, TCGA-BH-A0B5 in BRCA cancer data. For a given cancer patient, we firstly chose the 
expression data of all normal samples in BRCA as the reference data and constructed the co-expression 
network of tumor sample (white color) and normal sample (green color) respectively with the reference data 
by using SSN method. Then the personalized weighted gene interaction network was constructed by using 
significant interactions where the co-expression P-value of of tumor sample is less than (or greater than) 
0.05, and that greater than (or less than) 0.05 of normal sample. Furthermore, we extracted the edge weights 
of significant interactions by doing the log2 operation on the ratio of the two weights. The edge weights 
indicate transition degree value of significant personalized gene interactions between the normal state and 
tumor state of an individual patient. Here we showed the individual specific sub-networks related with driver 
gene ITGA5 which contain its first-order neighboring genes as an example
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Furthermore, in Fig.  15, we give a example how to construct the personalized 
weighted gene interaction network based on the expression data of a cancer patient, 
TCGA-BH-A0B5 in BRCA cancer data.

Step 2 Identify the dysregulated pathways and the key mutant genes of individual patients

Given the gene expression data (including tumor and normal) of an individual patient, 
differentially expressed genes (DEGs) are identified by calculating the fold change 
between normal sample and tumor sample. That is, all gene with 

∣

∣log2 fold change
∣

∣ > β

(here, we set β = 1 ) are identified as DEGs, and the DEGs set is represented as DEG . 
The hypergeometric distribution test is used to conduct pathway enrichment analysis for 
DEGs. The pathways with significantly enriched DEGs (FDR < 0.05) are considered as the 
potential dysregulation pathways, and the set of all the potential dysregulation pathways 
is represented as DP.

To screen the key mutant genes in the personalized gene interaction network, we 
extracted all mutated genes from gene mutation data (i.e., SNV and CNV) of tumor sam-
ples, and selected the personalized significant co-mutated genes which tend to promote 
tumorigenesis and anti-disease drug responses [35] as key mutant genes of an individ-
ual patient. In detail, we firstly took all the mutant genes of an individual patient as the 
initial seeds, and implemented random walk with restart (RWR) algorithm on the per-
sonalized gene interaction network to calculate the personalized co-mutation score (or 
co-mutation probability) of each mutated gene reached from the individual mutations. 
Then, we generated 50 topologically matched random networks, each of which main-
tains the topological characteristics (e.g., degree distribution) in the original personal-
ized gene interaction network. RWR was also implemented on the 50 random networks 
to null distribution of co-mutation score of each mutant gene reached from the individ-
ual mutations, and the randomization-based test [36] was used to evaluate the statisti-
cal significance for the potential mutant genes (see the details in Supplemental Methods 
of Supplemental File A). Finally, the candidate mutant genes with statistical significance 
(i.e.,p−value < 0.05 ) are considered as the candidate personalized co-mutant genes, 
and the candidate co-mutant genes set is represented as K. Considering the case that 
hub genes in the personalized gene interaction network can be regarded as the potential 
driver genes, we screen the hub genes by fixing a threshold ( α ) of the node degree (i.e., 
the mean value of node degree) in the personalized gene interaction network. The set of 
the screened hub genes is represented as H. We regard the intersection of K and H as the 
key mutant genes M, i.e., M = K ∩H.

In order to illustrate that using 50 random networks as the null model is feasible, 
we randomly generated 100 random networks, then implemented the random walk 
with restart (RWR) algorithm on these random networks to obtain the walk probabil-
ity of each mutant gene in these 100 random networks. For each mutant gene, we cal-
culated its P-value that demonstrates whether the walk probability distribution of 50 
random networks is different from that of 100 random networks by using Kolmogo-
rov–Smirnov test [37]. If the P-value of a mutated gene is larger than 0.05, we consider 
that the walk probability distribution of 50 random networks and 100 random networks 
follow the same distribution. Thus, we calculated the proportion of mutant genes with 
P-value > 0.05 between 50 random networks and 100 random networks. Similarly, we 
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also randomly generated 150 and 200 random networks to calculate their correspond-
ing proportion of mutant genes with P-value > 0.05 when taking 50 random networks as 
a reference. The results were shown in (Additional file 1: Fig. S13). Taking BRCA as an 
example (in Additional file 1: Fig. S13), there are more than 97% mutant genes following 
the same distribution between 50 random networks and 100, 150, 200 random networks. 
These results demonstrated that there did not exist significant difference for most nodes 
between 50, 100, 150 and 200 random networks, and it is reasonable for considering 50 
random networks as null models for screening the key mutant genes.

Step 3 Prioritize the personalized cancer driver genes

To prioritize the personalized driver genes, PDGPCS uses the Prize-Collecting Steiner 
Tree (PCST) model to find a subnetwork (or tree) T = (Vt ,Et) with root mutation gene 
groot (groot ∈ Vt) which offers an interpretation of how the mutant gene causes its down-
stream gene dysregulation on a given personalized weighted network [38, 39]. That is, if 
the root mutation gene groot is a driver gene, then it will cause a lot of gene dysregulation 
in subnetwork T with maximizing the sum of node prize and minimizing the sum of 
edge cost [1]. In PDGPCS, the edge cost reflects the differential extent of two gene co-
expression in the condition of tumor and normal samples. The greater the difference, the 
smaller the cost. And the node prize is only awarded to differentially expressed genes, 
whereas other non-differentially expressed genes that serve as the intermediate nodes 
(i.e., Steiner nodes) in the subnetwork T are not assigned with the weights.

In detail, we firstly used the dysregulated pathway p =
(

Vp,Ep
)

(p ∈ DP ) and the 
key mutant gene g(g ∈ M ) to obtain the weighted mutation-dysregulation net-
work Gp,g =

(

Vp,g ,Ep,g
)

 on the personalized weighted gene interaction network 
G = (V ,E) . We should note that we consider the personalized weighted network 
as undirected and weighted network G = (V ,E).Here, Vp,g = Vp ∪ g ∪ Nh , Nh rep-
resents the set of the nearest neighbor genes of Vp genes and key mutant gene g ; 
Ep,g = Ep ∪

{

(u, v)|u ∈ Vp,g , v ∈ Vp,g , (u, v) ∈ E
}

 , i.e., the union set of edges of person-
alized gene interaction network whose nodes are within the mutation-dysregulation 
network and edges in the dysregulated pathway. For network Gp,g , we only assigned the 
weight values for DEGs. Therefore, the prize for node v in Gp,g is defined as follow:

According to the criterion that the greater the edge weight, the smaller the edge cost, 
the cost c(eij) of edge eij(eij ∈ Ep,g ) is defined as follow:

where wij is the weight of edge eij , W  is the weights of all edges; norm(wij) represents nor-
malization of wij , i.e., norm(wij) = (wij −min(W ))/(max(W )−min(W )) and norm(W ) 
represents the normalization of all edges in W. E,Ep,Ep,g denote the set of edges in the 
personalized gene interaction network, dysregulated pathway and weighted mutation-
dysregulation network, respectively. To prefer the original pathway edges, we set the 

(6)Pp,g (v) =

{ ∣

∣log2 fold change
∣

∣, v ∈ DEG ∩ Vp

0, otherwise

(7)c(eij) =

{

1− norm(wij), eij ∈ E ∩ Ep,g
1−max(norm(W )), eij ∈ Ep, eij /∈ E
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cost of these edges in pathway but not in personalized weighted gene interaction net-
work as a small value.

Then, we adopted PCST model on network Gp,g to search the dysregulation subnet-
work T by setting the key mutant gene g as a root node. The subnetwork T satisfies the 
following optimization functions:

where max f (T ) refers to maximizing the sum of node prize minus the sum of edge cost 
in the subnetwork T, p(v) ∈ R+ represents the prize of node v, and c(e) ∈ R+ represents 
edge cost in G = (V ,E) . If the solution of PCST exists, its corresponding subnetwork T 
can be interpreted as the influence of the mutant gene to the its downstream differen-
tially expressed genes (DEGs) on the dysregulated pathway p. The influence score of 
mutant gene g to its downstream DEGs on dysregulated pathway p is defined as 

infl
(

p, g
)

= fg (T )

/

∑

v∈DEG∩Vp

Pp,g (v) , where fg (T ) is the PCST solution, Pp,g (v) denotes 

the prize for node v ( v ∈ DEG ∩ Vp ) in the weighted mutation-dysregulation network 
Gp,g . In fact, PCST can generate an optimized subnetwork when root node is not an iso-
lated node in the network. The weights of the node and the costs of the edge on network 
G was shown in Additional file 1: Fig. S14. The blue nodes are called Steiner node, and 
they have no weights. If we took node ‘a’ (red) as the root node, we can obtain six differ-
ent subnetworks and calculate the values (i.e., 0.7, 1.9, 2.1, 1.8, 3.3, 3) of these subnet-
works, respectively. Therefore, the optimized subnetwork is the result of (E) and the 
corresponding weight is f(T) = 3.3. However, when node ‘a’ is an isolated node (Addi-
tional file 1: Fig. S15), we implemented the PCST algorithm with ‘a’ as the root node in 
this network, the subnetwork cannot be generated.

Finally, by repeating above operation for each pathway and each mutant gene, we can 
obtain the influence score matrix of the mutant genes on the dysregulated pathways. The 
sum of influence scores of mutant gene g on all dysregulated pathways is defined as the 
total influence score infl

(

g
)

 of mutant gene g, that is,

According to the total influence scores of all mutant genes, we ranked the mutant 
genes in descending order, and then selected the top ranked mutant genes as the driver 
genes of individual cancer patient.

Assessment metrics

Considering that the gold-standard of the personalized driver genes is not available, we 
selected top 50 ranked mutant genes in the population as the candidate driver genes to 
assess the performance of different prediction methods. Here we used a curated list of 
driver genes from the Cancer Gene Census (CGC) as the gold standard benchmark data 
[16]. It includes a list of 616 cancer genes. The full list of genes in CGC were provided in 
Additional file 2. The precision, recall and F1 were used to measure the performance of 

(8)max f (T ) =
∑

v∈Vt

p(v)−
∑

e∈Et

c(e)
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(

g
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=
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prediction methods. The equations for calculating precision, recall and F1 are listed as 
follows,

where rank(k) denotes the ranking of driver genes for a given method; CGC​ denotes the 
gold standard driver genes from the Cancer Gene Census (CGC); Mutated denotes the 
mutated genes from Single nucleotide variation (SNV) data and copy number variation 
(CNV) data.

Abbreviations
SSN	� Single sample network
RWR​	� Random walk with restart
PCST	� Prize-collecting Steiner tree
BLCA	� Bladder urothelial carcinoma
COAD	� Colon adenocarcinoma
HNSC	� Head and neck squamous cell carcinoma
BRCA​	� Breast invasive carcinoma
SNV	� Single nucleotide variation
CNV	� Copy number variation
CGC​	� Cancer gene census
KEG	� Kyoto encyclopedia of genes and genomes
PCC	� Pearson correlation coefficient
DEG	� Differential expression gene
DP	� Dysregulation pathway

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04802-y.

Additional file 1. Supplemental method and figures.

Additional file 2. Results of ranking genes for PDGPCS, PRODIGY and three centrality measures methods on BLCA, 
BRCA, COAD and HNSC cancers, respectively. In addition, we provided the full list of the gold standard driver genes 
from the CGC dataset. 

Additional file 3. The exact values of the precision, recall and F1-score of our PDGPCS, PRODIGY and three centrality 
measures methods on BLCA, BRCA, COAD and HNSC cancers, respectively.

Additional file 4. The exact values of the precision, recall and F1-score of our assigned edge weight strategy of 
PDGPCS and random weight strategy on BLCA, BRCA, COAD and HNSC cancers, respectively.

Additional file 5. The exact values of the precision, recall and F1-score of Paired-SSN and SSN on our PDGPCS on 
BLCA, BRCA, COAD and HNSC cancers, respectively.

Additional file 6. Survival analysis results for top50 ranking driver genes of PDGPCS and IMCDriver on four cancers 
by using an online tool GEPIA2.

Acknowledgements
The authors would like to thank Zhang Tong and other group members from Northwestern Polytechnical University for 
their kind help and valuable suggestions, and also acknowledge anonymous reviewers for the valuable comments. We 
are grateful for obtaining permission to use the KEGG software from Kanehisa Laboratories.

Author contributions
Both SWZ and WFG designed the study and revised the manuscript. ZNW implemented the experiments and wrote the 
initial manuscript. SWZ, ZNW, YL and WFG analyzed the results. All authors contributed to the conception and design of 
the study, participated in the analysis of the results, and edited the manuscript. All authors read and approved the final 
manuscript.

(10)precision(k) =

∣

∣rank(k) ∩ CGC
∣

∣

k

(11)Recall(k) =

∣

∣rank(k) ∩ CGC
∣

∣

∣

∣Muated ∩ CGC
∣

∣

(12)F1(k) = 2/(1/precision(k)+ 1/Recall(k))

https://doi.org/10.1186/s12859-022-04802-y


Page 25 of 26Zhang et al. BMC Bioinformatics          (2022) 23:341 	

Funding
This work has been supported by the National Natural Science Foundation of China (62173271, 62002329, 61873202,) 
and Key scientific and technological projects of Henan Province (212102310083) and Henan postdoctoral foundation 
(202002021) and Research start-up funds for top doctors in Zhengzhou University (32211739).

Availability of data and materials
The datasets generated and/or analysed during the current study are available in the Github repository, https://​github.​
com/​NWPU-​903PR/​PDGPCS.

Declarations

Ethics approval and consent to participate
All the methods were performed in accordance with the relevant guidelines and regulations.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 15 June 2021   Accepted: 13 June 2022

References
	1.	 Dinstag G, Shamir R. PRODIGY: personalized prioritization of driver genes. Bioinformatics. 2020;36(6):1831–9.
	2.	 Shrestha R, Hodzic E, Sauerwald T, Dao P, Wang K, Yeung J, Anderson S, Vandin F, Haffari G, Collins CC, 

et al. HIT’nDRIVE: patient-specific multidriver gene prioritization for precision oncology. Genome Res. 
2017;27(9):1573–88.

	3.	 Guo WF, Zhang SW, Zeng T, Li Y, Gao J, Chen L. A novel network control model for identifying personalized driver 
genes in cancer. PLoS Comput Biol. 2019;15(11):e1007520.

	4.	 Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 
2013;339(6127):1546–58.

	5.	 Song J, Peng W, Wang F. A random walk-based method to identify driver genes by integrating the subcellular locali‑
zation and variation frequency into bipartite graph. BMC Bioinform. 2019;20(1):238.

	6.	 Luo P, Ding Y, Lei X, Wu FX. deepDriver: predicting cancer driver genes based on somatic mutations using deep 
convolutional neural networks. Front Genet. 2019;10:13.

	7.	 Wei PJ, Zhang D, Xia J, Zheng CH. LNDriver: identifying driver genes by integrating mutation and expression data 
based on gene-gene interaction network. BMC Bioinform. 2016;17(Suppl 17):467.

	8.	 Tokheim CJ, Papadopoulos N, Kinzler KW, Vogelstein B, Karchin R. Evaluating the evaluation of cancer driver genes. 
Proc Natl Acad Sci U S A. 2016;113(50):14330–5.

	9.	 Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz 
G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.

	10.	 Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, et al. A land‑
scape of driver mutations in melanoma. Cell. 2012;150(2):251–63.

	11.	 Bashashati A, Haffari G, Ding J, Ha G, Lui K, Rosner J, Huntsman DG, Caldas C, Aparicio SA, Shah SP. DriverNet: uncov‑
ering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol. 2012;13(12):R124.

	12.	 Guo WF, Zhang SW, Liu LL, Liu F, Shi QQ, Zhang L, Tang Y, Zeng T, Chen L. Discovering personalized driver mutation 
profiles of single samples in cancer by network control strategy. Bioinformatics. 2018;34(11):1893–903.

	13.	 Hou JP, Ma J. DawnRank: discovering personalized driver genes in cancer. Genome Med. 2014;6(7):56.
	14.	 Lgen E, Sezerman OUJBB. driveR: a novel method for prioritizing cancer driver genes using somatic genomics data. 

BMC Bioinform. 2021;22(1):1–17.
	15.	 Zhang T, Zhang SW, Li Y. Identifying driver genes for individual patients through inductive matrix completion. Bioin‑

formatics (Oxford, England) 2021.
	16.	 Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR. A census of human cancer 

genes. Nat Rev Cancer. 2004;4(3):177–83.
	17.	 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2020;28:27–30.
	18.	 Zhang T, Zhang SW, Li YJB. Identifying driver genes for individual patients through inductive matrix completion. 

Bioinformatics. 2021;37(23):4477–84.
	19.	 Aytug S, Reich D, Sapiro LE, Bernstein D, Begum N. Impaired IRS-1/PI3-kinase signaling in patients with HCV: a 

mechanism for increased prevalence of type 2 diabetes. Hepatology. 2003;38(6):1384–92.
	20.	 Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears 

C, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell. 
2007;128(2):325–39.

	21.	 Bakken TE, Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A, Dalley RA, Royall JJ, Lemon T, et al. A comprehen‑
sive transcriptional map of primate brain development. Nature. 2016;535(7612):367–75.

	22.	 Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. 
OMICS. 2012;16(5):284–7.

https://github.com/NWPU-903PR/PDGPCS
https://github.com/NWPU-903PR/PDGPCS


Page 26 of 26Zhang et al. BMC Bioinformatics          (2022) 23:341 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	23.	 Sathe A, Nawroth R. Targeting the PI3K/AKT/mTOR Pathway in Bladder Cancer Methods Mol Biol 2018; 
1665:335–350.

	24.	 Rose M, Maurer A, Wirtz J, Bleilevens A, Waldmann T, Wenz M, Eyll M, Geelvink M, Gereitzig M, Ruchel N, et al. EGFR 
activity addiction facilitates anti-ERBB based combination treatment of squamous bladder cancer. Oncogene. 
2020;39(44):6856–70.

	25.	 Webb MJ, Kukard C. A review of natural therapies potentially relevant in triple negative breast cancer aimed at 
targeting cancer cell vulnerabilities. Integr Cancer Ther. 2020;19:1534735420975861.

	26.	 Fan C, Zeng L, Sun Y, Liu Y-Y. Finding key players in complex networks through deep reinforcement learning. Nat 
Mach Intell. 2020;2(6):317–24.

	27.	 Li QX, Li NQ, Liao JY. Diagnostic and prognostic values of forkhead box D4 gene in colonic adenocarcinoma. Int J 
Clin Exp Pathol. 2020;13(10):2615–27.

	28.	 Sia D, Alsinet C, Newell P, Villanueva A. VEGF signaling in cancer treatment. Curr Pharm Des. 2014;20(17):2834–42.
	29.	 Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and 

interactive analysis. Nucleic Acids Res. 2019;47(W1):W556–60.
	30.	 Bertrand D, Chng KR, Sherbaf FG, Kiesel A, Chia BK, Sia YY, Huang SK, Hoon DS, Liu ET, Hillmer A. Patient-specific 

driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic 
Acids Res. 2015;43(7):e44–e44.

	31.	 Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou 
KP, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 
2015;43(1(Database issue)):D447-452.

	32.	 Luo W, Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. 
Bioinformatics. 2013;29(14):1830–1.

	33.	 Liu X, Wang Y, Ji H, Aihara K, Chen L. Personalized characterization of diseases using sample-specific networks. 
Nucleic Acids Res. 2016;44(22): e164.

	34.	 Fisz MJM, Applications I. Probability theory and mathematical. Statistics. 2018;94(448):1387.
	35.	 Liu C, Zhao J, Lu W, Dai Y, Hockings J, Zhou Y, Nussinov R, Eng C, Cheng F. Individualized genetic network analysis 

reveals new therapeutic vulnerabilities in 6700 cancer genomes. PLoS Comput Biol. 2020;16(2):e1007701.
	36.	 Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science. 2002;296(5569):910–3.
	37.	 Marsaglia G, Tsang WW, Wang J. Evaluating Kolmogorov’s distribution. J Stat Softw. 2003;8:1–4.
	38.	 Bienstock D, Goemans MX, Simchi-Levi D, Williamson D. A note on the prize collecting traveling salesman problem. 

Math Program. 1993;59:413–20.
	39.	 Bailly-Bechet M, Borgs C, Braunstein A, Chayes J, Dagkessamanskaia A, Francois JM, Zecchina R. Finding undetected 

protein associations in cell signaling by belief propagation. Proc Natl Acad Sci U S A. 2011;108(2):882–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Prioritization of cancer driver gene with prize-collecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results and discussion
	Overview of the method
	Performance of PDGPCS for identifying cancer driver genes
	Robustness of PDGPCS for identifying the driver genes
	The weighted strategy in personalized gene interaction network improving the performance of PDGPCS
	The paired samples approach improving the performance of PDGPCS
	Effects of using different strategies to screen the key mutant genes in PDGPCS
	The effects of parameter  to identify the DEGs on PDGPCS
	Enrichment analysis for PDGPCS
	Survival analysis for PDGPCS

	Conclusions
	Materials and methods
	Datasets
	PDGPCS algorithm
	Step 1 Construct the personalized gene interaction network
	Step 2 Identify the dysregulated pathways and the key mutant genes of individual patients
	Step 3 Prioritize the personalized cancer driver genes
	Assessment metrics

	Acknowledgements
	References


