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. Living South Asians have low lean tissue mass relative to height, which contributes to their elevated

. type 2 diabetes susceptibility, particularly when accompanied by obesity. While ongoing lifestyle

: transitions account for rising obesity, the origins of low lean mass remain unclear. We analysed proxies

. for lean mass and stature among South Asian skeletons spanning the last 11,000 years (n=197) to

. investigate the origins of South Asian low lean mass. Compared with a worldwide sample (n=2,003),

. South Asian skeletons indicate low lean mass. Stature-adjusted lean mass increased significantly over

: timein South Asia, but to a very minor extent (0.04 z-score units per 1,000 years, adjusted R=0.01).
In contrast stature decreased sharply when agriculture was adopted. Our results indicate that low lean
mass has characterised South Asians since at least the early Holocene and may represent long-term
climatic adaptation or neutral variation. This phenotype is therefore unlikely to change extensively
in the short term, so other strategies to address increasing non-communicable disease rates must be
pursued.

: Non-communicable diseases (NCDs) accounted for 60% of global deaths in 2012 and place a growing burden of
morbidity and mortality on populations worldwide'. India has been described as a ‘diabetes capital of the world™
. due to its large population and their elevated susceptibility to NCDs. In 2017, 10% of Indian adults (73 million
. people) had type 2 diabetes (T2D), second only to China in absolute terms, and India is projected to rank first
: by 2045 as population, lifespans and urbanisation increase®. Other South Asian countries (broadly Pakistan, Sri
* Lanka Bangladesh, and Nepal) show a similar emerging disease profile**. While lifestyle factors (dietary trends,
more sedentary lifestyles) and obesity clearly play an important role in NCD susceptibility, inter-population var-
iation is not fully explained by such exposures. Within specific settings, people of South Asian ancestry have an
elevated risk of T2D compared with other groups>®. For example, South Asians in London, UK, had 2-3 times
. greater T2D risk compared with those of European ancestry, with onset typically 5 years earlier and at a lower
. body mass index (by 5kg/m?)”. Here, we investigate the origins of a key factor implicated in this elevated suscep-
. tibility: low lean mass. When and why this phenotype originated is currently unknown, and understanding the
origins of South Asian low lean mass may have important implications for how we address the growing burden
of NCDs in this population.
: Contemporary South Asians typically have lower lean mass (organ and muscle mass) relative to stature and
: total body mass than Europeans®, which may partly explain why they develop NCDs at a lower BMI than other
: populations. South Asian low lean mass is present at birth, and this difference becomes more pronounced after
. adjusting for their low average birth weight®. Neonatal low lean mass persists even four or five generations after
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migration to other parts of the world including the UK'®!, Netherlands'? and Surinam!?, despite changes in diet
and environment. This suggests the phenotype is heritable in the broader sense, but whether by genetic or epige-
netic mechanisms is unknown. Lower lean mass is associated with lower glucose clearance and possibly earlier
beta-cell exhaustion', so is thought to contribute causally to elevated diabetes risk!® in the context of obesity.
Contemporary South Asians are also generally characterised by relatively short stature'®, which is associated with
lower glucose tolerance independently of body mass'” and may act as a marker of T2D susceptibility, including
during pregnancy®!%.

The temporal and causal origins of low lean mass among South Asians are unknown but various hypotheses
have been proposed (reviewed in?). Briefly, on the longest timescale, adaptation to a predominantly hot, equa-
torial climate’® may have led to selection for lower body mass (which generates less heat and increases heat loss
through a greater surface area to volume ratio) to reduce thermal load. The oldest Homo sapiens remains from
South Asia date to ~38,000 years ago, but modern human occupation of the region may date back even further®,
demonstrating a long population history in the region. Climatic unpredictability might also have selected for
lower lean mass as an adaptation to unreliable food resources (though this does not equate with small being
‘healthy’ - see?!). South Asia is affected by the unpredictable El Nifio Southern Oscillation (ENSO), causing an
erratic resource base. During the first half of the Holocene, the ENSO phenomenon was much less frequent or
absent, while the current ENSO pattern was established about 5,000 years ago?.

The transition from hunting and gathering to food production may also have selected for smaller lean mass
and stature among South Asians. Height decreased in many parts of the world with the agricultural transition®?
including South Asia*>?%, as populations became more vulnerable to famine, seasonal shortages, nutrient deficien-
cies and infectious diseases associated with sedentary communities?. The transition to food production in South
Asia began broadly around 9,000 years before present (BP) in the north west of the region and spread south and
east, reaching the extreme south by ~4,600 years BP?". The more recent adoption of vegan or vegetarian diets may
also be implicated in the ontogenetic development of low lean mass®®. Such diets are widespread today in South
Asia, and may date back to at least the third century BCE according to documentary evidence®, although archae-
ological evidence suggests that meat consumption was widespread until a few centuries ago?°. On the shortest
timescale, societal pressures in the context of unpredictable ecological conditions may explain the South Asian
phenotype. Repeated, severe famines affected South Asia in the 19" and first half of the 20" centuries, which
were exacerbated by British colonial policy and were associated with high mortality from starvation®!. This might
have selected for genes associated with low lean mass, or might have reduced lean mass through mechanisms of
trans-generational plasticity?.

Here, we investigate the temporal origins of South Asian low lean mass by inferring trends in relative lean
mass and stature over the last 11,000 years using archaeological and recent South Asian adult skeletons (n =197,
Fig. 1: sufficiently preserved skeletons predating 11,000 years BP are yet to be discovered in South Asia). We
use skeletal proxies for lean mass and stature in the context of variation among a global sample of terminal
Pleistocene and Holocene adult Homo sapiens skeletons (n= 2,003, Fig. 2). We hypothesise that if low lean mass
is a long term climatic adaptation it will be evident throughout the last 11,000 years, while if it originates from
more recent dietary change or societal pressures, a change in relative lean mass should be expected that coincides
temporally with these events. Understanding the timing of the origin of low lean mass and shorter stature among
South Asians may offer novel insights into the relative impacts of the natural and social environments on human
body size, growth and health, and have implications for devising effective strategies to tackle the growing burden
of NCDs in this population®. If low lean mass is a recent characteristic, it may recover over the next few genera-
tions, while a long term adaptation will take longer to reverse, so the two have different implications for devising
effective preventive strategies®.

Results

Inter-population variation in inferred lean mass relative to stature. Relative to stature (indicated
by mean bone length z-scores for each individual) South Asian skeletons demonstrate low lean mass (low individ-
ual mean bone breadth z-scores) compared with other worldwide populations, since most individuals fall below
the reduced major axis (RMA) regression line for the total dataset (Fig. 3). Considering the South Asian data by
broad time periods, the Mesolithic hunter gatherers typically have higher length z-scores than more recent South
Asians (i.e., taller stature), but in all groups, individuals have relatively low breadth z-scores in relation to length
z-scores, indicating that low lean mass relative to stature characterised South Asians throughout the past 11,000
years.

Temporal trends in South Asian lean mass. In the South Asian dataset, breadth z-score adjusted for
length z-score and latitude (to account for geographic patterning in the data) showed a slight significant increase
through time (Fig. 4, Supplementary Table 1: trend for date in linear regression model, p = 0.02), indicating
that there was an increase in relative lean mass of South Asians over this period, albeit small in magnitude (0.04
z-score units per 1,000 years, standard error =0.02), and explaining only 1% of the variance in bone breadth
zZ-score.

Temporal trends in South Asian stature. Stature (length z-score) fell by 1.2 units (p < 0.001) between
Mesolithic hunter-gatherers and all later populations once agriculture was adopted (Fig. 5). This step change
was followed by a slower, linear decline from 5,000 years BP up to the 20 century. Restricted to the last 5,000
years, regression of bone length z-score on date, adjusting for latitude, indicated a decline of 0.22 (standard
error = 0.05) z-score units per thousand years (adjusted R?=0.12, p < 0.001). To put this in context, the standard
deviations of femur length are 30.1 mm and 26.5 mm for males and females respectively, and using stature pre-
diction equations®, one z-score difference in femur length equate to 7.5 cm and 7.0 cm difference in estimated
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Figure 2. World map showing location of comparative Late Pleistocene and Holocene data used in this study.

stature for males and females respectively. Thus we might predict total average declines in stature from Mesolithic
hunter-gatherers to later populations of 8.5 cm and 7.7 cm in males and females respectively, and a decline of the
same magnitude across the 5,000 years since agriculture was adopted.

Discussion

This analysis of South Asian adult skeletal material demonstrates that compared with a worldwide sample of
terminal Pleistocene and Holocene skeletal variation, South Asians have persistently low bone breadth z-score
relative to length z-score, indicating relatively low lean mass for stature. Bone breadth z-score (adjusted for length
z-score and latitude) among South Asians showed statistically significant increase through time, albeit of very

SCIENTIFIC REPORTS |

(2019) 9:10515 | https://doi.org/10.1038/s41598-019-46960-9 3


https://doi.org/10.1038/s41598-019-46960-9

www.nature.com/scientificreports/

B Mesolithic A Historic
O Prehistoric € Modern

Individual mean bone breadth z-score

Individual mean bone length z-score

Figure 3. Plot of individual mean bone breadth z-score against individual mean bone length z-score in South
Asian archaeological and modern skeletons from the last 11,000 years (n = 197) compared with a worldwide
sample of terminal Pleistocene and Holocene humans (n = 2,003: grey crosses) demonstrating that South Asians
throughout the study period typically have low lean mass (bone breadth z-score) relative to stature (bone length
z-score). Reduced major axis regression line fitted to the whole dataset shown as grey dashed line.
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Figure 4. Individual mean bone breadth z-score (adjusted for latitude and bone length z-score) plotted against
date of site, illustrating a minor temporal trend in relative lean mass among South Asians (n =197) over the last
11,000 years.

small magnitude and explaining less than 1% of the variation, so relative low lean mass appears to have been a
constant characteristic of South Asians across the last 11,000 years. Adjusted for latitude, South Asian bone length
z-scores decreased between the Mesolithic and later periods by 1.2 z-scores, indicating a marked fall in stature
with the adoption of agriculture, followed by a more gradual decline in stature through to the 20th century.
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Figure 5. Individual mean bone length z-score (adjusted for latitude) plotted against date of site, illustrating
temporal trends in inferred stature among South Asians (n=197) over the last 11,000 years. There is a major
decrease between the Mesolithic and Prehistoric samples (n =54 and 75 respectively), followed by a slower
decline from the Prehistoric period through to the 20" century.

Our finding that South Asian low lean mass has ancient origins would be most consistent with long-term
adaptations to ecological pressures, rather than more recent dietary change or the impacts of 19-20"" century
famines exacerbated by British colonial policy. The lack of well-preserved postcranial remains predating 11,000
years BP prevents us from examining earlier trends in South Asian lean mass. Other researchers have noted the
relatively “gracile” bones (narrow relative to their length) of Mesolithic South Asians compared with more robust
hunter-gatherers®**-* and have also attributed this slight build to climatic adaptation®**. Our data show that this
characteristic persists into recent times.

Interestingly, skeletal remains of East Africans and native Australians show similar patterns of low bone
breadth relative to length, and by inference low lean mass®. Like South Asians, native Australians have an ele-
vated incidence of NCDs", relatively low lean mass, a higher proportion of body fat for a given BMI, and a
tendency towards abdominal obesity®®*, although their relatively long limbs attenuate some of these contrasts*.
South Asia and Australia were both colonised relatively early by dispersals of modern humans, and both subse-
quently had long periods (tens of thousands of years) for in situ development with relatively low levels of gene
flow*=*3. Whether there is a similar link between low lean mass and T2D susceptibility among South Asians and
native Australians, and whether such phenotypic similarities reflect common ecological factors (equatorial cli-
mates susceptible to ENSO effects) or potentially neutral processes/shared ancestry could not be addressed here
and are questions for future investigation.

Evidence that South Asian low lean mass is strongly heritable might indicate a still-unidentified genetic basis.
There is evidence for natural selection near the Myostatin (MSTN or GDF-8) gene among South Asians*!, which
decreases skeletal muscle mass in fetal and postnatal life, but the nature and effect of any changes to this gene in
South Asians remain to be clarified. In a sample of north Indian adults, variants at this locus were associated with
variability in lean mass and (abdominal) obesity*. Alternatively, the heritability of low lean mass may originate
from an intense cycle of inter-generational plasticity that is hard to break: low maternal lean mass may be the
strongest predictor of low offspring lean mass at birth*®, and low birth weight (associated with lower lean mass)
predicts low adult lean mass*. Fifty generations of undernutrition in a rat model led to the development of a
similar phenotype (including low birth weight, central adiposity, insulin resistance, and vitamin B12 and folate
deficiency) in the absence of genetic change*®. The phenotype largely persisted for 2 generations after returning
the offspring to a standard diet (although birth weight and fat mass did show partial recovery), indicating that
the South Asian phenotype might plausibly result from multigenerational undernutrition. Our study is unable
to shed light on the heritable basis of low lean mass of South Asians but does indicate that it is a longstanding
characteristic.

Other factors are also likely to contribute to elevated NCD susceptibility among South Asians. Genetic loci
associated with obesity and/or T2Ds have been identified among South Asians**’, while the impacts of early life
environment on later growth and metabolic function may also be partly responsible>"*2. Low birth weight is par-
ticularly common in India®® and is associated with reduced ‘metabolic capacity’ in adulthood (including muscle
mass, pancreatic beta cell mass, and renal nephron number)**. Especially under conditions of elevated ‘meta-
bolic load’ (high sugar and fat diets in a context of low activity levels) individuals with lower capacity are more
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susceptible to obesity and associated NCDs>®. All these factors appear to link low lean mass and excess adiposity
to NCD risk, and differ on the timescales on which they operate'®.

A key component of NCD susceptibility is excess adiposity. Unfortunately, at present there are no methods
to reliably estimate body fat from skeletal dimensions®’~* so we were unable to investigate temporal trends in fat
mass alongside lean mass. Since fat mass is highly plastic, contingent on local environment, age, diet and activity,
and largely a result of modernisation, this component of NCD risk is a distinct phenomenon. Lean mass is low in
South Asians compared with other populations across the range of BMI® i.e., regardless of obesity status, and
thus patterns of lean mass variation are of greater importance for understanding the origin of baseline disease
susceptibility.

Unlike the temporal stability in relative lean mass, the marked decrease in mean long bone length z-scores
(proxies for stature) between the Mesolithic and subsequent periods coincides with changing patterns of niche
construction associated with agriculture, and echoes other studies of South Asia?>? and other parts of the
world?*?*, This decline in stature in South Asia following the adoption of food production is estimated elsewhere
to be ~9 cm in males®, similar to our results. The decline in stature with the adoption of agriculture appears to
have been particularly marked in South Asia (e.g., compare??), although uneven spatial and temporal distribu-
tion of the data in different world regions complicates any direct comparison. Decreased stature may indicate an
additional increase in underlying NCD susceptibility among South Asians on top of that resulting from low lean
mass. Short stature is thought to be associated with T2D susceptibility because, like low lean mass, it is linked to
poor early life conditions (potentially across multiple generations), which are also known to increase NCD sus-
ceptibility’®¢!. Interestingly, the relationship between T2D risk and stature is reportedly strongest in Asians and
native Australians compared to other populations®.

Although Mesolithic South Asians were generally tall, 4 out of the 5 Sri Lankans, one individual from
Damdama and one from Deulga Hills, India® (the latter could not be included in this study due to poor preserva-
tion), had very low bone length z-scores before latitude adjustment. This may indicate some interesting variation
in hunter-gatherer body size within South Asia, whereby some populations were extremely short while others
very tall. The potential causes of this variation require future investigation.

The continued gradual decline since agriculture was adopted is consistent with previous analyses of skeletal
and anthropometric data?>%* and may reflect the ongoing impact of agriculture, exacerbated by more recent soci-
etal pressures in a context of severe famines. The limited size and diversity in geography and social status of avail-
able skeletal samples for South Asia means there may have been more recent, shorter-term variation in stature and
lean mass that we were unable to detect. Therefore the transition to food production or repeated famines may still
have influenced relative lean mass in South Asian populations. Nonetheless, unlike the clear decrease in stature
with the adoption of food production, relative lean mass does not appear to have altered significantly over the
last 11,000 years. This pattern, whereby stature appears to relate more to nutritional factors, while physique (bone
breadth and body mass) appears to reflect ecological (climatic) pressures, is consistent with theoretical models
and empirical data concerning variation in human skeletal size and proportions®>.

A limitation of our analyses is that we could not investigate and control for genetic, environmental and other
sources of variation across the extensive geographic region of South Asia, which is widely recognised for its
genetic, morphological, linguistic and cultural diversity®’. Recent studies evaluating large-scale geographic vari-
ation in human morphology have incorporated genetic and morphological data to tease apart neutral and adap-
tive influences on phenotype (e.g.°*). In the case of South Asia, ancient DNA studies have generally failed due
to unfavourable preservation conditions, making links between ancient and modern populations in the region
uncertain. Therefore any attempt to replicate combined genetic and skeletal morphological approaches, especially
in the light of the small and fragmentary archaeological skeletal samples available, is problematic at present.
While variation in T2D rates”, stature?>’! and obesity’? across contemporary South Asia has been documented in
association with environmental factors (e.g. urban vs. rural location), the contributions of genetic and geographic
influences on this variation are not well understood, and variation in low lean mass in this region is poorly docu-
mented. Thus, any attempt to relate the archaeological data with this modern variation would be speculative and
has not been attempted here. In vivo body composition data confirm that low lean mass is widespread across the
region today, and as South Asians do share a deep common ancestry (see above), a large scale regional approach
is justified. We look forward to the time when improved data will facilitate a more nuanced and detailed analysis
of intra-regional variation and its causes.

The use of proxies for stature and lean mass is clearly another source of potential error in the dataset,
but one that cannot be avoided given that skeletal remains are our only available data source for prehistoric
South Asian phenotypes. The proxies we used are well established (as discussed in the Methods), and the use
of z-scores rather than estimation equations avoid adding a further step that could introduce further error.
Another limitation of the study is that we combined published and novel data because of limited availability
of archaeological collections for new study. While this may have added noise to the data due to inter-observer
error in the skeletal measurements, we selected only published data collected using methods comparable to
our own to limit this effect. Furthermore, inter-observer error in such measurements is generally low’>. The
preponderance of males in our South Asian samples may have affected the outcomes if any changes in stature
or lean mass were stronger in one sex than the other. The use of sex-specific z scores accounts for differences in
body size between males and females, and we are not aware of any evidence for sex differences in the relation-
ship between lean mass and type 2 diabetes. Low lean mass characterises contemporary South Asians regard-
less of sex. It remains possible that patterns of change in lean mass may have differed between the sexes, but
the size of the available skeletal sample does not permit us to investigate this question at present. Finally, there
are limitations to the accuracy of the sample chronology, as few samples have been directly dated with modern
radiometric methods and many rely on older radiocarbon dates calibrated by various methods, or by relative
dating using established regional cultural sequences (see Methods for more detail). Again, while this may lead
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to some noise in the data, the relative age of the different skeletal samples should be robust. All the above fac-
tors may have led to more conservative results, but we would not expect them to be sufficient to invalidate our
findings (see Methods for further discussion).

In conclusion, our analyses suggest that the low lean mass phenotype characteristic of contemporary people of
South Asian ancestry has existed for at least 11,000 years. The available data have insufficient resolution to show
whether or not there were further small changes in proportional lean mass since the adoption of food production,
or as a consequence of more recent famines. Given the antiquity of this phenotype, the most likely explanations
for low lean mass in South Asia appears to be either climatic adaptation or neutral evolutionary processes, but
the available data do not allow us to distinguish between these hypotheses at present. Consistent with previous
work, our data indicate that stature, which is also associated with elevated T2D susceptibility, fell sharply with
the transition to food production, and continued to decline more slowly until the 20% century. The implication of
our results is that South Asian low lean mass, and associated NCD susceptibility, may have a genetic basis and is
unlikely to change in the short term, so that other strategies (such as behavioural and/or dietary intervention) are
required to address the epidemic of NCDs that is particularly acute in South Asia.

Methods

The sample comprises all adult skeletons for which data could be collected or gathered from publications
from archaeological sites or historically-collected specimens from India, Sri Lanka, Pakistan and Bangladesh
(n=197, 59 female and 138 male: see Fig. 1 and Supplementary Table 2). It is unknown whether there is cur-
rently geographical variation in the low lean mass phenotype within South Asia. Like many quantitative traits,
it is likely to show a clinal distribution rather than distinct geographical limits. While other Asian populations
show a tendency towards proportionally lower lean mass, this is less marked than among South Asians’.
Particularly low lean mass and elevated T2D risk has been reported among geographically distant Pakistani,
Bangladeshi, Sri Lankan and Indian populations or people with origins in those countries'®’®, and although
data are sparse, in Indian tribal and caste groups alike’®. Thus skeletal collections from these countries were
sought and included.

VMT and EP measured all available adult skeletons (assessed by full epiphyseal closure with the exception of
the medial clavicle, third molar eruption, and/or fusion of the spheno-occipital synchondrosis) curated in the
archaeological collections at Deccan College Post-Graduate and Research Institute, Pune (n=35) and a mean of
their measurements was used. Additional data were collected by EP and JTS (n=2) or from published sources
(n=120) where access to the collections was not possible. Data were added to the database only where we could
be confident that the measurement definitions used by the authors matched those used for this study.

Data were also collected by EP (n =40) from teaching skeletons at the University of Toronto (St George
and Mississauga campuses) that are of recent individuals from India. They were obtained in the second half of
the 20th century from suppliers in Kolkata (S. Pfeiffer, pers. comm. 2016), similar to teaching collections in
numerous US and UK institutions’””. While such collections can be problematic due to mixing elements from
multiple individuals before or after sale, each skeleton was examined to ensure that limb and pelvic bones
were consistent with belonging to a single individual through limb proportions and joint congruity, and ele-
ments which did not fit or individuals deemed extensively mixed were excluded. Such skeletons were typically
obtained from relatively poor, low status individuals”. Therefore the sample is unlikely to be phenotypically or
genetically representative of the Indian subcontinent in the 20 century. Nonetheless, our results for stature are
consistent with previous analyses of long-term trends in South Asian stature based on estimates from archaeo-
logical skeletons and modern anthropometric data?>?%%4. Given the care taken in measuring and assessing the
integrity of modern skeletons used in our study and concordance with previous work, we can be confident that
our findings are broadly reliable.

The combination of measurements from multiple observers (including from publications) raises questions
concerning inter-observer error on the data. We selected published measurements carefully to ensure they were
taken in an equivalent manner to ours, but we are unable to quantify the magnitude of inter-observer error in
our final dataset. Previous research suggests postcranial measurements can be relatively reliable across different
observers’, though any inter-observer error will have resulted in more conservative results.

To put the data in the context of worldwide skeletal variation we used a dataset of Late Pleistocene and
Holocene adult skeletons (n =2,003: Fig. 2) composed of the Goldman Dataset (n=1,527)"%7° and a database
of global hunter-gatherer skeletal data collected by JTS (n=476: Fig. 2). Climatic influences on preservation, a
relatively limited density of archaeological excavations, and past mortuary practices (widespread cremation) limit
the availability of data from South Asian archaeological skeletons. Consequently, to maximise sample size we used
both long bone joint and shaft breadths as proxies for lean mass and long bone lengths as proxies for stature from
all available major limb bones (Table 1). Measurements were selected based on availability in published sources
and comparative datasets.

Joint surface dimensions, particularly femoral head diameter, are widely used to estimate body mass’®. They
do not respond to altered loading due to activity levels or body mass during adulthood, but are widely considered
to be fixed at the end of growth at a size proportional to body mass®”#, and thus represent what we might consider
early adult (or ‘peak’) phenotype. We can expect joint dimensions to act as a reliable proxy for lean mass because:
(1) in past populations excess adiposity is assumed to have been uncommon; (2) excess weight gain in more tradi-
tional societies typically occurs from middle adulthood® after joint diameters are fixed; (3) lean mass is the major
component of total body mass®’; (4) joint dimensions show a closer relationship to lean mass than fat or total
body mass®”*’; and (5) joint dimensions are unaffected by age at death or changes in lifestyle during adulthood.

Unlike joint dimensions, shaft dimensions respond to changes in loading (both from activity and body mass)
during life and are affected by age®*>. Activity levels also influence muscularity and thus lean mass, so variation
in behaviour could confound estimates of lean mass derived from bone shaft diameters. However, we can still
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Bone Lengths Breadths

Supero-inferior head diameter (#10)

Humerus Maximum (#1) Antero-posterior head diameter**®

Distal epicondylar breadth (#2)

Ulna Maximum (#1)*

Radius Maximum (#1)
Supero-inferior head diameter (#18)
Antero-posterior head diameter (#19)*
Supero-inferior neck diameter (#15)*

Femur Maximum (#1) Subtrochanter medio-lateral diameter (#9)*

Midshaft medio-lateral diameter (#7)
Distal epicondylar breadth (#21)

Distal joint surface breadth®

Proximal joint surface breadth (#3)
Tibia Maximum (#1a) Tibia midshaft medio-lateral breadth (#9)
Distal epiphyseal breadth (#6)

Table 1. Skeletal measurements used in the study. Measurement definitions follow Martin and Saller”’,
Corruccini and Ciochon®, and Pearson®. * denotes measurements available in JTS’s hunter-gatherer database
but not the Goldman Dataset. Numbers in parentheses preceded by ‘#’ refer to the Martin numbers®” for the
relevant measurements.

expect bone shaft dimensions to be reliable indicators of lean mass for several reasons. Body mass is the major
determinant of long bone cross-sectional properties, accounting for approximately 80% of observed variation®.
Consequently, analyses of activity patterns adjust shaft cross-sectional properties for body mass®” and body
mass estimation equations based on cross-sectional geometry have been previously derived for non-adults®.
Particularly in past, presumably relatively lean and active populations, lean mass would be the major determinant
of total body mass. In fact, there is evidence that both joint and shaft diameters are more strongly related to lean
mass than to total body mass, and correlate poorly with fat mass®®*>%. While these data derive from contempo-
rary populations whose diets and lifestyles likely differ significantly from those of many of the archaeological
samples included in our study, the concordance of evidence from diverse samples (European varsity level athletes
and controls, rural-urbanising South Asian young adults, and elderly Afro-Caribbean males) would suggest this
link between lean mass and bone shaft dimensions is valid. Shaft diameters of both upper and lower limb bones
are similarly related to lean mass®® justifying the inclusion of bone shaft properties from both limbs. Finally,
although bone cross-sections do respond to changes in loading with age, they are thought to mainly reflect load-
ing in late adolescence/early adulthood™.

Thus while the use of bone shaft diameters may introduce some noise into our data on inferred lean mass,
the benefits of greater sample size from including such measures, given limited skeletal preservation, are likely to
outweigh any disadvantage. The evidence suggests that shaft dimensions should still be good indicators of lean
mass, and excluding skeletons without joint breadth measurements reduces the sample size from 197 to 139.
Nonetheless, to be cautious we repeated all analyses using only joint surface diameters to confirm the results.
These restricted analyses demonstrate broadly the same pattern of results, the main difference being that the
temporal trend in inferred lean mass is no longer significant, perhaps as a result of small sample size. This gives
confidence in our approach and findings (see Supplementary Information online for these results and further
discussion of our skeletal proxies for lean mass).

As stature is a major determinant of absolute lean mass, we analysed geographic and temporal patterns in
bone breadths relative to long bone lengths, as a proxy for stature. Limb bone lengths are widely used to estimate
stature (e.g.”*?!) and give relatively reliable results (standard errors of estimates 2—4 cm). The relationship between
bone lengths and total stature varies temporally and geographically between populations due to variation in
body proportions®?, as well as between individuals. At present it is unclear whether available equation sets are
broadly applicable to South Asian skeletons****. The same problem applies to many of the other populations in
the worldwide dataset. Therefore limb bone lengths were used as a stature proxy. It is widely acknowledged that
lower limb bones are better indicators of stature than upper limb bones, and that variation in torso length also
contributes to stature variation®. As limb bone lengths show greater sensitivity to environmental conditions than
trunk length® they are likely to be the most variable component of stature, and thus a reliable proxy for stature
variation. Furthermore, upper limb long bones are widely used in stature estimation where lower limb bones are
unavailable as they are still reliable estimators of stature. Therefore we consider our approach to be justified in
order to make optimal use of the limited available data.

To further maximise use of the limited available data, we calculated sex-specific z-scores for each long bone
measurement separately, and then averaged them across long bones within individuals. Z-scores express meas-
urements in standard deviation units, and permit measurements of differing magnitudes (e.g., from different
skeletal elements) to be directly combined or compared. The use of sex-specific scores also allowed the sexes to
be pooled. The worldwide dataset was used for the calculation of z-scores to prevent small sample sizes result-
ing in stochastic variation in the z-scores. For each individual skeleton, the mean of the available bone breadth
z-scores and the mean of the available bone length z-scores were taken to represent the individual’s lean mass
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and stature respectively. To be included in the dataset, an individual required at least one length and one breadth
measurement. While the combination of variables into a geometric mean to represent size is more common in
anthropology, the high frequency of missing data in the sample made this approach unreliable and the z-scores
were preferred to maximise statistical power and permit the combination of data from fragmentary individuals
of both sexes.

Statistical analyses. Analyses were conducted in SPSS for Windows v. 25.0 (IBM Corp., Chicago, USA)
with p <0.05 considered statistically significant. The relationship between inferred lean mass and stature among
South Asian skeletons relative to the worldwide dataset was assessed visually using scatterplots. An RMA regres-
sion line was fitted to the full sample in order to characterise the relationship between length and breadth z-scores,
and to demonstrate when individuals had greater or less inferred lean mass relative to stature. RMA regression
was chosen since the aim of this analysis was to describe the relationship between the variables, without assuming
the direction of causation or the aim of producing prediction equations, and because both variables were meas-
ured with error’%.

Temporal trends in South Asian inferred lean mass were assessed using ordinary least squares (OLS) regres-
sion. OLS regression was selected in this case because the dependent variable is expected to be restricted, limited
or determined by the independent variable®. Site dates were taken from relevant publications (Supplementary
Table 2). Dating methods varied widely by site, and only included direct radiometric dating of the remains them-
selves or their immediate contexts in a minority of cases. As most sites were dated based on cultural associations
with reference to established regional chronologies, published date ranges were used and no attempt was made to
re-calibrate published radiocarbon dates, which are few for any one site and unlikely to represent the full range of
ages of the associated skeletons. While this may introduce some error when trying to identify temporal patterns
in lean mass and stature, longer-term trends should still be evident. For analyses, site date ranges were converted
to years before present and the midpoint of any range taken as the representative date for that sample.

Within the South Asian sample, mean individual bone breadth z-score was regressed on site date, adjusting
for length z-score, latitude and longitude. Stature is known to decrease from north to south and west to east in
South Asia”™, so latitude and longitude were included in the initial models to account for potential geographical
variation in height. Longitude was subsequently removed as it was not statistically significant. To assess temporal
trends in stature, we regressed length z-score on latitude, and plotted the standardised residual against site date.
We did not fit a line to the length z-score data since linear, curvilinear or LOWESS regression methods did not
provide a visually convincing fit to the data across the full 11,000 years (that is, while the models could be fitted,
plotting the resulting models onto the data did not provide a satisfactory correspondence between the model
and the data suggesting the models were not appropriate). OLS regression was used to assess the trend in length
z-score over the last 5,000 years where a straight line provided a convincing fit, and a two-tailed t-test was used to
compare mean length z-scores before and after the change observed at around 5,000 years ago.

Data Availability

All data generated or analysed during this study are included in this published article (and its Supplementary
Information Files). The original Goldman Dataset is freely available online at https://web.utk.edu/~auerbach/
GOLD.htm.

References
1. WHO. Global action plan for the prevention and control of noncommunicable diseases 2013-2020. World Health Organization
(2013).
2. Wells, J. C., Pomeroy, E., Walimbe, S. R., Popkin, B. M. & Yajnik, C. S. The elevated susceptibility to diabetes in India: an evolutionary
perspective. Front. Public Health 4, 145 (2016).
3. International Diabetes Federation. IDF Diabetes Atlas, 8th Edition edn. International Diabetes Federation. Available online at, www.
diabetesatlas.org accessed 29/06/2018 (2017).
4. Jayawardena, R. et al. Prevalence and trends of the diabetes epidemic in South Asia: a systematic review and meta-analysis. BMC
Public Health 12, 380 (2012).
5. Gujral, U. P, Pradeepa, R., Weber, M. B., Narayan, K. M. V. & Mohan, V. Type 2 diabetes in South Asians: similarities and differences
with white Caucasian and other populations. Ann. New York Acad. Sci. 1281, 51-63 (2013).
6. Razak, F. et al. Ethnic differences in the relationships between obesity and glucose-metabolic abnormalities: a cross-sectional
population-based study. Int. J. Obes. Relat. Metab. Disord. 29, 656667 (2005).
7. Tillin, T. et al. Ethnicity-specific obesity cut-points in the development of Type 2 diabetes - a prospective study including three
ethnic groups in the United Kingdom. Diabetic Med. 32, 226-234 (2015).
8. Rush, E. C,, Freitas, I. & Plank, L. D. Body size, body composition and fat distribution: comparative analysis of European, Maori,
Pacific Island and Asian Indian adults. Br. J. Nutr. 102, 632-641 (2009).
9. Yajnik, C. S. et al. Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int. J. Obes. Relat. Metab.
Disord. 27,173-180 (2003).
10. West, J. et al. UK-born Pakistani-origin infants are relatively more adipose than white British infants: findings from 8704 mother-
offspring pairs in the Born-in-Bradford prospective birth cohort. J. Epidemiol. Community Health 67, 544-551 (2013).
11. Stanfield, K. M., Wells, J. C., Fewtrell, M. S., Frost, C. & Leon, D. A. Differences in body composition between infants of South Asian
and European ancestry: the London Mother and Baby Study. Int. J. Epidemiol. 41, 1409-1418 (2012).
12. Karamali, N. S. et al. Thin—fat insulin-resistant phenotype also present in South Asian neonates born in the Netherlands. J. Dev. Orig.
Health Dis. 6, 47-52 (2015).
13. van Steijn, L. et al. Neonatal anthropometry: thin-fat phenotype in fourth to fifth generation South Asian neonates in Surinam. Int.
J. Obes. 33, 1326-1329 (2009).
14. Unni, U. S. et al. Muscle mass and functional correlates of insulin sensitivity in lean young Indian men. Eur. J. Clin. Nutr. 63,
1206-1212 (2009).
15. Wells, J. C. K. Body composition and susceptibility to type 2 diabetes: an evolutionary perspective. Eur. J. Clin. Nutr. 71, 881-889
(2017).
16. Risk, N. C. D. Factor Collaboration. A century of trends in adult human height. eLife 5, 13410 (2016).

SCIENTIFIC REPORTS |

(2019) 9:10515 | https://doi.org/10.1038/s41598-019-46960-9 9


https://doi.org/10.1038/s41598-019-46960-9
http://www.diabetesatlas.org
http://www.diabetesatlas.org

www.nature.com/scientificreports/

25.

26.

27.

34.
35.
36.
37.
38.
39.

40.
. Majumder, P. P. & Basu, A. A Genomic View of the Peopling and Population Structure of India. Cold Spring Harb. Perspect. Biol. 7,

42.

43.

44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.

56.
57.

58.

59.

60.

. Yajnik, C. S. et al. Higher glucose, insulin and insulin resistance (HOMA-IR) in childhood predict adverse cardiovascular risk in

early adulthood: the Pune Children’s Study. Diabetologia 58, 16261636 (2015).

. Brite, J. et al. Height and the risk of gestational diabetes: variations by race/ethnicity. Diabetic Med. 31, 332-340 (2014).
. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Képpen-Geiger climate classification updated. Meteorol. Z.

15,259-263 (2006).

. Bae, C. ., Douka, K. & Petraglia, M. D. On the origin of modern humans: Asian perspectives. Science 358 (2017).
. Pelto, G. H. & Pelto, P. J. Small but Healthy? An Anthropological Perspective. Hum. Organ. 48, 11-15 (1989).
. Markgraf, V. & Diaz, H. E. The past ENSO record: A synthesis. In El Nifio and the Southern Oscillation: Multiscale Variability and

Global and Regional Impacts in El Nifio and the Southern Oscillation: Multiscale Variability and Global and Regional Impact (eds Diaz,
H. E. & Markgraf, V.). (Cambridge University Press, 2000).

. Cohen, M. N. & Armelagos, G. J. (eds) Paleopathology at the Origins of Agriculture. (Academic Press, 1984).
. Mummert, A., Esche, E., Robinson, J. & Armelagos, G. J. Stature and robusticity during the agricultural transition: Evidence from

the bioarchaeological record. Econ. Hum. Biol. 9, 284-301 (2011).

Baernstein, A. & Kennedy, K. A. R. Stature variability in prehistoric and modern South Asian populations: a bio-cultural approach.
J. Hum. Ecol. 1, 81-108 (1990).

Lukacs, J. R. Human biological diversity in ancient India: Dr Irawati Karve and contemporary issues in biological anthropology in
Anthropology for archaeology: proceedings of the Professor Irawati Karve birth centenary seminar (eds Walimbe, S. R., Joglekar, P. P. &
Basa, K. K.). (Deccan College Post-Graduate and Reseaech Institute, 2007).

Murphy, C. A. & Fuller, D. Q. The Transition to Agricultural Production in India in A Companion to South Asia in the Past (eds
Robbins-Schug, G. & Walimbe, S. R.). (John Wiley & Sons, Inc, 2016).

. Yajnik, C. S. et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal

Nutrition Study. Diabetologia 51, 29-38 (2008).

. Sen, C. T. Feasts and Fasts: A History of Food in India. (Reaktion Books, 2014).

. Joglekar, P. P. Domestic animals in ancient India in the light of literary and archaeological evidence. Bharati 21, 1-19 (1995).

. Davis, M. Late Victorian Holocausts: El Nifio Famines and the Making of the Third World. (Verso, 2002).

. Wells, J. C. K. Maternal capital and the metabolic ghetto: An evolutionary perspective on the transgenerational basis of health

inequalities. Am. J. H. Biol. 22, 1-17 (2010).

. Pomeroy, E., et al Stature estimation equations for South Asian skeletons based on DXA scans of contemporary adults. Am. J. Phys.

Anthropol. Early view (In Press), https://doi.org/10.1002/ajpa.23596.

Kennedy, K. A. R. Climatic events and environmental adaptations relating to the Mesolithic hominids of the Gangetic Plain.
Quatern. Int. 192, 14-19 (2008).

Pearson, O. M. Activity, climate, and postcranial robusticity - Implications for modern human origins and scenarios of adaptive
change. Curr. Anthropol. 41, 569-607 (2000).

Lukacs, J. R. & Pal, J. N. Skeletal variation among Mesolithic People of the Ganga Plains: New evidence of habitual activity and
adaptation to climate. Asian Perspect. 42, 329-351 (2003).

Wang, Z., Hoy, W. E. & Si, D. Incidence of type 2 diabetes in Aboriginal Australians: an 11-year prospective cohort study. BMC Public
Health 10, 487 (2010).

Piers, L. S., Rowley, K. G., Soares, M. J. & O’Dea, K. Relation of adiposity and body fat distribution to body mass index in Australians
of Aboriginal and European ancestry. Eur. J. Clin. Nutr. 57, 956-963 (2003).

Kondalsamy-Chennakesavan, S. et al. Anthropometric measurements of Australian Aboriginal adults living in remote areas:
Comparison with nationally representative findings. Am. J. Hum. Biol. 20, 317-324 (2008).

Norgan, N. G. Relative sitting height and the interpretation of the body mass index. Ann. Hum Biol. 21, 79-82 (1994).

2008540 (2015).

Reyes-Centeno, H. et al. Genomic and cranial phenotype data support multiple modern human dispersals from Africa and a
southern route into Asia. Proc. Natl. Acad. Sci. USA 111, 7248-7253 (2014).

Stock, J. T., Lahr, M. M. & Kulatilake, S. Cranial diversity in South Asia relative to modern human dispersals and global patterns of
human variation in The Evolution and History of Human Populations in South Asia (eds Petraglia, M.& Allchin, B.). (Springer
Netherlands, 2007).

Metspalu, M. et al. Shared and unique components of human population structure and genome-wide signals of positive selection in
South Asia. Am. J. Hum. Genet. 89, 731-744 (2011).

Bhatt, S. P. et al. Association of the myostatin gene with obesity, abdominal obesity and Low lean body mass and in non-diabetic
Asian Indians in North India. PLOS ONE 7, €40977 (2012).

Kulkarni, B., Shatrugna, V. & Balakrishna, N. Maternal lean body mass may be the major determinant of birth weight: a study from
India. Eur. J. Clin. Nutr. 60, 1341 (2006).

Singhal, A., Wells, J., Cole, T. J., Fewtrell, M. & Lucas, A. Programming of lean body mass: a link between birth weight, obesity, and
cardiovascular disease? Am. J.Clin. Nutr. 77, 726-730 (2003).

Hardikar Anandwardhan, A. et al. Multigenerational undernutrition increases susceptibility to obesity and diabetes that is not
reversed after dietary recuperation. Cell Metab. 22, 312-319 (2015).

Janipalli, C. S. et al. Analysis of 32 common susceptibility genetic variants and their combined effect in predicting risk of Type 2
diabetes and related traits in Indians. Diabetic Med. 29, 121-127 (2012).

Sanghera, D. K. et al. Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala),
IGF2BP2, TCF7L2 and FTOvariants confer a significant risk. BMC Medical Genetics 9, 1-9 (2008).

Hales, C. N. et al. Fetal and infant growth and impaired glucose tolerance at age 64. Br. Med. J. 303, 1019-1022 (1991).

Fall, C. et al. Size at birth, maternal weight, and type 2 diabetes in South India. Diabetic Med. 15, 220-227 (1998).

World Health Organization. Low birth weight: a tabulation of available information. World Health Organization (1992).

Kensara, O. A. et al. Fetal programming of body composition: relation between birth weight and body composition measured with
dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am. J. Clin. Nutr. 82, 980-987 (2005).
Manalich, R., Reyes, L., Herrera, M., Melendi, C. & Fundora, I. Relationship between weight at birth and the number and size of
renal glomeruli in humans: A histomorphometric study. Kidney Int. 58, 770-773 (2000).

Wells, J. C. K. The thrifty phenotype: An adaptation in growth or metabolism? Am. J. Hum. Biol. 23, 65-75 (2011).

Ruff, C. B,, Scott, W. W. & Liu, A. Y. Articular and diaphyseal remodeling of the proximal femur with changes in body mass in adults.
Am. ]. Phys. Anthropol. 86,397-413 (1991).

Pomeroy, E., Macintosh, A., Wells, J. C. K., Cole, T. J. & Stock, J. T. Relationship between body mass, lean mass, fat mass, and limb
bone cross-sectional geometry: Implications for estimating body mass and physique from the skeleton. Am. J. Phys. Anthropol. 166,
56-69 (2018).

Pomeroy, E. et al. Estimating body mass and composition from proximal femur dimensions using dual energy x-ray absorptiometry.
Archaeol. Anthropol. Sci. Early View, (In press), https://doi.org/10.1007/s12520-018-0665-z.

Marwaha, R. K. et al. Normative data of body fat mass and its distribution as assessed by DXA in Indian adult population. J. Clin.
Densitom. 17, 136-142 (2014).

SCIENTIFICREPORTS|  (2079)9:10515 | https://doi.org/10.1038/s41598-019-46960-9 10


https://doi.org/10.1038/s41598-019-46960-9
https://doi.org/10.1002/ajpa.23596
https://doi.org/10.1007/s12520-018-0665-z

www.nature.com/scientificreports/

61. Wells, J. C. K., Chomtho, S. & Fewtrell, M. S. Programming of body composition by early growth and nutrition. Proc. Nutr. Soc. 66,
423-434 (2007).

62. Janghorbani, M., Momeni, E. & Dehghani, M. Hip circumference, height and risk of type 2 diabetes: systematic review and meta-
analysis. Obes. Rev. 13, 1172-1181 (2012).

63. Walimbe, S. R., Behera, P. K. & Mushrif, V. A human skeleton discovered from the rock shelter site of Deulga Hills (District
Sambalpur), Orissa. Man Env. 26, 99-107 (2001).

64. Brennan, L., McDonald, J. & Shlomowitz, R. Toward an anthropometric history of Indians under British rule. Res. Econ. Hist. 17,
185-246 (1997).

65. Ruff, C. B. Morphological adaptation to climate in modern and fossil hominids. Am. J. Phys. Anthropol. 37, 65-107 (1994).

66. Tanner, J. M. Growth as a mirror of the condition of society: secular trends and class distinctions. Pediatr. Int. 29, 96-103 (1987).

67. Petraglia, M. D. & Allchin, B. The Evolution and History of Human Populations in South Asia: Inter-disciplinary Studies in Archaeology,
Biological Anthropology, Linguistics and Genetics. (Springer Netherlands, 2007).

68. Roseman, C. C. & Auerbach, B. M. Ecogeography, genetics, and the evolution of human body form. J. Hum. Evol. 78, 80-90 (2015).

69. Betti, L., von Cramon-Taubadel, N., Manica, A. & Lycett, S. J. The interaction of neutral evolutionary processes with climatically-
driven adaptive changes in the 3D shape of the human os coxae. J. Hum. Evol. 73, 64-74 (2014).

70. Akhtar, S. & Dhillon, P. Prevalence of diagnosed diabetes and associated risk factors: Evidence from the large-scale surveys in India.
J. Soc. Health Diabetes 5, 28-36 (2017).

71. Guntupalli, A. M. & Baten, J. The development and inequality of heights in North, West, and East India 1915-1944. Explor. Econ.
Hist. 43, 578-608 (2006).

72. Raj, S. M. et al. Variation at diabetes- and obesity-associated loci may mirror neutral patterns of human population diversity and
diabetes prevalence in India. Ann. Hum. Genet. 77, 392-408 (2013).

73. Adams, B. & Byrd, J. Interobserver variation of selected postcranial skeletal measurements. J. Forensic Sci. 47, 1193-1202 (2002).

74. Deurenberg-Yap, M., Schmidt, G., van Staveren, W. A. & Deurenberg, P. The paradox of low body mass index and high body fat
percentage among Chinese, Malays and Indians in Singapore. Int. J. Obesity Rel. Metab. Disord. 24,1011-1017 (2000).

75. Shaikh, S. et al. Excessive adiposity at low BMI levels among women in rural Bangladesh. J. Nutr. Sci. 5, e11 (2016).

76. Lau, S. L. et al. Healthcare planning in north-east India: A survey on diabetes awareness, risk factors and health attitudes in a rural
community. J. Assoc. Physicians India 57, 305-309 (2009).

77. Hefner, J. T, Spatola, B. E, Passalacqua, N. V. & Gocha, T. P. Beyond Taphonomy: Exploring Craniometric Variation Among
Anatomical Material. J. Forensic Sci. 61, 1440-1449 (2016).

78. Auerbach, B. http://web.utk.edu/~auerbach/GOLD.htm, accessed 30/05/2015.

79. Auerbach, B. M. & Ruff, C. B. Human body mass estimation: a comparison of “morphometric” and “mechanical” methods. Am. J.
Phys. Anthropol. 125, 331-342 (2004).

80. Will, M. & Stock, J. T. Spatial and temporal variation of body size among early Homo. J. Hum. Evol. 82, 15-33 (2015).

81. Lieberman, D. E., Devlin, M. J. & Pearson, O. M. Articular area responses to mechanical loading: effects of exercise, age, and skeletal
location. Am. J. Phys. Anthropol. 116, 266-277 (2001).

82. Hruschka, D. J., Hadley, C. & Brewis, A. Disentangling basal and accumulated body mass for cross-population comparisons. Am. J.
Phys. Anthropol. 153, 542-550 (2014).

83. Wells, J. C. K. The Evolutionary Biology of Human Body Fatness: Thrift and Control. (Cambridge University Press, 2010).

84. Ruff, C. B., Holt, B. & Trinkaus, E. Who's afraid of the big bad Wolff?: “Wolff’s law” and bone functional adaptation. Am. J. Phys.
Anthropol. 129, 484-498 (2006).

85. Feik, S. A., Thomas, C. D. L., Bruns, R. & Clement, J. G. Regional variations in cortical modeling in the femoral mid-shaft: Sex and
age differences. Am. J. Phys. Anthropol. 112, 191-205 (2000).

86. Davies, T. Cross-sectional variation in the human femur and tibia: The influence of physique and habitual mobility on diaphyseal
morphology. PhD thesis, Department of Archaeology and Anthropology, University of Cambridge (2013).

87. Ruff, C. B. Biomechanical analyses of archaeological human skeletons in Biological Anthropology of the Human Skeleton (eds
Katzenberg, M. A. & Saunders, S. R.). 2nd edn. Wiley-Liss (2008).

88. Robbins, G., Sciulli, P. W. & Blatt, S. H. Estimating body mass in subadult human skeletons. Am. J. Phys. Anthropol. 143, 146-150
(2010).

89. Semanick, L. M. et al. Association of Body Composition and Physical Activity with Proximal Femur Geometry in Middle-Aged and
Elderly Afro-Caribbean Men. Calcif. Tissue Int. 77, 160-166 (2005).

90. Trotter, M. & Gleser, G. C. Estimation of stature from long bones of American whites and negroes. Am. J. Phys. Anthropol. 10,
463-514 (1952).

91. Ruff, C. B. et al. Stature and body mass estimation from skeletal remains in the European Holocene. Am. J. Phys. Anthropol. 148,
601-617 (2012).

92. Auerbach, B. M. & Ruff, C. B. Stature estimation formulae for indigenous North American populations. Am. J. Phys. Anthropol. 141,
190-207 (2010).

93. Lukacs, . R,, Pal, J. N. & Nelson, G. C. Stature in Holocene foragers of North India. Am. J. Phys. Anthropol. 153, 408-416 (2014).

94. Raxter, M. H. et al. Stature estimation in ancient Egyptians: A new technique based on anatomical reconstruction of stature. Am. J.
Phys. Anthropol. 136, 147-155 (2008).

95. Bogin, B. & Varela-Silva, M. I. Leg length, body proportion, and health: a review with a note on beauty. Int. J. Env. Res. Public Health
7,1047-1075 (2010).

96. Smith, R.J. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. Anthropol. 140, 476-486 (2009).

97. Martin, R. & Saller, K. Lehrbuch der Anthropologie. (Fischer, 1957).

98. Corruccini, R. S. & Ciochon, R. L. Morphometric affinities of the human shoulder. Am. J. Phys. Anthropol. 45, 19-37 (1976).

99. Pearson, O. M. Postcranial morphology and the origin of modern humans. Unpublished Ph.D. Thesis, State University of New York,
Stoney Brook (1977).

Acknowledgements

This research was supported by the following grants: Leverhulme Trust Early Career Fellowship (EP); British
Academy International Partnership and Mobility Scheme Grant (VMT and EP); FP7 Ideas: European Research
Council (FP/2007-2013)/ERC Grant Agreement n.617627 (JTS); Medical Research Council grant MR/R010692/1
(TJC). Discussions as part of the UCL DIABETES Network (funded by University College London) helped to
shape some of the ideas discussed here. Thanks to Professor Subhash Walimbe for his help and advice, and to
Professor Susan Pfeiffer and Cathy David at the Department of Anthropology, University of Toronto (St George
Campus) and to Dr Heather Miller and Dr Trevor Orchard University of Toronto at Mississauga for access to and
assistance with collections. Thanks also to Oshan Wedage, Nimal Perera, Siran Deraniyagala and Mike Petraglia
for access to materials from Fa Hien and Kuragala, Sri Lanka. Finally, we thank Professor John Lukacs and three
anonymous reviewers and their valuable feedback that helped to significantly improve the manuscript.

SCIENTIFICREPORTS|  (2079)9:10515 | https://doi.org/10.1038/s41598-019-46960-9 11


https://doi.org/10.1038/s41598-019-46960-9

www.nature.com/scientificreports/

Author Contributions

E.P, J.C.K.W. and J.T.S. conceived the study; E.P, V.M.T. and ].T.S. collected data; E.P. analysed the data; T.J.C.
advised on statistical analyses and data interpretation; E.P. drafted the manuscript, and all authors reviewed the
text and approved the final version.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-46960-9.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

T | icense, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019

SCIENTIFICREPORTS|  (2079)9:10515 | https://doi.org/10.1038/s41598-019-46960-9 12


https://doi.org/10.1038/s41598-019-46960-9
https://doi.org/10.1038/s41598-019-46960-9
http://creativecommons.org/licenses/by/4.0/

	Ancient origins of low lean mass among South Asians and implications for modern type 2 diabetes susceptibility

	Results

	Inter-population variation in inferred lean mass relative to stature. 
	Temporal trends in South Asian lean mass. 
	Temporal trends in South Asian stature. 

	Discussion

	Methods

	Statistical analyses. 

	Acknowledgements

	Figure 1 Map of South Asia showing location of study samples.
	Figure 2 World map showing location of comparative Late Pleistocene and Holocene data used in this study.
	Figure 3 Plot of individual mean bone breadth z-score against individual mean bone length z-score in South Asian archaeological and modern skeletons from the last 11,000 years (n = 197) compared with a worldwide sample of terminal Pleistocene and Holocene
	Figure 4 Individual mean bone breadth z-score (adjusted for latitude and bone length z-score) plotted against date of site, illustrating a minor temporal trend in relative lean mass among South Asians (n = 197) over the last 11,000 years.
	Figure 5 Individual mean bone length z-score (adjusted for latitude) plotted against date of site, illustrating temporal trends in inferred stature among South Asians (n = 197) over the last 11,000 years.
	Table 1 Skeletal measurements used in the study.




