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Abstract
Hydrocephalus is a cerebrospinal fluid physiological disorder that causes ventricular 
dilation with normal or high intracranial pressure. The current regular treatment for 
hydrocephalus is cerebrospinal fluid shunting, which is frequently related to failure 
and complications. Meanwhile, considering that the current nonsurgical treatments 
of hydrocephalus can only relieve the symptoms but cannot eliminate this complica-
tion caused by primary brain injuries, the exploration of more effective therapies has 
become the focus for many researchers. In this article, the current research status and 
progress of nonsurgical treatment in animal models of hydrocephalus are reviewed to 
provide new orientations for animal research and clinical practice.
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1  |  INTRODUCTION

Hydrocephalus is a disorder of the cerebrospinal fluid (CSF) 
physiology resulting in the expansion of cerebral ventricles 
with normal or high intracranial pressure.1 It is usually con-
genital or secondary to craniocerebral injury or intracranial in-
fection. At present, surgical therapies are widely used to treat 
hydrocephalus, while nonsurgical therapies do not lead to good 
outcomes. Previous studies have shown that ventriculoperito-
neal shunting, the main treatment option for hydrocephalus, is 
effective with improved neurological outcomes.2 Endoscopic 
third ventriculostomy has emerged in the last decades as a 
resultful method to restore CSF flow. Although surgery is the 
mainstay of hydrocephalus treatment, the rate of complications 
caused by shunt surgery, such as shunt extrusion, obstruction, 
or infection, ranges from 17% to 33%.3–5 The most concerned 
complication is shunt obstruction.6 The rate of shunt revision 
caused by obstruction and other factors was 32% to 63%.7–10 
Besides, the high costs of surgery and medical equipment add 
heavy medical and social burdens.11,12 In the United States, the 
treatment cost of shunting surgery has reached 1 billion dollars 
per year,13 and the first readmission also generated about 2.25 
billion dollars in hospital charges.7 It is reasonable to assume 
that these costs are likely to be higher in developing countries, 
resulting in heavy household and socio-economic burdens. 
Therefore, nonsurgical therapies to reduce the damages and 
burdens from hydrocephalus are needed as alternatives or ad-
juvants to ventriculoperitoneal shunting or endoscopic third 
ventriculostomy.

To unveil the pathogenesis of brain damage in hydrocephalus 
and develop more effective nonsurgical treatments, research-
ers have developed different animal models such as intraven-
tricular injection of blood or kaolin to induce hydrocephalus 
in rats.14,15 At the same time, some congenital hydrocephalus 
models characterized by aqueduct stenosis, ependymal strip-
ping, and astrocytes activation have also been applied.16,17 
Although animal models cannot fully simulate human body 
condition, they still play important roles in hydrocephalus re-
search. By using these models, researchers have been looking 
for possible targets for hydrocephalus treatment. Some targets 
have been identified, and pharmacological targeted therapies 
have been used in clinical practice, such as mannitol and furo-
semide. In addition to drug therapies, other nonsurgical thera-
pies such as mesenchymal stem cells (MSC) transplantation and 
gene therapy have also shown some success in animal models 
in recent years.

Based on the pathogenesis of hydrocephalus, we have summa-
rized and evaluated the trials on possible targets and studies on non-
surgical therapies for hydrocephalus in animal models (Table 1) and 
suggested some targeted therapies (Figure 1). The purpose of this 
review was to summarize the therapeutic effects of different meth-
ods and to provide new orientations for animal research and clinical 
practice for hydrocephalus.

2  | ANTI- ­INFLAMMATORY TREATMENT 
FOR HYDROCEPHALUS

In preterm infants with intraventricular hemorrhage (IVH), fetal 
ventriculitis, subarachnoid hemorrhage (SAH), and other diseases, 
inflammation can induce ependymal scarring, intraventricular ob-
struction, and excessive secretion of CSF by choroid plexus epithe-
lial cells, which can lead to CSF circulation disorder and impaired 
absorption function.18,19 The choroid plexus epithelium (CPe) is the 
secretory epithelium that can secrete CSF. Adjacent choroid plexus 
epithelial cells have tight connections and bonding bands near the 
apex, forming the blood-brain barrier (BBB). The CPe can function as 
a barrier that separates the blood and CSF but allow circulating im-
mune cells to enter the brain. Danger-associated molecular patterns 
and pathogen-associated molecular patterns enter the CSF and bind 
Toll-like receptor 4 (TLR4) expressed by CPe, thus promoting nuclear 
translocation of nuclear factor-κB (NF-κB) Meanwhile, the synthesis 
and release of downstream pro-inflammatory cytokines by active 
astrocyte or microglia are aroused.18,20 These cytokines can bind re-
ceptors on the surface of CPe and may induce inflammation and CSF 
hypersecretion. In this process, some drugs that antagonize TLR4-
NF-κB signaling or the STE20/SPS1-related proline/alanine-rich ki-
nase (SPAK)-Na+/K+/2Cl− co-transporter-1 (NKCC1) complex might 
be promising to clinical practice. Karimy et al used a recently devel-
oped method to directly measure the rate of CSF secretion of the 
lateral ventricle CPe in live rats. They found that the delivery of TLR4 
inhibitor TAK-242 and NF-κB inhibitor ammonium pyrrolidinedithi-
ocarbamate can significantly reduce the post-IVH CSF secretion rate 
and ventriculomegaly. Similar results have been shown in studies on 
pharmacological and genetic inhibition of the SPAK-NKCC1 com-
plex.19 Among these results, bumetanide shows its potential to treat 
hydrocephalus. However, following systemic administration, the in-
tracerebral concentration level of bumetanide is typically lower than 
the needed concentration to inhibit NKCC1, which critically limits its 
clinical use for treating brain disorders. In addition to the low perme-
ability of the BBB, active efflux of bumetanide can also explain the 
extremely low intracerebral concentrations.21

Animal research and clinical practice have proven that abnormal 
expression of pro-inflammatory and anti-inflammatory mediators 
also plays an important role in inflammation induced by hydroceph-
alus.22,23 These inflammatory cytokines may be mainly secreted by 
astrocytes and microglia. In congenital or acquired neonatal hydro-
cephalus, astrocyte- and microglia-mediated neuroinflammation 
seems to be involved in the development of hydrocephalus.16 For 
example, GFAP and Iba-1 immunoreactivity increased in the pari-
etal cortex of rats with hydrocephalus induced by injection of kaolin 
on postnatal day 1, indicating significant activation of astrocytes 
and microglia.24 Analysis of the gene expression data also showed 
an increase in neuroinflammation.24 During this process, astrocytes 
may be stimulated by various pro-inflammatory factors secreted by 
activated microglia, such as IL-1, and thus become activated, hence 
aggravating neuroinflammation.25 Meanwhile, in addition to neu-
roinflammation, the activation and proliferation of glial cells are also 
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involved in other pathophysiological processes of hydrocephalus, 
such as the regulation of aquaporin-4 (AQP4) expression and oxi-
dative stress. Some drugs that target glial cells may be an option for 
hydrocephalus treatment.

In a study on the germinal matrix hemorrhage (GMH) model, rh-
IFN-α effectively controlled post-hemorrhage hydrocephalus (PHH) 
by inhibiting microglial activation through JAK1-STAT1/TRAF3/
NF-κB signaling and reducing the secretion of pro-inflammatory cy-
tokines.26 However, a traditional anti-inflammatory agent showed 
that treatment could not significantly inhibit the progression of hy-
drocephalus in both animal experiments and clinical studies of dexa-
methasone.27–29 Therefore, inhibition of the expression and secretion 
of pro-inflammatory factors may be a feasible way to relieve hydro-
cephalus. But not all drugs that inhibit the expression of inflammatory 
cytokines are effective.

Aside from drugs, MSC has shown anti-apoptotic, anti-
inflammatory, antifibrotic, and antioxidative paracrine potential 
in the treatment of many neurological diseases.30,31 In a study, rat 
pups with severe IVH were injected with MSC-buffered saline into 
the right ventricle. The results showed that transplanting MSC sig-
nificantly attenuated PHH following severe IVH. This might be due 
to the anti-inflammatory effect of MSC.32,33 Another study also 
showed that MSC can downregulate the expression of inflamma-
tory cytokines, such as IL-1α, IL-1β, and IL-6, and inhibit overactive 

astrocytes. As the therapeutic time window in the study was lim-
ited to the early phase of inflammation following severe IVH,34 more 
studies are required to verify its effects. And for successful clinical 
translation of MSC transplantation, the optimal route, timing, dos-
age, and short- and long-term safety are critical issues that remain 
to be addressed.

3  | ANTIFIBROTIC TREATMENT FOR 
HYDROCEPHALUS

Fibrosis is the formation of excessive connective tissue follow-
ing the repair of inflammation. Too much fibrillar connective tis-
sue formation may disrupt the normal function of surrounding 
tissue. Subarachnoid fibrosis secondary to cerebral hemorrhage 
is an important mechanism in the pathophysiology of chronic hy-
drocephalus affecting the normal circulation and absorption of 
CSF.35 Extensive fibrosis, mainly caused by excessive extracellular 
matrix (ECM) production, in subarachnoid space, may play an im-
portant role in the development of PHH and other forms of com-
municating hydrocephalus.36 Excessive ECM deposition obstructs 
CSF flow and reduces CSF reabsorption. Injecting kaolin into the 
basal cistern can cause excessive deposition of fibronectin and 
laminin, which are two main components of ECM.37 Therefore, 

F IGURE  1 The pathogenesis of hydrocephalus and corresponding treatment Choroid plexus inflammation causes excessive secretion of 
cerebrospinal fluid. Subarachnoid fibrosis results in obstruction of hydrocele circulation. Iron overload caused by bleeding causes damage 
to neurons and the blood-brain barrier, thereby promoting hydrocephalus. Aquaporin-1 (AQP1) expressed in the choroid plexus is mainly 
involved in the production of cerebrospinal fluid, while AQP-4 is expressed mainly in the ependyma, and astrocytes are mainly involved in 
the absorption of cerebrospinal fluid. Abnormal expression of AQP1 and AQP4 may result in the accumulation of cerebrospinal fluid. Tissue 
damage caused by oxidative stress may be involved in the development of hydrocephalus. On the right-hand side of the figure are some 
of the treatments that correspond to the mechanism. Abbreviations: MSC, mesenchymal stem cell; HGF, hepatocyte growth factor; uPA, 
urokinase-type plasminogen activator; TGF, transforming growth factor; sFRP-1, secreted frizzled-related protein-1; LSKL, leucine-serine-
lysine-leucine peptide; DFX, desferrioxamine; EPO, erythropoietin; GSH, glutathione [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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targeting subarachnoid fibrosis may be helpful in the treatment of 
hydrocephalus.

The urokinase plasminogen activator (uPA) is a serine protease 
that converts plasminogen to plasmin.38 Plasmin is a protease that 
can degrade fibrin and ECM components.39 uPA may relieve fibro-
sis and ECM deposition in the subarachnoid space by inhibiting the 
deposition of laminin, fibronectin, and extracellular matrix mole-
cules in rats injected with kaolin, thus inhibiting the development of 
hydrocephalus.37,40 The release and activation of hepatocyte growth 
factor promoted by uPA may also play an important role in this pro-
cess.41 Besides the antifibrotic effects, uPA treatment of PHH has a 
mechanical benefit of accelerating the clearance of blood clots and 
improving the blocked CSF reflux pathway caused by clotting, thus 
facilitating CSF reflux. Tissue plasminogen activator (tPA) is a kind of 
plasminogen activator that belongs to the same serine protease fam-
ily as uPA.42 Gaberel et al compared the effects of these two drugs 
by infusing them separately into the ventricle of rats with hematoma 
and IVH induced by injection of collagenase type VII near the ven-
tricle wall. They found that although both uPA and tPA can reduce 
ventricular dilatation caused by post-IVH hydrocephalus, only uPA 
significantly improved functional recovery.43 It possibly results 
from the potential pro-inflammatory and toxic effects of tPA.44,45 
However, the use of uPA has been associated with an increased risk 
of intracranial rebleeding and infection in clinical studies of IVH,46,47 
which may limit its clinical use.

Transforming growth factor-β (TGF-β) plays an important role in 
promoting fibrosis and inflammation. It can be activated by many 
factors and released from activated microglia or platelet.48,49 TGF-β 
stimulates mesenchymal stem cells and fibroblasts to produce ECM 
matrix proteins, which may disrupt CSF flow.50 In clinical practice, 
the occurrence of PHH in premature infants is associated with the 
increase in TGF-β1 and ECM protein expression in CSF.51 Therefore, 
TGF-β may be a vital target in hydrocephalus treatment. In partic-
ular, the TGF-β1/Smad pathway may play an important role in the 
development of hydrocephalus. In the kaolin-induced hydrocephalus 
model of rats, TGF-β/Smad2/3-mediated subarachnoid fibrosis and 
development of hydrocephalus were inhibited by sustained intra-
ventricular decorin infusion.52 And in another rat model of SAH, the 
leucine-serine-lysine-leucine peptide, a little peptide of four amino 
acids, has also been used to prevent the development of chronic hy-
drocephalus by reducing the activation of latent TGF-β1/Smad2/3 
signaling pathway following SAH.53 In addition, TGF-β is associated 
with injury induced by thrombin in SAH models.48,54 Thrombin is 
also one of the important factors causing PHH.55 It is reported that 
dabigatran, a thrombin antagonist, significantly diminished post-
hemorrhagic ventricular dilation and white matter loss.56 The acti-
vation of protease-activated receptors-1 plays an important role in 
damage caused by thrombin.56–58

Researchers tried to interfere with the TGF-β pathway as a means 
to treat hydrocephalus in animal models.59,60 Manaenko et al admin-
istered SD208, a TGF receptor I inhibitor, daily for 3 days after GMH 
induction and compared the result with vehicle-treated GMH rats. 
The results showed that high-dose SD208 inhibited GMH-induced 

activation of the TGF-β pathway, reduced the deposition of vit-
ronectin, and alleviated brain atrophy and hydrocephalus.61

However, some other drugs that inhibit TGF-β may not affect 
hydrocephalus. Pirfenidone and losartan reduce TGF-β expression 
and have antifibrotic potential in other organs. They were used to 
treat seven-day-old rats with post-IVH hydrocephalus, but neither 
drug had a beneficial effect on ventricle size or behavior after treat-
ment.62 Although treatment with pioglitazone reduced glial activa-
tion in mice with overexpressing TGF-β1, it promoted hydrocephalus 
unexpectedly.63 The mechanism of this interesting phenomenon re-
mains to be investigated through more experiments.

4  | ANTI- ­IRON OVERLOAD TREATMENT 
FOR HYDROCEPHALUS

After IVH or SAH, hemoglobin (Hb), iron, and other substances in 
blood may be released into CSF and accumulate in the brain paren-
chyma and CSF in subarachnoid space, leading to brain injury and 
ventricular dilation.55,57,64 Molecules related to inflammation, such 
as TNF-α, monocyte chemotactic protein-1, IL-1β, IL-6, and IL-8, are 
highly expressed in rat pups that received intraventricular injection 
of Hb.65,66 Hb is broken down into heme, and heme is broken down 
by heme oxygenase (HO) into iron, carbon monoxide, and biliver-
din.55 Strahle et al injected protoporphyrin IX, the iron-deficient 
immediate heme precursor into the ventricle. It did not result in 
ventricular enlargement, while both Hb and iron injection could lead 
to a continuous increase in ventricular size.67 Although Hb and its 
degradation products are likely to contribute to ventricular enlarge-
ment in different ways, iron may play a major role in this process by 
inducing ependymal cell death and cilia loss.68 It has been observed 
that the levels of hemoglobin and ferritin in CSF of neonates with 
PHH or IVH were positively correlated with the size of the ventri-
cle.69 But there was no significant change in the level of iron scav-
enging proteins.69 These results suggest that disturbance of iron 
clearance may be involved in the pathogenesis of PHH. Besides, it 
has been reported that deferoxamine, a kind of iron chelator, could 
inhibit Wnt1 and Wnt3a gene expression and protein synthesis in 
IVH-induced hydrocephalus rats, in addition to its own iron chela-
tion function.70 This suggests that iron may be a key stimulant that 
activates the Wnt signaling pathway. Some studies have shown that 
the Wnt signaling pathway may be associated with inflammation, fi-
brosis, reactive gliosis, coagulation cascade, and lipid peroxidation in 
the development of hydrocephalus.55,71–73 Disturbed Wnt signal due 
to CCDC88C mutation also leads to an autosomal recessive nonsyn-
dromic hydrocephalus.74

It is worth noting that the breakdown products of heme in ad-
dition to iron, including HO-1 itself, are possibly involved in the 
regulation of brain damage.75,76 Studies have shown that using HO 
inhibitors such as protoporphyrin IX and zinc protoporphyrin could 
reduce intracerebral hemorrhage-induced inflammation, brain at-
rophy, and the size of the hematoma and edema.77,78 But Zhang 
et al suggested that the role of HO-1 activation in experimental 
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cerebral hemorrhage may be bimodal. It mediates brain damage 
early after hemorrhage but promotes nervous system recovery later 
in the course of disease.79 HO-1 exerts anti-inflammatory and anti-
oxidant effects not only through bilirubin and carbonic oxide, and 
its catalytic products, but also through inhibiting the expression of 
inflammatory factors and blocking NF-κB.75,80 Therefore, it is very 
important to determine the regulatory mode of HO and the eventual 
time window for treatment.

Minocycline is another promising treatment for intracranial 
hemorrhage due to its ability to chelate iron.81 Guo et al confirmed 
that minocycline could reduce iron accumulation in an experimental 
GMH-IVH model, thus reducing the risk of brain damage and hydro-
cephalus.82 At the same time, as a widely used anti-inflammatory 
drug, minocycline is also a macrophage/microglia inhibitor by various 
pathways such as poly (ADP-ribose) polymerase-1 signaling pathway 
or by activating the cannabinoid receptor 2.83,84 Other evidence sug-
gests that administration of minocycline may reduce hydrocephalus 
by inhibiting reactive gliosis in animal models with congenital or ac-
quired hydrocephalus.54,85,86 Minocycline also showed a therapeu-
tic effect of delaying hydrocephalus in spontaneously hypertensive 
rats.87 Progressive ventricular dilation in spontaneously hyperten-
sive rats has been reported in 1986.88 The ventricles of these rats 
remained enlarged, even after the blood pressure was lowered by 
captopril.89 Current studies have found that choroid plexus cell 
death, ependymal injury, impaired glymphatic transport, hemor-
rhage, and other factors may be involved in the development of hy-
drocephalus in spontaneously hypertensive rats.17,87,90,91 Therefore, 
minocycline is a promising drug for the treatment of hydrocephalus 
and related tissue damage. However, minocycline has some side ef-
fects, such as the possibility of inducing lupus erythematosus.92

5  | AQUAPORIN REGULATION 
TREATMENT FOR HYDROCEPHALUS

AQPs are transmembrane functional units distributed throughout 
the body that allow water molecules or other small molecules to pass 
through.93 They are involved in other physiological or pathological 
processes beyond water homeostasis, such as cell-cell adhesion, fa-
cilitating gas and cation transportation, inflammation, etc.94,95 In the 
brain, AQPs are related to a variety of pathological processes, includ-
ing cerebral ischemia/reperfusion injury, brain edema, and hydro-
cephalus.96,97 AQP1 and AQP4 are the main kinds of AQPs related to 
hydrocephalus.98,99

AQP1 is mainly expressed on the apical and basolateral sur-
faces of the choroid plexuses and plays a role in CSF production.100 
Acetazolamide may reduce CSF production by inhibiting AQP1 and 
thus slow the development of hydrocephalus. However, a study in six 
dogs with internal hydrocephalus showed that acetazolamide treat-
ment was not effective in inhibiting ventricular dilation.101 Despite 
the fact that many general practitioners and neurologists are still 
prescribing acetazolamide, acetazolamide is not recommended to 

treat hydrocephalus in clinic.102,103 In addition, there have been 
experiments using gene therapy to regulate AQP1 expression to 
restore glandular function.104,105 Although gene therapy for hydro-
cephalus has not yet been tested in animal models, it does provide a 
direction for relevant experiments.

AQP4 is expressed in ependymal and glial cells.106 Compared with 
wild-type mice, AQP4-null mice with obstructive hydrocephalus are 
observed with significantly increased CSF content and accelerated 
ventricular enlargement progression, suggesting that AQP4 may be 
involved in CSF reabsorption.107 At the same time, enhanced AQP4 
immune response was observed in rat brains with severe hydroceph-
alus.108 These results suggest that the upregulation of AQP4 expres-
sion may be a compensatory response to maintain hydrocephalus 
homeostasis.

The glymphatic system is a sleep-assisted CSF and interstitial 
fluid transport system that promotes the removal of waste from the 
brain parenchyma.109,110 In this pathway, fluid and solutes enter the 
perivascular space of the artery and then diffuse into the brain pa-
renchyma by AQP4 expressed on the endfeet of astrocytes that en-
sheathe the brain vasculature.111,112 These substances into the brain 
parenchyma are collected in the perivenous spaces surrounding the 
large deep veins and flow into the neck lymphatic system.109 Some 
evidence suggests that there may be impaired glymphatic transport 
in patients with idiopathic normal pressure hydrocephalus (iNPH) 
and that the abnormal expression of AQP4 may be involved in this 
damage.91,113–115 By using magnetic resonance imaging contrast 
agent as CSF tracer, it was found that there is a significant delay 
in the tracer clearance stage of iNPH patients.115,116 This delayed 
clearance may be related to the deposition of amyloid-β peptides 
(Aβ) in the brain tissues of iNPH patients, but the mechanism re-
mains to be explored. A study showed that the expression of AQP4 
and its anchor molecule dystrophin-71 in the perivascular endfeet 
of astrocytes decreased in iNPH patients.117 Thus, in iNPH, the re-
duction of AQP4 in the perivascular endfeet may impede the trans-
port of fluid and solutes along the microvessels. Evidence shows 
that deletion of AQP4 does not alter Aβ levels in the brain of adult 
mice,118 but does decrease exogenous Aβ clearance,119 suggesting 
that AQP4 may play an important role in the development of Aβ-
related diseases. More experiments are needed to investigate the 
connection between the clearance delay and the accumulation of 
Aβ and the role of AQP4.

Erythropoietin (EPO), a multifunctional molecule that has anti-
inflammatory and angiogenesis function to reduce brain injury,120,121 
can also influence the expression of AQP4. Siddiqui et al injected EPO 
intraperitoneally in kaolin-induced hydrocephalus rats for five con-
secutive days. The result showed that EPO treatment significantly 
reduced the expression of miR-130a and increased the expression of 
miR-668, thereby upregulating the expression of AQP4 in cultured 
ventricular septal epithelial cells and astrocytes.122 miR-668 may be 
a potent expression activator of AQP4 in response to EPO, but there 
may be many other activators. Therefore, targeting AQP4 may be a 
promising direction for the treatment of hydrocephalus.
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6  | ANTIOXIDATIVE STRESS TREATMENT 
FOR HYDROCEPHALUS

Many clinical and experimental studies have shown that chronic 
hydrocephalus is related to decreased cerebral blood flow and ox-
ygen delivery to the brain.123 It has been shown that chronic hy-
poxia could cause older rats to exhibit the characteristics of adult 
chronic hydrocephalus, including increased ventricular size, slightly 
increased intracranial pressure, and cognitive deficits in the brain.124 
Besides, free radicals, such as reactive oxygen species and reac-
tive nitrogen species, are also associated with oxidative damage 
to neurons and other brain cells.125,126 Oxidative stress induced by 
hypoxia/ischemia environment involving lipid peroxidation and oxi-
dative and nitrosylative reaction may be one of the mechanisms of 
brain injury in hydrocephalus. These reactions may be ongoing even 
while ventricle expansion stops.127

It should be noticed that nitric oxide (NO) plays a role in oxida-
tive stress as well. Increasing citrulline and nitrate concentration, 
markers of NO production, were found in CSF of patients with acute 
hydrocephalus, indicating more NO production.128 NO can expand 
blood vessels and relieve ischemia and hypoxia, but may also damage 
the BBB. NO mediates the opening of the BBB, allowing metabolic 
waste products in blood to enter the brain. The most harmful effect 
of NO is that it can be oxidized to peroxynitrite, which can cause 
wide cellular damage by oxidizing proteins, DNA, etc.129,130

Antioxidants might be a possible treatment for damage followed 
by oxidative stress in hydrocephalus. Melatonin, a hormone secreted 
by the pineal gland, has shown its protective effect by scavenging 
free radicals. Rats with hydrocephalus induced by kaolin injection 
received melatonin treatment, and the result showed that melatonin 
could stop the elevations in NO levels of choroid plexus tissue and 
delay the decrease in glutathione, which is also a free radical scav-
enger and antioxidants.131 It shows the potential to inhibit inducible 
NO synthase activity to reduce NO production.

However, some studies reported that some antioxidant thera-
pies had no benefits in rats with hydrocephalus. Rats received an 
injection of kaolin into the cisterna magna to induce hydrocephalus. 
Then, they were treated for two weeks daily with a low or high dose 
of an antioxidant mixture containing α-tocopherol, L-ascorbic acid, 
coenzyme Q10, reduced glutathione, and reduced lipoic acid. It is 
interesting that although all agents used in the study affected ox-
idative stress, all groups developed significant ventricle expansion 
and exhibited white matter damage.132 A possible explanation is that 
oral administration is not as effective as intraperitoneal injection. In 
a study on quercetin, an antioxidant widely found in fruits and veg-
etables, the results showed no significant benefit on kaolin-induced 
hydrocephalus in rats even though quercetin has shown therapeutic 
effect in animal models of other nervous system damage.133

Angiogenesis is a protective mechanism under the condition 
of ischemia and hypoxia.134 It is reported that vascular endothelial 
growth factor (VEGF), which has a mitogenic activity and increases 
the vascular permeability effect on endothelial cells, is highly ex-
pressed in the CSF of premature infants with PHH or adult chronic 

hydrocephalus patients.135 In rats that were under chronic hypoxia, 
hypoxia-inducible factor-1alpha rapidly accumulated and enhanced 
the expression of VEGF.136 The use of bevacizumab, an anti-VEGF 
antibody, can relieve the symptoms caused by VEGF injection, but 
more research should be done to investigate the effect of VEGF on 
hydrocephalus.137 However, we should be aware of the destructive 
force of VEGF, which may outweigh its angiogenic force in hydro-
cephalus.138 It is reported that injection of VEGF leads to ventric-
ulomegaly, denudation of ependymal cells, and loss of cilia in rats. 
Therefore, the regulation of VEGF and its receptors should be taken 
into account as considered as a treatment option for hydrocephalus.

7  |  CONCLUSIONS AND PERSPECTIVE

Animal models with hydrocephalus, including congenital or ac-
quired hydrocephalus, can simulate pathogenesis and pathological 
characteristics of human hydrocephalus to some extent. Exploring 
the pathophysiology and new therapeutic targets of hydrocephalus 
through these animal models will help scientists to explore the feasi-
bility and effectiveness of nonsurgical treatments.

Inflammatory targeting therapy is helpful in inhibiting the de-
velopment of hemorrhagic hydrocephalus and post-infection hy-
drocephalus, and its main mechanisms are associated with acute 
CSF oversecretion and scarring of the CSF drainage pathway.18 
Modulating the expression of certain molecules in the TLR4-NF-κB 
signaling pathway or the SPAK-NKCC1 co-transporter complex may 
relieve neuronal damage caused by inflammation in hydrocephalus. 
Considering suppressing only one or a few factors may not yield a 
significant therapeutic effect, many other experiments need to be 
conducted to explore the optimal performance.

Targeting subarachnoid fibrosis is another promising treatment 
for hydrocephalus. Among all the experimental results we have re-
ferred to, uPA shows its potential in the alleviation of fibrosis and 
ECM deposition, if its side effects of rebleeding and infection can 
be minimized. Besides, interfering with TGF-β and its pathway also 
seems to be effective. Considering some drugs that block TGF-β 
show no differences in the management of hydrocephalus, it is sug-
gested that more similar experiments should be conducted to ex-
clude the ineffective therapies.

For the reason that heme degradation and iron deposition are 
important culprits of hydrocephalus if they are released in the CSF 
and impair CSF absorption, more and more attention has been paid 
to anti-iron overload treatment for hydrocephalus Through animal 
experiments, researchers have found that deferoxamine, a kind 
of iron chelator, can inhibit Wnt1 and Wnt3a gene expression and 
protein synthesis, which might contribute to the management of hy-
drocephalus. The same result has also been demonstrated by mino-
cycline, which has the ability to chelate iron. The positive outcome 
in animal models mentioned above suggests that targeting iron over-
load is likely to be a sensible way to treat hydrocephalus.

As for the function of AQPs, more experiments are now needed 
to demonstrate the regulatory role of AQPs in the pathogenesis of 
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hydrocephalus and possible treatment approaches that target AQPs. 
The glymphatic system theory may give new impetus to the study of 
the mechanism and treatment of hydrocephalus.

Considering oxidative stress induced by hypoxia or ischemia 
environment may be one of the mechanisms of brain injury in hy-
drocephalus, we have discussed the role of antioxidants and the reg-
ulation of VEGF in animal models with hydrocephalus and found that 
melatonin might offer benefits by scavenging free radicals and that 
the use of anti-VEGF antibody may relieve the symptoms caused by 
the injection of VEGF. These experimental results may give inspira-
tion for researchers to pursue the possible treatments for hydro-
cephalus concerning antioxidative stress.

Although there are few studies on stem cell and gene therapy 
for hydrocephalus, these emerging therapies are potential directions 
that are worth investigating deeply.

In a word, nonsurgical treatment for hydrocephalus in animal 
models has been studied for many years, but no significant results 
have been obtained at the clinical translation stage. As our under-
standing of the pathogenesis of hydrocephalus improves and more 
treatment options are validated, we hope to make great strides in 
the nonsurgical treatment of hydrocephalus.
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