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There is an estimated 3 million women in the US living as breast cancer survivors and persistent cancer related
fatigue (PCRF) disrupts the lives of an estimated 30% of these women. PCRF is associated with decreased quality
of life, decreased sleep quality, impaired cognition and depression. The mechanisms of cancer related fatigue are
not well understood; however, preliminary findings indicate dysfunctional activity in the brain as a potential fac-
tor. Here we investigate the relationship between PCRF on intrinsic resting state connectivity in this population.
Twenty-three age matched breast cancer survivors (15 fatigued and 8 non-fatigued) who completed all cancer-
related treatments at least 12 weeks prior to the study, were recruited to undergo functional connectivity
magnetic resonance imaging (fcMRI). Intrinsic resting state networks were examined with both seed based
and independent component analysis methods. Comparisons of brain connectivity patterns between groups as
well as correlations with self-reported fatigue symptoms were performed. Fatigued patients displayed greater
left inferior parietal lobule to superior frontal gyrus connectivity as compared to non-fatigued patients
(P b 0.05 FDR corrected). This enhanced connectivity was associated with increased physical fatigue (P = 0.04,
r = 0.52) and poor sleep quality (P = 0.04, r = 0.52) in the fatigued group. In contrast greater connectivity in
the non-fatigued group was found between the right precuneus to the periaqueductal gray as well as the left
IPL to subgenual cortex (P b 0.05 FDR corrected). Mental fatigue scores were associated with greater default
mode network (DMN) connectivity to the superior frontal gyrus (P= 0.05 FDR corrected) among fatigued sub-
jects (r=0.82) and less connectivity in the non-fatigued group (r=−0.88). These findings indicate that there is
enhanced intrinsicDMN connectivity to the frontal gyrus in breast cancer survivorswith persistent fatigue. As the
DMN is a network involved in self-referential thinking we speculate that enhanced connectivity between the
DMNand the frontal gyrusmay be related tomental fatigue and poor sleepquality. In contrast, enhanced connec-
tivity between the DMN and regions in the subgenual cingulate and brainstemmay serve a protective function in
the non-fatigued group.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

An estimated 3 million women in the United States are living as
breast cancer (BC) survivors (American Cancer Society, 2012). While
breast cancer is themostwidespread type of cancer inwomen,more pa-
tients are in remission mainly because of early detection and important
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. This is an open access article under
advances in treatment (American Cancer Society, 2014). However, in
cancer survivors symptoms of fatigue, pain, poor sleep, and depression
are a common occurrence. Persistent cancer related fatigue (PCRF) is
one of the most troubling long-term side-effects of cancer treatment
(Kim, Son et al., 2008; Alexander et al., 2009; Pearce et al., 2009) and
continues to affect around 33% of BC survivors, persisting in some
cases for years after completing cancer treatment. The mechanisms of
PCRF are largely unknown. Since PCRF is associated with impaired cog-
nition (Rodriguez et al., 2008), decreased sleep quality (Alexander et al.,
2009), and depression (Bower, 2005; Kim, Son et al., 2008), it is possible
that PCRF has a central neurobiological pathology. In support of this hy-
pothesis, differences in brain metabolites between fatigued and non-
fatigued survivors been observed (Zick et al., 2014). It is unknown if a
more widespread brain network disturbance may underlie fatigue in
this population.

Recent advances in neuroimagingmethods have emerged that allow
researchers to probe brain network activity and to study altered neural
networks non-invasively. One such technique is resting state functional
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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connectivitymagnetic resonance imaging (fcMRI). Using this technique,
aberrant brain connectivity patterns have been found in pain (Napadow
et al., 2010), depression and insomnia (Li, Wang et al., 2014), two com-
mon symptoms also seen in fatigued cancer survivors. However no
studies have investigated the role of fatigue in altered brain connectivity
in this population. Previous fMRI studies on chronic fatigue syndrome
(CFS) have shown changes in brain activations in the superior frontal
cortex, premotor, and default mode network (DMN; see below), while
performing fatiguing cognitive tasks (Lange et al., 2005; Caseras et al.,
2006; Cook et al., 2007). Another study looking at structural changes
also showed bilateral decrease in gray matter volume in the prefrontal
area among CFS patients as a region that regulates sensations of fatigue
(Okada et al., 2004). To explore these regions (and networks) more
thoroughly we used resting fcMRI in breast cancer survivors.

There are two fundamental approaches to studying resting state
connectivity: seed based approach and a more data-driven method
called independent component analysis (ICA). With both approaches
functional connectivity is inferred on the basis of correlation between
brain regions for time series data from the blood-oxygen level depen-
dence (BOLD) signal. (i) With seed based approaches, a specific region
of the brain is chosen a priori based on previous work, and the time
course of the BOLD signal in the seed is correlated with each voxel
time course of the rest of the brain. Significant correlations are thought
to arise when brain regions are “connected”. (ii) Data driven multivari-
ate approaches such as ICA do not require a specific prior hypothesis
and instead use data from all regions of the brain to identify indepen-
dent components that function as networks that are connected to
other brain regions. With ICA separate resting state networks that
show correlated brain activity over time can be assessed for connectiv-
ity to other brain regions. Since previous MRI studies have investigated
brain outcomes in CFS, we chose to examine similar brain regions using
seeds from these studies. In addition we also used ICA to identify novel
connectivity patterns as they are not influenced by a prior hypothesis.

One common resting state network is the default mode network
(DMN). This network is composed of the medial prefrontal cortex, the
posterior cingulate cortex, inferior parietal lobule, and the precuneus
(Buckner and Vincent, 2007; Fox and Raichle, 2007). Research over
the past decade has shown that this network is activatedwhen a person
is at rest, having self-referential thoughts about themselves without en-
gaging with their environment. Recent studies show increased connec-
tivity to this network among chronic pain (Napadow et al., 2010) and
depression (Greicius et al., 2007) patients; two symptoms often found
in cancer survivors with fatigue. As such, we hypothesized that differ-
ences in brain connectivity patterns to the DMN, as well as other brain
regions, in fatigued breast cancer survivors may be specifically associat-
ed with the subjective symptom of fatigue, and that these differences
may be independent of other comorbid symptoms. Here we report an
exploratory study which is the first to our knowledge that investigates
differences in intrinsic brain connectivity patterns among breast cancer
survivors with and without fatigue.

2. Methods

2.1. Participants

The studywas approved by theUniversity ofMichiganMedical School
Institutional Review Board and participants provided written informed
consent. Study participants were identified through the University of
Michigan Breast Cancer Clinics and from participants in former clinical
trials conducted in breast cancer survivors. Eligible participants were
women eighteen or older, who have a diagnosis of breast cancer (stage
0 to IIIA), have completed all cancer-related treatments (i.e., surgery, che-
motherapy, radiotherapy, immunotherapy, etc.), except hormonal thera-
py at least 12weeks prior to the study. Participantswere excluded if they:
had cancer recurrence; were pregnant or lactating; were diagnosed with
anemia with hemoglobin levels less than 12 g/dl or receiving treatment
for anemia; were diagnosed with an unstable or untreated comor-
bidities likely to cause fatigue (i.e., moderate to severe heart failure,
hypothyroidism); had a diagnosis of untreated DSM-IV-TR Axis-I or
Axis-II disorders; had an initiation, a cessation or change of treat-
ment dose (up to 3 weeks prior to the study start) of any chronic
medications or dietary supplements; or if they had metal implants
(such as surgical clips or staples) or other contraindications with
magnetic resonance imaging (MRI).

During participant screening socio-demographics, height and
weight (used to calculated BMI); concomitant medications and sup-
plements; medical history; brief physical including vitals; blood
draw for a complete blood count; and a urine pregnancy test were
conducted. Menopausal status at time of breast cancer diagnosis
was determined through women3s medical chart where women
who had experienced at least 12 continuous months without a men-
strual cycle were deemed post-menopausal. Participants were asked
to fill out a battery of self-administered questionnaires such as the
multidimensional fatigue Inventory (MFI) (Smets et al., 1995),
brief fatigue inventory (BFI) (Mendoza et al., 1999), hospital anxiety
and depression scale (HADS) (Zigmond and Snaith, 1983), Pitts-
burgh sleep quality index (PSQI) (Buysse et al., 1989), and the
brief pain inventory (BPI) (Cleeland and Ryan, 1994). For 2 weeks
after their initial screening visit, participants were contacted via
phone once per week and their BFI score was determined over the
phone. To be designated as fatigued BC survivor women needed to
have an average BFI ≥ 4.0 based on the three BFI administered ap-
proximately 1 week apart from their screening visit and via phone
contacts on the following 2 weeks. Non-fatigued BC survivors needed
an average BFI b 4.0 administered on the same timeframe as fatigued
survivors; as well as an average pain score b 4 on BPI, a PSQI total
score b 7 and a HADS b 11 for anxiety and depression sub-scales.
Non-fatigued patients with significant presentation of these symp-
toms were excluded as high levels of pain, depression, or sleep prob-
lems could influence brain connectivity in that group. These
symptoms were not excluded from the fatigue group as cancer sur-
vivors with fatigue often have comorbid symptoms of pain, sleep
disorders, depression and anxiety, thus making enrollment of purely
fatigued patients problematic. To test if our brain connectivity pat-
terns within the fatigued group were related to levels of pain, de-
pression, or sleep problems, we performed bivariate correlations
between each brain imaging outcome and comorbid symptom levels
within the fatigued group.
2.2. Data acquisition

Participants were recruited to undergo resting state fcMRI on a 3 T
Philips Achieva scanner (Best, Netherlands) using an 8 channel head
coil. Tenminutes of resting state fMRI data were acquired using a custom
T2* weighted spiral-in sequence (repetition time (TR) = 2000 ms, echo
time (TE) = 30 ms, flip angle (FA) = 90°, matrix size 80 × 80 with 30
slices, field of view (FOV) = 217 cm, 2.75 × 2.75 × 4 mm voxels and
300 volumes) followed by a T1 weighted high resolution MPRAGE struc-
tural scan for normalization using the following parameters [TR =
9.78 ms, TE = 4.59 ms, FA = 90°, FOV = 219 mm, matrix size 240 ×
240 matrix with 150 slices and 0.83 × 0.83 × 1 mm voxels]. During the
resting state fMRI subjects were instructed not to focus on any particular
task and stay awakewith their eyes open at a fixation cross. Since cardiac
and respiratory fluctuations are known to influence brain connectivity
within several networks (Murphy et al., 2013), subject physiological
data were collected simultaneously using a chest plethysmograph for re-
spiratory and infrared pulse oximeter on subjects3 finger for cardiac data.
Only subject functional data of less than 2mmof translation and less than
1° rotation head motion inside the scanner were included for the fcMRI
analysis. Whole brain coverage was achieved including the midbrain
and rostral brainstem.



Table 1
Sociodemographic and clinical characteristics by disease status.

Demographics Non-fatigued
(N = 8)

Fatigued
(N = 15)

P-value

Age, Mean, SD 55 ± 8.1 57 ± 8.7 0.62a

Race, N (%) white 8 (100.0) 15 (100.0) 0.99b

Breast cancer stage, N (%) 0.41b

0 1 (12.5) 1 (6.7)
1 3 (37.5) 6 (40)
2 1 (12.5) 6 (40)
3 3 (37.5) 2 (13.3)
Breast cancer treatments, N (%)
Chemotherapy 7 (87.5) 10 (66.7) 0.28b

Radiation 7 (87.5) 11 (73.3) 0.43b

Surgery 8 (100.0) 15 (100.0) 0.99b

Hormone therapy 3 (37.5) 11 (73.3) 0.09b

Time since diagnosis, Mean, SD
(months)

82 ± 35.4 77 ± 47.4 0.79a

Post-menopausal status, N (%) 4 (50.0) 8 (53.3) 0.88b

ER+ receptor status, N (%) 2 (25.0) 12 (80.0) 0.01b

BMI, Mean, SD 28.9 ± 4.9 29.5 ± 6.9 0.82a

Multidimensional fatigue inventory
(MFI)

General fatigue, Mean, SD 11.75 ± 3.73 15.80 ± 4.29 0.03a,c

Physical fatigue, Mean, SD 8.25 ± 4.06 12.0 ± 4.84 0.07a

Reduced activation, Mean, SD 9.0 ± 3.78 13.40 ± 5.56 0.05a,c

Reduced motivation, Mean, SD 8.38 ± 2.13 9.87 ± 3.56 0.29a

Mental fatigue, Mean, SD 8.50 ± 4.95 13.60 ± 3.20 0.007a,c

Brief fatigue inventory (BFI)
BFI — severity, Mean, SD 9.0 ± 5.09 16.8 ± 4.67 0.001a,c

BFI — interference, Mean, SD 8.25 ± 6.69 22.53 ± 11.21 0.004a,c

PSQI, Mean, SD 6.25 ± 2.96 8.07 ± 3.84 0.25a

Hospital anxiety depression scale
(HADS)

Anxiety, Mean, SD 3.75 ± 3.65 7.07 ± 4.96 0.11a

Depression, Mean, SD 2.50 ± 2.26 6.53 ± 5.05 0.01a,c

Brief pain inventory (BPI), Mean, SD-
Severity 0.59 ± 1.01 2.83 ± 2.45 0.02a,c

Interference 0.45 ± 1.05 2.52 ± 2.57 0.04a,c

a P-value is based on an independent sample t-test.
b P-value is based on a Pearson Chi-square test.
c P-value is significant at ≤ 0.05.
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2.3. Data analysis

fMRI datawerepreprocessed andanalyzedusing statistical parametric
mapping (SPM) software package version 8 (Wellcome Department of
Cognitive Neurology, London, United Kingdom), Conn (Cognitive and
AffectiveNeuroscience Laboratory,Massachusetts Institute of Technology,
Cambridge, USA) functional connectivity toolbox, and GIFT (Group ICA of
fMRI Toolbox) toolbar running on MATLAB 7.10 (Mathworks, Sherborn,
MA, USA). Upon collection of resting state fMRI data, physiological arti-
facts were removed using custom Matlab algorithm and slice time
corrected using FSL 4.1.9 (FMRIB3s Software Library, http://www.fmrib.
ox.ac.uk/fsl) software. Preprocessing steps includedmotion correction, re-
alignment, registration, normalization to standardMNI (Montreal Neuro-
logical Institute) template, and smoothing (FWHM Gaussian kernel of
8 mm) using SPM8.

2.3.1. Seed connectivity analysis
Seed to whole brain functional connectivity analysis was done using

the Conn toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). Seed
regions were identified from previously published fMRI studies on
chronic fatigue syndrome (Lange et al., 2005; Caseras et al., 2006;
Cook et al., 2007; Caseras et al., 2008) and created as spheres (5 mm
radius) around peak voxel coordinates (Supplementary Table S1).
White matter, CSF, and motion parameters were entered into the anal-
ysis as covariates of no interest. A band pass filter (frequency window:
0.01–0.1 Hz) was applied to remove linear drifts and high frequency
noise from the data. First level analysiswas done correlating time course
from the seed towhole brain voxels creating connectivitymaps for each
seed region, using bivariate correlations. These connectivity maps were
then passed up to group-level analyses comparing differences in con-
nectivity among fatigued versus non-fatigued BC survivors using age
as a covariate of no interest. The resulting maps were threshold at
whole brain P b 0.001 (or P b 0.0001) uncorrected voxel threshold and
P ≤ 0.05 FDR cluster corrected for multiple comparisons. As multiple
seeds were chosen (n = 8) for our analysis, we also performed a more
stringent Bonferroni correction for our results. This threshold was set
at P b 0.0063 (i.e., 0.05/8 tests). Correlation of brain connectivity out-
comes to participant behavioral data were achieved by obtaining the
average fisher transformed r values of the resulting significant clusters
using Marsbar toolbox (Poldrack, 2007), and then correlated with be-
havioral measures (MFI, BFI and PSQI) in SPSS 21 (Statistical Package
for the Social Sciences, IBM Corp., Armonk, NY). Group difference to
fatigue measure correlations were done controlling for both pain and
depression using linear regression in SPSS. A Bonferroni correction
of P b 0.017 (i.e., 0.05/3 tests) was also performed on symptom
correlations.

2.3.2. Independent component analysis
Group ICA was performed using the GIFT toolbar (Calhoun et al.,

2004). Component estimates were validated using ICASSO software
(Himberg et al., 2004) for 10 iterations to ensure the reliability of ICA
algorithm and to increase the robustness of the results. The number of
independent components (ICs) was limited to 25 to minimize splitting
into subcomponents. Subject specific spatial maps and time courses
were back reconstructed using spatio-temporal regression (STR) or
dual regression option available in GIFT. STR regresses (i) the original
subject data onto the combined ICA spatial maps to estimate subject
specific time courses for each component; and (ii) then regresses the in-
dividual subject data back onto these time course matrices to estimate
subject specific spatial maps. Thus, the original combined spatial map
and the later estimated spatial maps represent the best approximation
for the individual subject specific Z-score component maps. These
Z values reflect the degree of connectivity between each voxel and
the group averaged time course of the component. Component maps
representing resting state networks were identified by spatial correlation
with templates provided by Beckmann et al. (2005) and Smith et al.
(2009). These individual resting state network maps were then passed
onto group second level analyses in SPM where differences in resting
state network connectivity between participants with fatigue and non-
fatigued participants were performed. We also performed a whole brain
covariate of interest interaction analysis using a 2-way ANOVA model
with brain connectivity and behavioral measure as factors to assess the
differential associations between fatigue symptom levels (MFI and BFI
scores) and network connectivity across groups. For all ICA analyses,
significant clusters were identified by thresholding resultant brain maps
at P b 0.0001 uncorrected voxel threshold and P≤ 0.05 FDR or FWE clus-
ter corrected significance for multiple comparisons. Since pain and de-
pression are major comorbid symptoms, significant fatigue symptom
findings were controlled for both pain and depression in SPM as regres-
sors of no interest.

3. Results

Fifteen women breast cancer survivors with persistent fatigue
(average BFI greater than 4) were age-matched (age 57 ± 8 years)
to 8 breast cancer survivors without fatigue (age 55 ± 8 years). All
participants had fcMRI data that qualified for fMRI analyses. As ex-
pected there was no significant differences in age between groups
(P = 0.62).

3.1. Sociodemographic and clinical characteristics:

The sociodemographic and clinical characteristics by fatigue status
are presented in Table 1. Fatigued women had significantly greater BFI
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severity (P b 0.001), BFI interference (P b 0.004), MFI general fatigue
(P b 0.03), MFI mental fatigue (P b 0.007), HADS depression (P b 0.01),
BPI severity (P b 0.02), BPI interference (P b 0.04). There was no signif-
icant difference in the type of chemotherapy received between groups
(P = 0.80), a majority of them (n = 15) received a combination of
Cytoxan, Adriamycin and Taxol treatment.

3.2. Analysis 1: Seed to whole brain connectivity

Using seeds fromprevious chronic fatigue patient studies showingdif-
ferences in brain activations during cognitive tasks (see Supplementary
Fig. 1. Greater brain resting state connectivity in fatigued BC survivors compared to non-fatigue
brain regions (middle). Bar graphs (right) show the level of connectivity between seed and co
Table S1), we identified multiple regions showing significantly greater
connectivity in fatigued BC survivors as compared to non-fatigued partic-
ipants. These regions included connectivity between the: left inferior pa-
rietal lobule (IPL) to right superior frontal gyrus (SFG) (P = 0.003 FDR
corrected), right medial frontal gyrus/Brodmann area 11 (BA11) to right
inferior parietal lobule (P= 0.003 FDR corrected), precuneus to anterior
insula (P = 0.05 FDR corrected) and posterior cingulate to cerebellum
(P = 0.001 FDR corrected) [see Fig. 1, Table 2]. Of these regions the IPL
to SFG, medial frontal gyrus to IPL and posterior cingulate to cerebellum
survived a more stringent Bonferroni correction given the number of
seeds chosen. We did not see any significant results with any other
d survivors. Brain images show greater intrinsic connectivity between seed (left) to other
nnected region in both groups using Fisher transformed R-values (y-axis).
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seeds included from the previously published studies on chronic fatigue
syndrome.

In contrast, significantly greater connectivity was seen within the
non-fatigued BC survivors between the: precuneus to PAG (P = 0.003
FDR corrected), inferior parietal lobule to parahippocampus (P = 0.02
FDR corrected), left inferior parietal lobule to subgenual anterior cingu-
late cortex (sgACC) (P=0.03 FDR corrected), left posterior cingulate to
middle temporal gyrus (P= 0.008 FDR corrected) and precuneus to pri-
mary somatosensory cortex/post central gyrus (P= 0.05 FDR corrected)
(see Fig. 2). Of these regions the posterior cingulate to middle temporal
gyrus connectivity survived Bonferroni correction given the number of
seeds chosen. There was no effect of either hormone (all P N 0.30) or
ER+ receptor status (all P N 0.09) on significant brain connectivity differ-
ences found between groups.

3.3. Behavioral correlations among fatigued survivors

While controlling for co-morbid symptoms, connectivity between
the left IPL and SFG, as identified in our seed based analyses, was asso-
ciated with increased physical fatigue, while controlling for sleep (sub-
scale from MFI questionnaire: P = 0.001; r = 0.76), and poor sleep
while controlling for fatigue (PSQI: P = 0.002; r = 0.72) in the breast
cancer survivors with fatigue (Fig. 3A). Similarly, right medial frontal
gyrus to IPL connectivity showed a significant positive correlation to
MFI-mental fatigue (P = 0.03; r = 0.54) in the fatigued survivors
(Fig. 3B). Of these correlations the relationship between IPL to SFG
and physical fatigue and between IPL to SFG and sleep quality
(Fig. 3A) survived Bonferroni correction for multiple comparisons.
No other significant correlations were seen between brain connec-
tivity and other clinical symptoms such as Pain, depression, anxiety
and sleep (P N 0.12).

3.4. Analysis 2: ICA interaction analysis using subjective mental fatigue
scores.

Six components were identified as resting state networks according
to network maps from Beckmann et al. (2005) default mode network
(DMN); dorsal attention network, salience network, right and left
frontal control network and sensorymotor network. Therewere no sig-
nificant differences in component maps between groups. Doing an in-
teraction analysis using mental fatigue scores as a covariate of interest,
subjects with persistent fatigue demonstrated a positive correlation be-
tween intrinsic DMN connectivity to the superior frontal gyrus (SFG)
whereas non-fatigued patients displayed the opposite relationship
(P = 0.05 FDR cluster corrected; no. of voxels = 151; Z score = 4.77;
MNI peak voxel coordinates (x, y, z) = (−35, 31, 37)) (see Fig. 4).
Table 2
Differences in brain connectivity between fatigued and non-fatigued BC survivors (seed based

Seed regions Connectivity region B

1. Fatigue N non-fatigue
Left inferior parietal lobule Superior frontal gyrusab B
Right superior/medial frontal gyrus Inferior parietal lobuleab B
Right precuneus Anterior insulac B
Posterior cingulate Cerebellumab N

2. Non-fatigue N fatigue
Right precuneus Periaqueductal gray (PAG) c N
Inferior parietal lobule/primary somatosensory Right parahippocampusa B
Left inferior parietal lobule Subgenual anterior cingulatea B
Left posterior cingulate Middle temporal gyrusab B
Left precuneus Primary somatosensorya B

a Voxel threshold were set at P b 0.001 and P b 0.05 cluster FDR correction.
b Significant after Bonferroni correction for multiple comparisons.
c Voxel threshold were set at P b 0.0001 and P b 0.05 cluster FDR correction; NA = none ap
This relationship remained significant after correcting for comorbid de-
pression (P = 0.02 FWE cluster corrected) and pain (0.04 FWE cluster
corrected). No other significant interactions were found between the
networks and other clinical symptoms.
4. Discussion

Herewe report thefirst study to link self-reported fatigue to intrinsic
brain connectivity outcomes in women with persistent cancer related
fatigue. Specifically connectivity between the DMN and regions within
the superior frontal gyrus is increased in these individuals as compared
to non-fatigued breast cancer survivors. Moreover, the degree of in-
creased connectivity was correlated with self-reported clinical symp-
toms of fatigue and sleep quality.

Specifically, we observed greater connectivity among fatigued breast
cancer survivors between the IPL to superior frontal gyrus (SFG), medial
prefrontal to IPL, precuneus to anterior insula, and posterior cingulate
(PC) to cerebellum. In the fatigued group, the degree of this increased
connectivity between the IPL to SFG was positively correlated to
women3s physical fatigue scores and poor sleep quality. Themedial pre-
frontal to IPL connectivity also showed a positive correlation to subjec-
tive mental fatigue scores. Interestingly, we found similar result from
our ICA network analysis: subjective levels of mental fatigue were
associated with increased connectivity between the DMN and the
superior frontal gyrus in the fatigued patients. These results may re-
flect an altered DMN response to internal sensory input for this fa-
tigued population.

The SFG and the medial prefrontal cortex region are key nodes
whose activity is associated with intrinsic connectivity in subjects
with PCRF. The SFG is a region shown previously to be involved in
disrupted cognition and poormemory among chronic fatigue syndrome
population (Lange et al., 2005). Decreases in graymatter volumewithin
this structurewas found to parallel poor cognition and increased fatigue
severity in chronic fatigue syndrome subjects (Okada et al., 2004). These
data implicate that the SFG as playing a role in fatigue and overuse of
this region might cause decreases in gray matter due to decrease in
the number of inhibitory neurons as a result of maladaptive compensa-
tion. Our data also support the notion that abnormalities in SFG connec-
tivity may be related to fatigue in cancer survivors. To investigate the
role of this particular region of the SFG in other studies we performed a
literature search using the identified SFG coordinates in neurosynth.org
(Yarkoni et al., 2011), this resulted in 1047 published studies reporting in-
volvement of this region in memory processing.

The medial prefrontal cortex is part of the DMN network along with
posterior cingulate, precuneus and IPL (Buckner and Vincent, 2007; Fox
analysis).

rodmann area Cluster size
(# of voxels)

Z-score
(peak value)

Peak voxel coordinates
(MNI space)

X Y Z

A 8 400 4.35 34 28 48
A 39 347 4.35 44 −68 34
A13 76 4.78 −28 20 −16
A 461 3.94 52 −72 −40

A 141 6.61 2 −34 −4
A 35 252 5.61 26 −36 −12
A 25 277 4.47 −4 16 −26
A 21 322 4.43 40 −54 4
A 4 231 3.72 −48 −18 42

plicable.
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Fig. 3. Increased brain connectivity to the DMN in fatigued BC survivors is associated with clinical symptoms of fatigue and poor sleep. Scatter plots show positive correlations for inter-
individual differences in brain connectivity (Fisher transformed r-values; y-axis) and self-reported fatigue or sleep disturbance (x-axis).

311J.P. Hampson et al. / NeuroImage: Clinical 8 (2015) 305–313
and Raichle, 2007). The DMN is a constellation of brain regions involved
in self-referential thinking and it is thought to mediate processes that
are important for the resting brain (Raichle et al., 2001; Fox et al.,
2005). The DMN is typically deactivated when focused on external
tasks (Fox and Raichle, 2007). Interestingly, despite the large number
of seeds investigated in the seed to whole brain connectivity analysis,
only the regions associated with the DMN demonstrated significant
differences between fatigued and non-fatigued survivors. We hypothe-
size that increased intrinsic connectivity to this networkmay be accom-
panied by or related to additional mental processes leading to fatigue.
Previousfindings by our group have also shown increasedDMNconnec-
tivity to the insula in chronic pain patients diagnosed with fibromyalgia
(Napadow et al., 2010): greater insula to DMN connectivity was associ-
atedwithmore clinical pain. Since fatigue is also a common symptom in
fibromyalgia, it is interesting to note that while pain and fatigue symp-
toms are both related to DMN connectivity, the regions that the DMN is
connected to appear to have some symptom specificity: namely insula
Fig. 2. Increasedbrain resting state connectivity innon-fatigued as compared to fatigued BC surv
brain regions (middle). Bar graphs (right) show level of connectivity in both groupsbetween see
P b 0.05 FDR corrected.
for chronic pain and SFG for fatigue. Interestingly other studies
have also shown altered connectivity with the DMN in conditions
such as chronic lower back pain, obsessive compulsive disorder,
and Alzheimer3s disease (Beucke et al., 2014; Zhang, Wu et al., 2014;
Zhong, Huang et al., 2014).

We also observed increased connectivity patterns in non-fatigued
subjects as compared to the matched fatigued BC survivors. Non-
fatigued subjects showed greater brain connectivity between anti-
nociceptive regions and the DMN. For example, the precuneus and IPL
showed greater connectivity to anti-nociceptive regions such as the
periaqueductal gray (PAG) and subgenual anterior cingulate (sgACC).
Within the endogenous antinociceptive system the PAG plays a central
role alongwith cingulate and prefrontal cortex in coordinating descend-
ing pathway to decrease nociceptive routing (Heinricher et al., 2009;
Schweinhardt and Bushnell, 2010). As reported in our earlier study
(Zick et al., 2014), we observed greater clinical pain scores (brief pain
inventory questionnaire) in our fatigued subjects (Mean ± SD =
ivors. Brain images show significant intrinsic connectivity seen between seed (left) to other
d and connected regionusing Fisher transformedR-values (y-axis). All results significant at



Fig. 4. Differential relationship between self-reported mental fatigue and DMN connectivity to the superior frontal gyrus in BC survivors with and without persistent fatigue. (A) Brain
images show altered DMN connectivity to SFG in association to mental fatigue between groups. (B) Scatter plot shows differential relationship for mental fatigue scores between the fa-
tigued group (red;Mean±SD: 13.6±3.2) and non-fatigued group (black;Mean± SD: 8.5±4.9) andDMN-SFG connectivity. Increasedmental fatigue is associatedwith increasedDMN-
SFG connectivity among BC survivorswith fatigue. The opposite relationship is seen among the non-fatigued group. Z-scores representing the level of DMN to SFG connectivity are plotted
on the y-axis and subjective mental fatigue scores are plotted on the x-axis.
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2.83±2.5) as compared to the non-fatigued (Mean±SD=0.59±1.1)
group. Since individuals pain, fatigue and sleep quality co-vary together
in chronic pain (Bennett et al., 2007) and cancer (Roscoe et al., 2007)
patient populations, we speculate that this increased connectivity
between DMN to anti-nociceptive regions may decrease their percep-
tion of pain and as a result lower their fatigue levels. In addition, previ-
ous studies have shown increased PAG to DMN connectivity associated
with subjects3 tendency tomindwander or paying less attention to pain
(Kucyi et al., 2013). This raises the possibility that a similar mechanism
of perceptual disengagement of attention may result in less attention
being paid to fatigue symptoms.

Interestingly both fatigued and non-fatigued BCS showed opposite
relationship between mental fatigue report and DMN network con-
nectivity to the SFG. Greater connectivity among the fatigue group
was associated with more mental fatigue and less connectivity among
the non-fatigued group was associated with less or no mental fatigue.
This supports our current understanding in the literature thatDMNcon-
nectivity is modulated due to patient rumination (Kucyi et al., 2014).
Decreased DMN connectivity to SFG among the non-fatigued group
could indicate non-fatigued subjects cogitate less on their condition
compared to fatigued BC subjects.

We acknowledge that our study has a number of limitations. Our
study involved a relatively small sample of participants, thus potentially
limiting the generalizability of our findings, also since this study was
cross-sectional in design we cannot say whether the increased connec-
tivity to the SFG, for example, is causing or a consequence of fatigue.We
also understand that functional brain connectivity does not show a
causal relationship for the direction of connectivity. So the enhanced
connectivity seen might be a consequence of PCRF instead of being the
cause. Furthermore, our participant sample was homogeneous being
largely made up of white women, so our findings may not apply to
other races. We also were aware that our findings may be related to
other comorbid symptoms that these patients display, and as such, we
attempted to control for pain and depression in our more robust find-
ings. That said, we recognize that there might be other undiagnosed or
unrecognized conditions that we could not control for in our analyses.
Finally, since there was no previous fMRI study done on PCRF other
than ours (Zick et al., 2014), our seed connectivity results are reported
as an exploratory analysis. As such, results that were not significant
after Bonferroni correction for multiple comparisons should be
interpreted with caution. Finally, our seed connectivity findings
were based on previous literature in chronic fatigue syndrome. As
such, there may be other brain regions or networks contributing to
fatigue symptoms that have yet to be identified.

In conclusion, this is the first study looking at intrinsic brain connec-
tivity in relationship to PCRF. Our findings have implications for under-
lying brain mechanisms for persistent fatigue among breast cancer
survivors. The overlapping SFG region, which was identified using two
different analysis techniques,might potentially point toward this region
as being a marker for tracking fatigue among BCS. We also speculate
that the enhanced connectivity between theDMNand SFGmay be relat-
ed to impaired cognition and poor sleep quality often seen in women
with PCRF. However we did not perform any cognitive tasks to assess
cognition. Future studies with larger populations are needed, to study
cognition, to replicate results and to track changes in the brain out-
comes both during development and through time with treatment. As
our previous connectivity analyses in chronic pain conditions have
been associated with successful treatments (Napadow et al., 2012;
Harris et al., 2013), similar findings may help identify possible treat-
ment options for persistent cancer related fatigue.
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