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The human brain is composed of billions of cells, including neurons and glia, with an
undetermined number of subtypes. During the embryonic and early postnatal stages,
the vast majority of these cells are generated from neural progenitors and stem cells
located in all regions of the neural tube. A smaller number of neurons will continue to be
generated throughout our lives, in localized neurogenic zones, mainly confined at least in
rodents to the subependymal zone of the lateral ventricles and the subgranular zone of
the hippocampal dentate gyrus. During neurogenesis, a combination of extrinsic cues
interacting with temporal and regional intrinsic programs are thought to be critical for
increasing neuronal diversity, but their underlying mechanisms need further elucidation.
In this review, we discuss the recent findings in Drosophila and mammals on the types
of cell division and cell interactions used by neural progenitors and stem cells to sustain
neurogenesis, and how they are influenced by glia.

Keywords: neurogenesis, neural stem cells, neural progenitors, niche, glia, intrinsic factors, extrinsic factors,
adult neurogenesis

NEURAL PROGENITORS: DIVISION THROUGHOUT
DEVELOPMENT AND IN ADULT NEUROGENIC NICHES

In all animals with a brain, from insects to humans, the complex functions the brain reliably carries
out at every moment depend on its many neuronal and glial cell types being generated in the
proper quantities and locations. Throughout the course of life, the production of new neurons that
characterizes developmental stages also persists in two regions of the adult mammalian brain, the
ventricular-subventricular or subependymal zone (SEZ) adjacent to the lateral ventricles and the
subgranular zone (SGZ) of the hippocampal dentate gyrus. Recently there has been a great deal of
controversy regarding the existence of adult neurogenesis in the human brain (Boldrini et al., 2018;
Kempermann et al., 2018; Sorrells et al., 2018; Moreno-Jimenez et al., 2019), with confusion arising
in part from technical problems and perhaps from interspecies differences in the dynamics of the
process. Nevertheless, based on the accumulated evidence from previous work (Eriksson et al., 1998;
Sanai et al., 2011; Spalding et al., 2013; Kempermann et al., 2018), it has become increasingly clear
that adult humans probably generate new neurons only in the hippocampus and not in the SEZ.

For the purpose of this review, we will focus on the knowledge that deals with the neurogenic
process in flies and mice. Here, we revisit recent findings on how neural stem cells (NSCs) divide
to generate neuronal diversity during brain development and adulthood. We focus on the intrinsic

Abbreviations: aRG, apical radial glia; CB, central brain; GMC, ganglion mother cell; INP, intermediate neural progenitor;
IPC, inner proliferation center; Nb, neuroblast; NEC, neuroepithelial cell; NSC, neural stem cell; OPC, outer proliferation
center; scRNA-seq, single-cell RNA sequencing; SEZ, subependymal zone; SGZ, subgranular zone.
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and extrinsic mechanisms that explain the temporal and regional
heterogeneity of neural progenitor and stem cells, and their
progenies. We also summarize the role of niche glia in the
early and late phases of neurogenesis and discuss their diversity.
Whenever possible, we compare NSCs in Drosophila and rodents,
at embryonic and larval stages and in adult neurogenic zones.

The vast cell diversity in adult brains is mostly generated
during the embryonic and larval stages in Drosophila, and in
the embryonic and early postnatal stages in mammals, from a
pool of neural progenitor and stem cells (Doe, 2017; Holguera
and Desplan, 2018; Ramon-Canellas et al., 2018; Cardenas and
Borrell, 2019; Morales and Mira, 2019; Obernier and Alvarez-
Buylla, 2019). This pool initially includes neuroepithelial cells
(NECs), which later produce multipotent NSCs (neuroblasts in
Drosophila) and apical radial glia (aRG) (Figure 1). These cells
span the apical–basal axis of the developing brain in mammals
and have been best characterized in the neocortex (Gotz and
Huttner, 2005; Kriegstein and Alvarez-Buylla, 2009; Brand and
Livesey, 2011). By mid-gestation, a fraction of cortical, striatal,
and septal radial glia diverge from other progenitors and are
set aside as relatively quiescent cells that will give rise to
postnatal and adult NSCs in the SEZ (Fuentealba et al., 2015;
Furutachi et al., 2015). The development of the hippocampal
dentate gyrus is longer than in other brain areas. Progenitor
cells from the embryonic dentate neuroepithelium migrate out
of this zone through the dentate migratory stream and occupy
several transient germinal niches before finally settling in a
newly formed abventricular SGZ, transforming into quiescent
SGZ NSCs mainly postnatally (Seki et al., 2014; Nicola et al.,
2015; Matsue et al., 2018; Berg et al., 2019; Morales and Mira,
2019; Nelson et al., 2020). Adult NSCs share many features
with embryonic aRGs, including a polarized morphology and
the expression of common markers such as nestin, brain
lipid-binding protein (BLBP), glutamate/aspartate transporter
(GLAST) and the transcription factor Sox2 (Lagace et al.,
2007; Ninkovic et al., 2007; Suh et al., 2007; Giachino et al.,
2014), and are often referred to as radial glia-like NSCs. At
the transcriptome level, single-cell RNA sequencing (scRNA-
seq) and conventional RNA-seq studies show that adult NSCs
are also closely related to, but distinct from, mature astrocytes
(Beckervordersandforth et al., 2010; Llorens-Bobadilla et al.,
2015; Hochgerner et al., 2018).

Division Throughout Development
Cell division in neural progenitors and stem cells in the central
nervous system has been elucidated using a combination of
techniques. Key examples are selective lineage tracing; clonal
analysis at single-cell resolution; and in vivo or whole-mount
time-lapse imaging of Drosophila neuroblasts (Nbs), embryonic
mammalian aRGs, and adult RG-like NSCs (Bossing et al., 1996;
Schmidt et al., 1997; Urbach and Technau, 2004; Gao et al., 2014;
Taverna et al., 2014; Doe, 2017; Cardenas et al., 2018; Cardenas
and Borrell, 2019). Early during gestation, NECs first divide
symmetrically and later asymmetrically to produce neuroblasts
in the fly and aRGs in the mammalian brain (Figure 1; Gotz
and Huttner, 2005; Kriegstein and Alvarez-Buylla, 2009; Brand
and Livesey, 2011). In turn, aRGs initially divide symmetrically

in the ventricular zone, generating more aRGs. They then
switch to producing neurons either through direct neurogenesis,
in which the aRG divides asymmetrically to self-renew and
generate a neuron, or through indirect neurogenesis to generate
various intermediate neural progenitors (INPs) with proliferative
capacity, which amplifies neuronal production (Taverna et al.,
2014; Cardenas and Borrell, 2019).

The orientation of the cleavage plane determines symmetric
vs. asymmetric division (Gotz and Huttner, 2005) and is
also important in the proper seeding of future adult NSCs
during development (Falk et al., 2017). The indirect mode
of asymmetric neurogenesis leads to the formation of an
embryonic subventricular zone, where these INPs migrate before
the neurons are ultimately produced (Haubensak et al., 2004;
Miyata et al., 2004; Noctor et al., 2004). Indirect neurogenesis
predominates in humans and other primates with expanded
cortices, where additional types of progenitors are formed
(Cardenas and Borrell, 2019). In the mouse, this mode is
predominant in the neocortex but limited in the olfactory bulb
(Cardenas et al., 2018; Cardenas and Borrell, 2019).

Similarly, Drosophila neuroblasts undergo distinct types of cell
division to shape different areas of the fly brain (Figures 1C,D).
Type I neuroblasts are the most abundant neuroblast in the
embryonic central brain (CB) and ventral nerve cord, and in
the CB and optic lobes (Figures 2A,A’) of larval Drosophila.
Type II neuroblasts exist in sets of eight in each brain lobe.
Type I and II neuroblasts have been broadly studied (Doe,
2017). Both types divide asymmetrically; the main difference
between them is that Type I neuroblasts produce ganglion
mother cells (GMCs) directly, whereas neurogenesis from Type
II neuroblasts is mediated by INPs, which then produce GMCs,
which ultimately divide symmetrically to generate two neurons
or glia (Bello et al., 2008; Boone and Doe, 2008; Bowman et al.,
2008). In the embryonic ventral nerve cord, the equivalent of
the vertebrate spinal cord, most neuroblasts begin in Type I
mode and then they switch to Type 0 mode, where each Type 0
neuroblast divides asymmetrically multiple times and produces
progeny that differentiate directly into neurons (Baumgardt
et al., 2014). Conversely, in the tip of the outer proliferation
center (t-OPC), larval neuroblasts transit from Type 0 to Type
I mode to generate diverse cell types in the adult optic lobe
(Bertet et al., 2014). A Type III neuroblast has recently been
described in the larval optic lobe (Mora et al., 2018). These
distal inner proliferation center (d-IPC)-derived neuroblasts
show the particularity that, like the SEZ NSCs (Obernier et al.,
2018), they undergo symmetric self-renewal to produce two
identical progenies that retain neuroblast markers and produce
T4 and T5 lobula plate neurons. The identification of these
Type III neuroblasts has generated some controversy, and their
existence has not been corroborated in other studies (Apitz and
Salecker, 2018; Pinto-Teixeira et al., 2018). Future research will
be necessary to confirm the presence of this Type III novel
neuroblast division mode.

Division in Adult Neurogenic Niches
Intermediate neural progenitor-mediated amplification of
neuronal production also characterizes adult neurogenic niches
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FIGURE 1 | Embryonic, larval and adult neurogenesis in flies and mammals. (A) Overview of embryonic mammalian neurogenesis in the neocortex and olfactory bulb.
In the developing dorsal pallium, the nervous system originates from neuroepithelial cells (NECs) that initially proliferate symmetrically before they transition to apical
radial glial cells (aRG). aRGs give rise to neurons directly (blue), or indirectly (green) through intermediate neural progenitors (INP). Direct neurogenesis predominates
in the olfactory bulb (OB, blue); indirect neurogenesis predominates in the neocortex (Ncx, green). (B) Adult mammalian neurogenesis in the subgranular zone (SGZ,
yellow) and subependymal zone (SEZ, red). Quiescent postnatal neural stem cells in the SGZ (SGZ NSC) (yellow) undergo symmetric self-renewal before they give
rise to transient amplifying cells, a type of intermediate neural progenitor (INP/TAP) (green) and differentiate into dentate gyrus granule neurons. Quiescent embryonic
SEZ NSCs (red) are activated in the adult stage and undergo either symmetric self-renewing divisions (20%) or primarily produce INP/TAPs before differentiating into
OB interneurons. (C) Different modes of division of neural progenitors in embryonic Drosophila. In the embryo, the nervous system originates from a neuroectoderm
before they transit into neuroblasts (Nbs). Type 0 Nbs (blue) self-renew and produce a single ventral nerve cord (VNC) neuron at each division. Type I Nbs (yellow)
self-renew and produce ganglion mother cells (GMC) that divide once to generate two cells in the central brain (CB, yellow) and VNC (yellow). Type II Nbs (orange)
self-renew and produce intermediate neural progenitors (INP), which also self-renew multiple times before producing GMCs, which divide once and differentiate into
central brain neurons (orange). Optic lobe cells (OL, green) originate from NECs. (D) Different modes of division of neural progenitors in the Drosophila larval brain.
After the first, embryonic, wave of neurogenesis (shown in C), most of the remaining central brain and ventral nerve cord neuroblasts, and optic lobe NECs enter a
quiescent state (dashed lines). In a second, larval, wave of neurogenesis, via ganglion mother cells (GMC), Type I Nbs in the central brain (CB, yellow region depicted
in the larval brain) produce the majority of adult central brain cells, and Type II Nbs (orange region) produce the vast majority of central complex cells, an essential
central brain region for sensorimotor integration (Pfeiffer and Homberg, 2014). Quiescent outer proliferation center (OPC) NECs are activated to transition into Type I
Nbs (green region) and produce medulla cells in the OL. Type III Nbs (red) originate from NECs of the inner proliferation center (IPC), and undergo symmetric
self-renewal to produce two identical progenies that retain the identity of neuroblasts and produce lobula plate cells in the OL.

(Figure 1B). Adult NSCs in the SEZ were long thought to
behave like developmental aRGs, predominantly adopting an
asymmetric neurogenic division mode as the main strategy to
produce differentiated progeny while maintaining a pool of stem

cells, before becoming depleted through a terminal symmetric
division (Calzolari et al., 2015). However, this view has been
recently challenged. Instead, it has been proposed that adult SEZ
NSCs engage in two types of coexisting divisions, 20% of them
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FIGURE 2 | Neural stem cell niches in the Drosophila larval medulla and adult mouse hippocampus. (A,A’) Neural stem cell niche in the larval medulla: (A)
neuroepithelial cells (NECs, DE-Cadherin, red) in the outer proliferation center, and their transition into medulla neuroblasts (Nbs, Miranda, green), ganglion mother
cells (GMCs, Prospero, blue) and medulla postmitotic cells (DAPI, gray). Arrows indicate transition direction. Scale bar = 20 µm. (B,B’) Neural stem cell niche in the
adult mouse hippocampus: (B) Neural stem cells with radial glia-like morphology (pink) are located in the hippocampal dentate gyrus (GFAP, white; DAPI, blue). Their
soma sits at the border of the densely packed granule cell layer (GCL), the so-called subgranular zone (SGZ). Their primary process extends across the GCL and
reaches the inner molecular layer (ML). NSCs express the markers Sox2, Prominin 1, Nestin (not shown) and glial fibrillary acidic protein GFAP (white), among others,
and are mostly quiescent. Surrounding the NSCs a variety of highly branched niche astrocytes located in different layers are found. Those in the ML, GCL, and hilus
are shown in green, red, and yellow, respectively. Mature astrocytes do not proliferate and express markers such as glial glutamate transporter 1 (GLT1), S100β (not
shown) and GFAP (white), among others. Other niche elements such as blood vessels, INPs and neurons are not shown. (B’) GFAP immunostaining, marking both
NSCs and astrocytes with distinctive morphologies.

undergoing symmetric self-renewal to contribute to the stem cell
reservoir and the other 80% undergoing symmetric consuming
divisions that produce transient amplifying progenitors, a type
of intermediate neural progenitor (INP/TAP) (Obernier et al.,
2018), which, in turn, generate a large variety of olfactory bulb
interneurons (Merkle et al., 2007, 2014). This division mode

allows the uncoupling of self-renewal and differentiation. The
transition between the two NSC pools remains unclear.

In the adult SGZ niche (Figures 2B,B’), most divisions
of radial glia-like NSCs are asymmetric (Figure 1B), giving
rise to NSCs and dividing progenitors that will later become
neurons (Encinas et al., 2011). However, symmetric self-renewing
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divisions have also been detected by in vivo clonal analysis
with genetic marking (Bonaguidi et al., 2011). Recent live-
imaging data suggests that radial glia-like NSCs follow a temporal
developmental-like program upon activation, comprising an
initial proliferative (symmetric) phase followed by a neurogenic
(asymmetric) phase (Pilz et al., 2018). Active radial glia-like NSCs
likely retain a molecular memory of their history and return to a
less dormant quiescent state (Urban et al., 2016; Blomfield et al.,
2019; Urban et al., 2019).

Adult NSCs in the SGZ will give rise to only one type of
excitatory neuron (the dentate gyrus granule neuron) and, to
a lesser extent, will produce local astroglial cells (Suh et al.,
2007; Bonaguidi et al., 2011). After undergoing a series of
neurogenic asymmetric divisions, radial glia-like NSCs become
exhausted and terminally differentiate into mature astrocytes.
This gliogenic process is poorly defined but is exacerbated during
aging (Encinas et al., 2011; Gebara et al., 2016; Diaz-Moreno
et al., 2018; Martin-Suarez et al., 2019) and in pathology (Sierra
et al., 2015). Intriguingly, the terminal conversion of radial glia-
like NSCs into astrocytes has not yet been captured by live
imaging (Pilz et al., 2018), so additional studies are required to
elucidate this pathway.

In summary, the presence of INPs is conserved in the fly
and in mammalian adult neurogenic niches as a strategy to
produce lineages with more neurons, in ways that resemble
indirect neurogenesis in the developing mammalian brain.
During adulthood, the dynamics of NSCs in the SGZ recapitulate
the irreversible switch from a symmetrical self-renewing phase
to an asymmetrical neurogenic division phase that characterizes
cortical development. Conversely, in the SEZ, two subtypes of
NSCs seem to coexist based on their symmetric mode of division.
The molecular basis of these division modes, and the number of
times adult NSCs divide before depletion, remains elusive.

INTRINSIC CONTROL OF NEURAL
PROGENITOR FATE: TEMPORAL AND
REGIONAL PATTERNS

Production of Cell Types in Drosophila
Neural stem cells can proliferate and differentiate into various
cell types in response to both intrinsic factors and extrinsic cues
from their stem cell niche. Spatial patterning plays a key role
in acquiring NSCs identities in the developing nervous system.
In the early embryo, the combined action of segment polarity,
dorso-ventral, columnar and Hox genes act in gradients along
the AP and DV axes and form an orthogonal grid that regionally
divides the ventral nerve cord neuroectoderm and specifies the
neuroblast identity (Table 1; Skeath and Thor, 2003; Technau
et al., 2006; Urbach and Technau, 2008; Estacio-Gomez and Diaz-
Benjumea, 2014). Interestingly, neuronal subtype specification
in the vertebrate hindbrain and spinal cord relies on Hox-
dependent regionalization of progenitor and postmitotic cells
along the rostrocaudal axis as well in response to opposing
morphogen gradients (Sagner and Briscoe, 2019), indicating
that spatial colinearity is conserved among vertebrates and

Drosophila (Philippidou and Dasen, 2013). In the larval brains,
optic lobe neurons originate from two neuroepithelia, called
the outer (OPC, Figures 2A,A’) and inner proliferation centers
(IPC) (Hofbauer and Campos-Ortega, 1990). The OPC that
gives rise to neuroblasts (Egger et al., 2007) is patterned
into spatial domains along the anterior–posterior axis by
expression of the transcription factors Visual system homeobox
1 (Vsx1), Optix and retinal homeobox (Rx), and the signaling
molecules decapentaplegic (dpp), wingless (wg), and hedgehog
(hh) (Table 1; Erclik et al., 2008, 2017; Gold and Brand, 2014).

Neural progenitors and NSCs also generate distinct neuronal
and glial subtypes over time (Figure 3). This generation of
diversity in the developing brain depends on the sequential
expression of transcription factors, a phenomenon known as
temporal patterning (Doe, 2017; Holguera and Desplan, 2018)
that was first observed in the embryonic Drosophila ventral
nerve cord (Kambadur et al., 1998; Brody and Odenwald, 2000;
Grosskortenhaus et al., 2005; Baumgardt et al., 2009; Doe,
2017). Indeed, temporal patterning is how the neural progenitors
in Drosophila generate cellular diversity in different areas of
the brain (Morante and Desplan, 2008; Erclik et al., 2017;
Konstantinides et al., 2018). For example, Type I neuroblasts
of the larval central outer proliferation center (c-OPC) express
six different transcription factors as they age: homothorax (hth),
klumpfuss (klu), eyeless (ey), sloppy paired 1 (slp1), Dichaete (D),
and tailless (tll) (Table 1; Morante et al., 2011; Li et al., 2013;
Suzuki et al., 2013). These temporal series are not unique and,
for example, larval neuroblasts at the t-OPC express Distal-less
(Dll), ey, Slp1, and D (Bertet et al., 2014) while neuroblasts from
the d-IPC express asense (ase), D, atonal (ato), and dachshund
(dac) (Table 1; Apitz and Salecker, 2018; Mora et al., 2018;
Pinto-Teixeira et al., 2018).

Embryonic and larval Type II neuroblasts, and their derived
INPs, have adopted a different strategy to increase neural
diversity in the adult central complex. In their case, both
neuroblasts and INPs express their respective sequences of
temporal transcription factors that remain identical as they age
from the embryonic to the larval stage. These are castor (cas), D,
and seven up (svp) in neuroblasts; and D, grainyhead (grh) and
ey in INPs (Table 1; Bayraktar and Doe, 2013; Walsh and Doe,
2017; Alvarez and Diaz-Benjumea, 2018).

However, not all temporal transcription factor sequences
remain identical during the embryonic and larval stages. Type
I neuroblasts in the embryonic ventral nerve cord and thoracic
larval neuroblasts, which delaminate from the embryonic
neuroectoderm of the ventral nerve cord, also sequentially
express transcription factors, but these sequences differ between
the animals’ embryonic and larval lives. Embryonic ventral nerve
cord neuroblasts express a complex series of transcription factors
[hunchback (hb), krueppel (Kr), POU domain protein 2 (Pdm2),
Cas and grh], but thoracic Type I neuroblasts only express
Cas and give rise to a series of early-born neurons expressing
the BTB transcription factor Chinmo and the RNA-binding
protein Imp, and later-born neurons expressing broad (Br) and
another RNA-binding protein, Syp (Zhu et al., 2006; Maurange
et al., 2008). Svp, an orphan nuclear hormone belonging to the
COUP-TF family, triggers this temporal transition from Imp and
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TABLE 1 | Intrinsic factors and glial-derived extrinsic signals influencing cell decisions in Drosophila and mammalian neurogenic niches.

Names/symbols Human
orthologs

Gene groups and pathways Description

In Drosophila:

Intrinsic factors

Abdominal A (abd-A) HOXA6

HOXC6

Bithorax complex

HOX-like homeobox TFs

Required for segmental identity of the second through eighth
abdominal segments

Abdominal B (Abd-B) HOXA11
HOXD11

Bithorax complex
HOX-like homeobox TFs

Specifies the identity of the posterior abdominal segments

Antennapedia (Antp) HOXB7 Antennapedia complex
HOX-like homeobox TFs

Regulates segmental identity in the mesothorax

Asense (ase) ASCL1
ACSL2

Basic helix-loop-helix TFs tTF in d-IPC Type I Nbs

Atonal (ato) ATOH7 Basic helix-loop-helix TFs tTF in d-IPC Type I and III Nbs

Baboon (babo) TGFβR1 TGF-β type I receptors Required for proliferation of Nbs

Broad (br) BTBD18 C2H2 zinc finger TFs tTF in thoracic later-born neurons

Castor (cas) CASZ1 C2H2 zinc finger TFs tTF in VNC Type I Nbs, thoracic Type I Nbs, CB Type II Nbs
and INPs

Chronologically inappropriate
morphogenesis (Chinmo)

BTBD18 C2H2 zinc finger TFs tTF in thoracic early-born neurons

Dachshund (dac) DACH1 Other DNA binding domain TFs tTF in d-IPC Type I Nbs

Decapentaplegic (dpp) BMP2 Bone morphogenetic proteins signaling
pathway core components

Patterns the dorsal surface of the embryo and is expressed in
a subset of Rx+ tOPC NECs

Deformed (Dfd) HOXC4 Antennapedia complex

HOX-like homeobox TFs

Involved in proper morphological identity of the maxillary
segment and the posterior half of the mandibular segment

Dichaete (D) SOX12

SOX14
SOX21

High mobility group box TFs tTF in Me, tOPC and d-IPC Type I Nbs, CB Type II Nbs and
INPs

Distal-less (Dll) DLX1
DLX6

NK-like homeobox TFs Expressed in Wg+ tOPC NECs and tTF in tOPC Type 0 Nbs

Dorsal (dl) RELA
RELB

Nuclear factor-κB Patterns the ventral side of the embryo

Drop (Dr) MSX2 NK-like homeobox TFs Specifies the dorsal portion of the neuroectoderm

Engrailed (en) EN1 NK-like homeobox TFs Segment polarity gene involved in compartment identity and
boundary formation

Epidermal growth factor receptor (EGFR) EGFR Receptor tyrosine kinases Required for expansion of OPC NECs and patterns the
ventral side of the embryo

Eyeless (ey) PAX6 Paired homeobox TFs tTF in Me and tOPC Type I Nbs, CB Type II Nbs and INPs

Grainy head (grh) GRHL1 Polycomb group recruiters/DNA-binding
proteins

tTF in CB Type II Nbs and INPs

Gooseberry (gsb) PAX3 Paired homeobox TFs Expressed in segmentally repeating pattern to define the A/P
polarity of embryonic segments

Hedgehog (hh) SHH

DHH

Hedgehog signaling pathway core
component

Marks ventral half of the OPC NECs

Homothorax (hth) MEIS1
MEIS2

Tale homeobox TFs tTF in Me Type I Nbs

Hunchback (hb) IKZF5 C2H2 zinc finger TFs tTF in VNC Type I Nbs

IGF-II mRNA-binding protein (Imp) IGF2BP1
IGF2BP2
IGF2BP3

mRNA-binding protein tTF in thoracic early-born neurons

Intermediate neuroblasts defective (ind) GSX1 HOX-like homeobox TFs Specifies the intermediate portion of the neuroectoderm

(Continued)
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TABLE 1 | Continued

Names/symbols Human
orthologs

Gene groups and pathways Description

Klumpfuss (Klu) ZBTB7A C2H2 zinc finger TFs tTF in Me Type I Nbs

Kruppel (Kr) BCL6 C2H2 zinc finger TFs tTF in VNC Type I Nbs

Labial (lab) HOXA1
HOXB1

Antennapedia complex
HOX-like homeobox TFs

Specifies derivatives of gnathocephalic segments

Optix SIX3

SIX6

Six/Sine oculis homeobox TFs Marks the adjacent ventral and dorsal main regions to Vsx1+

OPC NECs

Retinal Homeobox (Rx) RAX Paired-like homeobox TFs Marks the tOPC NECs

POU domain protein 2 (Pdm2) POU2F3 POU homeobox TFs tTF in VNC Type I Nbs

Proboscipedia (pb) HOXA2
HOXB2

Antennapedia complex
HOX-like homeobox TFs

Required for the formation of labial and maxillary palps

Seven up (svp) NR2F2 Nuclear receptor TFs tTF in CB Type II Nbs and INPs

Sex combs reduced (Scr) HOXA5 Antennapedia complex
HOX-like homeobox TFs

Required for labial and first thoracic segment development

Sloppy paired 1 (slp 1) FOXG1 Fork head box TFs tTF in Me and tOPC Type I Nbs

Syncrip (Syp) HNRNPR
SYNCRIP

mRNA-binding protein tTF in thoracic later-born neurons

Tailless (tll) NR2E1 Nuclear receptor TFs tTF in Me Type I Nbs

Ultrabithorax (Ubx) HOXB6 Bithorax complex

HOX-like homeobox TFs

Controls development of the posterior thoracic and first
abdominal segments

Ventral nervous system defective (vnd) NKX2-2 NK-like homeobox TFs Specifies the ventral portion of the neuroectoderm

Visual system homeobox 1 (Vsx1) VSX2 Paired-like homeobox TFs Expressed in central OPC NECs

Wingless (wg) WNT1 Wnt-TCF signaling pathway core
component

Segment polarity gene involved in controlling the
segmentation pattern of embryos by affecting the posterior
cells of each parasegment and is expressed in a second
subset of Rx+ tOPC NECs

Niche/glia-derived factors

Activin-β (Actβ) INHBA
INHBB

TGFβ superfamily ligand Secreted from surface glia

Anachronism (ana) – Glycoprotein Secreted from cortex glia

Dally-like (dlp) GPC4 Heparan sulfate proteoglycan Glypican
(Membrane tethered)

Secreted from surface glia

Drosophila insulin-like peptides 1–8s
(dILP1–8s)

IGF1/2 Insulin-like peptides Secreted from cortex and surface glia

Glass bottom boat (gbb) BMP7 Bone morphogenetic proteins signaling
pathway ligand

Secreted from surface glia

Jelly belly (jeb) – Ligand of anaplastic lymphoma kinase Secreted from glia

Spitz (Spi) TGF-α EGFR signaling pathway ligand Secreted from cortex glia

Terribly reduced optic lobes (trol) HSPG2 Heparan sulfate proteoglycan Perlecan
(ECM component)

Secreted from surface glia

Symbols/names Drosophila
orthologs

Gene groups and pathways Description

In mammals:

Intrinsic factors

Castor zinc finger 1 (CasZ1) Cas C2H2 zinc finger TFs tTF in the specification of late-born cell types in the retina

COUP-TF interacting protein 2/B cell
leukemia/lymphoma 11B (Citp2/BCL11B)

CG9650 C2H2 zinc finger TFs Specification of Layer V neurons

Distal-less homeobox 2 (Dlx2) Dll NK-like homeobox TFs Regional specification (embryonic subpallium (LGE and MGE)
and lateral postnatal/adult SEZ)

Empty spiracles homeobox 1 (Emx1) ems NK-like homeobox TFs Regional specification (embryonic pallium and dorsal
postnatal/adult SEZ)

(Continued)
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TABLE 1 | Continued

Symbols/names Drosophila
orthologs

Gene groups and pathways Description

Empty Spiracles Homeobox 2 (Emx2) ems NK-like homeobox TFs Dentate gyrus regional identity

Eomesodermin (Tbr2) Doc1 T-Box TFs Specification of INPs

Eukaryotic translation initiation factor 4E
nuclear import factor 1 (4E-T/EIF4ENIF1)

4E-T eIF4E/mRNA translation regulator Translational repression of neuronal specification TFs

Fez family zinc finger 2 (Fezf2) erm C2H2 zinc finger TFs Specification of Layer V neurons

Forkhead box G1 (Foxg1) Slp2 Fork head box TFs Specification of deep-layer neurons

GS homeobox 2 (Gsh2/Gsx2) ind HOX-like homeobox TFs Regional specification (embryonic subpallium (LGE and MGE)
and dorsolateral postnatal/adult SEZ)

HOP homeobox (Hopx) – Homeobox TFs Dentate gyrus regional identity

IKAROS family zinc finger 1 (Ikzf1) Hb C2H2 Zinc finger TFs tTF in the specification of early-born cell types in the cortex
and retina

Lysine (K)-specific methyltransferase 2A
(Mll1/ KMT2B)

trx Trithorax complex Preservation of regional identity

Lymphoid enhancer binding factor 1 (Lef1) pan High mobility group box TFs Dentate gyrus regional identity

Neurogenic differentiation 1 (Neurod1) amos
ato

Proneural basic helix-loop-helix TFs Required for neuronal differentiation

Neurogenin 2 (Neurog2) tap Proneural basic helix-loop-helix TFs Drives differentiation of NSCs into neurons

NK2 homeobox 1 (Nkx2-1) scro NK-like homeobox TFs Regional specification (embryonic subpallium (MGE), and
ventrolateral and medial postnatal/adult SEZ)

Nuclear receptor subfamily 2, group F,
member 1 (Nr2f1/COUP-TFI)

svp Nuclear receptor TFs Specification of upper-layer neurons

Paired box 6 (Pax6) ey Paired homeobox TFs Expressed in Radial glia/NSCs; regional specification
(embryonic pallium, dorsal postnatal/adult SEZ)

POU domain, class 3, transcription factor
3 (Brn1/POU3F3)

vvl POU homeobox TFs Specification of upper-layer neurons

Pumilio RNA-binding family member 2
(Pum2)

pum RNA-binding family Translational repression of neuronal specification TFs

Special AT-rich sequence binding protein 2
(Satb2)

dve CUT homeobox TFs Specification of upper-layer neurons

SRY (sex determining region Y)-box 5
(Sox5)

Sox102F High mobility group box TFs Specification of layer VI neurons

T-box brain transcription factor 1 (Tbr1) Doc1 T-Box TFs Specification of layer VI neurons

Transducin-like enhancer of split 4 (Tle4) gro Transcriptional corepressor Specification of deep-layer neurons

Zinc finger E-box binding homeobox 2
(Sip1/Zeb2)

zfh1 C2H2 zinc finger TFs Feedback signaling from neurons to progenitors

Zinc finger protein of the cerebellum 1
(Zic1)

opa C2H2 zinc finger TFs Regional specification (embryonic medial subpallium and
septal postnatal/adult SEZ)

Niche/Astroglia-derived factors

Insulin-like growth factor binding protein 6
(IGFBP6)

– Regulation of insulin-like growth factor
receptor signaling pathway

Secreted by non-neurogenic astroglia

Insulin-like growth factor 1 (Igf1) dilp2 Insulin-like growth factor ligand Systemic/niche factor

Interleukin 1 beta (IL-1β) – Cytokine activity Secreted by SGZ niche astroglia

interleukin 6 (IL-6) – Cytokine activity Secreted by SGZ niche astroglia

Jagged 1 (Jag1) Ser Notch signaling pathway
membrane-bound ligand

Expressed by forebrain astroglia

Neurogenesin-1/Chordin-like protein 1
(Ng1/Chrdl1)

– BMP antagonist Secreted by SGZ niche astroglia

Secreted frizzled-related protein 4 (sFRP4) – Wnt antagonist Secreted by OB astroglia

Thrombospondin 1 (Thbs1) Tsp Glycoprotein (ECM component) Secreted by forebrain astroglia

Wingless-type MMTV integration site
family (Wnt3,Wnt7a)

wg Wnt pathway ligand Secreted by SGZ/SEZ niche astroglia

CB, central brain; d-IPC, distal inner proliferation center; ECM, extracellular matrix; LGE, lateral ganglionic eminence; Me, medulla; MGE, medial ganglionic eminence;
Nbs, neuroblasts; NECs, neuroepithelial cells; NSCs, neural stem cells; OB, olfactory bulb; SEZ, subependymal zone; SGZ, subgranular zone; TFs, transcription factors;
tTF, temporal transcription factor; t-OPC, tip of the outer proliferation center; VNC, ventral nerve cord.
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FIGURE 3 | Temporal patterning in neural progenitors in Drosophila and in mammals. Upper panel, transcription factor sequences expressed in embryonic and larval
Drosophila neural progenitors. Lower panel, core transcription factor sequence expressed in glutamatergic neurogenesis in the developing cerebral cortex, adult
SGZ neurogenesis and adult OB glutamatergic juxtaglomerular interneuron neurogenesis. aRG, apical radial glia; c-OPC, central outer proliferation center; d-IPC,
distal inner proliferation center; INP, intermediate neural progenitors; Nbs, neuroblasts; t-OPC, tip of the outer proliferation center; VNC, ventral nerve cord.

Chinmo expression to Syp and Br expression by terminating Cas
expression (Table 1; Maurange et al., 2008; Ren et al., 2017; Syed
et al., 2017; Kanai et al., 2018).

In summary, these studies show that combinatorial inputs
from the temporal and spatial axes act together to promote neural
diversity in the central nervous system (Figure 4).

Production of Neurons During
Development in Mammals
In contrast to Drosophila neural progenitors, the temporal
sequence of transcription factors in mammalian NSCs during
development is less well understood. In the following section we
will focus on the current understanding of cortical glutamatergic
projection neuron production, a highly stereotyped process
in which early-generated neurons occupy the deep layers of

the cortex (V and VI) and late born neurons occupy the
upper layers (II–IV) (Angevine and Sidman, 1961; Rakic,
1972). In this lineage, the transcription factor Pax6 specifically
expressed in radial glia participates in the patterning of the
telencephalon and in instructing neurogenesis through a cascade
of transcription factors (Pax6 → Ngn2 → Tbr2 → Tbr1)
that are sequentially expressed in radial glia cells, INPs and
postmitotic glutamatergic projection neurons (Figure 3; Gotz
et al., 1998; Stoykova et al., 2000; Heins et al., 2002; Englund
et al., 2005). Tbr2, the transcriptional target of Ngn2, exerts
key functions in this cascade: it directly represses Pax6 to
favor the transition between cellular stages, from radial glia
to INP; it promotes differentiation through the activation of
projection neuron transcription factors including Tbr1, Ctip2,
and Satb2 (Elsen et al., 2013; Kovach et al., 2013; Mihalas
et al., 2016) and it regulates regional identity through the
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FIGURE 4 | Spatial and temporal patterning on NSCs act together to promote neural diversity in the central nervous system.

repression of ventral genes (Kovach et al., 2013). In addition,
from the well-established gene repression network involved in
the specification of deep neurons (Sox5, Tbr1, Fezf2, Ctip2)
and upper-layer neurons (Satb2) within the mammalian cortex
(Table 1; Britanova et al., 2008; Kwan et al., 2008; McKenna
et al., 2011; Srinivasan et al., 2012; Leone et al., 2015), only Fezf2
has been detected in cortical progenitors (Hirata et al., 2004)
and the rest are expressed in postmitotic neurons. Upper-
layer competence has been linked to deep-layer neurogenesis.
It is determined primarily through the repression of Tbr1 and
derepression of Fezf2 by Foxg1 to acquire deep-layer identity, and
the posterior feedback signal from deep-layer neurons to repress
Fezf2/Ctip2 (Toma et al., 2014). Brn1 and Brn2 are also involved
in this transition, as upper-layer neurons fail to be generated
in Brn1/2 double mutants (Dominguez et al., 2013). Besides
transcriptional regulation, another additional regulatory layer
to ensure appropriate upper- versus deep-layer cortical neuron
identities (Brn1 and Tle4) involves regulation at the translational
level by the Pum2/4E-T repressor complex from aRGs that are
transcriptionally primed to generate diverse types of neurons
(Zahr et al., 2018).

Despite the lack of an unequivocal temporal transcription
factor sequence in cortical neural progenitors, the COUP-
TF family is still required for the temporal specification of
mammalian neural progenitors. Knockdown of COUP-TFI/II
in the mouse neocortex causes sustained neurogenesis and
prolonged generation of early-born neurons, preventing the
onset of gliogenesis (Naka et al., 2008). Other mammalian
temporal factors include Ikaros, the ortholog of Hb, which
specifies early-born neural identity in the cortex and retina
(Elliott et al., 2008), and CasZ1, the ortholog of Cas, which
specifies late-born neurons in the mammalian retina (Mattar
et al., 2015). These studies reveal an overall conserved strategy
regulating temporal identity transitions from flies to mammals
and highlight the existence of very precise modes of gene
expression control.

Production of New Neurons During
Adulthood
The generation of neuronal diversity relies largely on the
regional patterning experienced by the cells during development,
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which, in turn, depends on morphogen gradients. In mice,
SEZ NSCs are found in the lateral, medial and dorsal walls
of the lateral ventricles, in the rostral migratory stream that
directs the new neurons to the olfactory bulb, and in the
olfactory bulb core itself (Figure 1B; Merkle et al., 2007;
Alonso et al., 2008; Moreno-Estelles et al., 2012; Mizrak et al.,
2019). NSCs in these different locations produce a variety of
interneuron subtypes in the olfactory bulb due to a mosaic
of patterned progenitor domains: ventral NSCs are the source
of deep granule neurons and calbindin-positive periglomerular
neurons, whereas NSCs in dorsal domains generate superficial
granule neurons and dopaminergic periglomerular neurons
(Merkle et al., 2007). Ultimately, this complex organization
depends on the positional information integrated by the NSCs
during development that correlates with the expression of
a transcription factor code (Merkle et al., 2007; Fuentealba
et al., 2015). For instance, pallial markers such as Emx1
and Pax6 are expressed in the dorsal domains; subpallial
markers such as Dlx2, Gsh2, and Nkx2-1 are expressed
in the lateral and ventral domains, respectively; and septal
ventricular markers like Zic1/2 are expressed in the medial
domains (Table 1; Kohwi et al., 2007; Young et al., 2007;
Winpenny et al., 2011; Azim et al., 2012; Lopez-Juarez et al.,
2013; Merkle et al., 2014; Delgado and Lim, 2015; Fiorelli
et al., 2015; Tiveron et al., 2017). Interestingly, a population
of glutamatergic juxtaglomerular excitatory OB interneurons
that end up in the external plexiform layer are produced
in the SEZ through the conserved Pax6 → Ngn2 → Tbr2
→ NeuroD → Tbr1 transcription factor sequence (Brill
et al., 2009; Roybon et al., 2009a; Figure 3), highlighting the
conservation of this cascade for the specification of glutamatergic
cell fate.

Cell-intrinsic programs are maintained even when ventral
SEZ progenitors are heterotopically grafted into the dorsal
SEZ or when they are cultured in vitro (Merkle et al., 2007),
although cells can still switch fate when a single dorsal or
lateral SEZ-enriched transcription factor is overexpressed (Azim
et al., 2015). This indicates that the positional identity acquired
by SEZ NSCs during development becomes independent
of morphogen signaling in the adult brain. Recent data
show that the preservation of this positional identity during
adulthood involves a cell-autonomous epigenetic memory
mechanism that depends on the chromatin regulator
mixed-lineage leukemia 1 (Mll1) (Delgado et al., 2020),
the mammalian homolog of the Drosophila gene trithorax
(trx). Trx proteins are a heterogeneous group with varied
activities mainly related to chromatin modification and
remodeling to maintain active states and, thus, counteract
the silencing activity of the polycomb group proteins
(Piunti and Shilatifard, 2016; Schuettengruber et al., 2017).
Classical genetics approaches in Drosophila revealed that
both groups of proteins preserve the expression of Hox
genes that determine anterior–posterior identities, although
they are not involved in their induction (Geisler and Paro,
2015). In ventral SEZ NSCs, Trx/Mll1 is similarly required for
maintaining Nkx2-1 expression, yet it does not participate in
the initial induction of this transcription factor, which ultimately

depends on the ventral morphogen sonic hedgehog (Shh)
(Delgado et al., 2020).

Intriguingly, embryonic progenitors and adult NSCs
located at equivalent sites and patterned similarly produce
different progenies; for instance, aRGs in the dorsal pallium
generate excitatory cortical neurons, whereas adult dorsal SEZ
NSCs, related to these aRGs, produce inhibitory olfactory
bulb interneurons (Fuentealba et al., 2015). Furthermore,
there is a temporal pattern in the production of different
subtypes of olfactory bulb interneurons, suggesting that
different NSC domains dominate neuronal production
at specific time points (Batista-Brito et al., 2008). The
molecular program underlying these temporal switches
has not been completely defined yet and future lineage
tracing and scRNA-seq studies are required to solve
the intricate codes that define SEZ NSC heterogeneity
in time and space.

For producing new granule neurons in the adult hippocampal
SGZ, the patterning information would also be acquired early
during embryogenesis and preserved across development and
into adulthood (Morales and Mira, 2019). SGZ NSCs are a
continuum derived from progenitor cells that migrate out
of the dentate neuroepithelium expressing the homeodomain-
only protein, Hopx (Li et al., 2015; Berg et al., 2019)
and the transcription factors Pax6 and Sox9 (Nelson et al.,
2020). Recent data suggest that an early cohort of Tbr2
INPs expressing Notch ligands pioneers the subsequent NSC
migration toward the newly formed outer (abventricular) SGZ
niche, keeping neighboring NSCs in an undifferentiated state
through Notch signaling (Nelson et al., 2020). The regional
identity of SGZ NSCs is markedly influenced by a number
of other transcription factors (Hatami et al., 2018), including
Emx2 and Lef1 (Pellegrini et al., 1996; Galceran et al.,
2000; Oldekamp et al., 2004), as well as by Wnt and bone
morphogenetic protein signaling from the adjacent cortical
hem (Li and Pleasure, 2007). Interestingly, the transcription
factor sequence Pax6 → Ngn2 → Tbr2 → NeuroD → Tbr1
observed in developmental glutamatergic neurogenesis in the
cortex is conserved along the lineage progression of adult SGZ
neurogenesis (Figure 3; Hodge et al., 2008; Roybon et al.,
2009b). Tbr2 likely facilitates the progression from the NSC
to the INP state by directly binding and repressing Sox2
(Hodge et al., 2012).

Hopx-positive dentate progenitors upregulate cell membrane
genes over development, pointing to a transition from an
intrinsic mode of regulation in embryonic radial glia to
an extrinsic, niche-dependent mode in adult RG-like NSCs
(Berg et al., 2019). Similarly, sc-RNAseq data of adult
hippocampal quiescent NSCs confirm that adult NSCs are
enriched in genes encoding membrane-related proteins, pointing
to an enhanced niche signaling integration capacity (Shin
et al., 2015; Artegiani et al., 2017; Hochgerner et al., 2018).
Furthermore, at least for some signaling pathways such as
Notch, there is a switch in the expression of receptor
subtypes in NSCs during the transition from development to
adulthood that could influence the outcome of the signaling
(Nelson et al., 2020).
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EXTRINSIC CONTROL OF NEURAL
PROGENITORS

Neural progenitors and NSCs are also influenced by the
local microenvironment where they reside, which determines
their fate and self-renewal capacity (Morrison and Spradling,
2008; Siegenthaler et al., 2009; Lehtinen and Walsh, 2011;
Lehtinen et al., 2011; Siegenthaler and Pleasure, 2011). The
microenvironments in different brain regions and stages of
development can be quite diverse, and this can be exploited as
a strategy to generate cellular diversity.

Recent studies in the developing mouse forebrain have shown
that transmission of temporal birthmarks from mother apical
progenitors to their daughter cells fades with differentiation as
environmental factors predominate (Vitali et al., 2018; Telley
et al., 2019). A good example of this process occurs in
developing layer IV neurons, whose final molecular identity and
function is instructed by thalamocortical inputs (Pouchelon et al.,
2014). Another remarkable illustration of microenvironmental
influences is the production of signaling factors in postmitotic
neurons. For example, neurotrophin-3 is regulated by the
transcription repressor Sip1 (Zeb2), which feeds back to
progenitors to modulate the timing of two cell fate switches
during corticogenesis: neurogenesis to gliogenesis, and deep-
to upper-layer neuron transitions (Seuntjens et al., 2009;
Parthasarathy et al., 2014).

Classical transplantation experiments established that local
environmental cues change over time and can control the
competence of embryonic mammalian neural progenitors to
produce neurons of different layers (McConnell, 1991). However,
very few of these niches and their molecular signals have been
characterized. An example of one that has is the extrinsic
signaling from non-neural tissues, which has been proposed
to co-ordinate neural progenitor and NSC proliferation in the
developing mammalian forebrain (Siegenthaler and Pleasure,
2010; Lehtinen and Walsh, 2011; Lehtinen et al., 2011). In
particular, retinoic acid signaling from the meninges was
established to be important for switching from symmetric to
asymmetric neurogenic proliferation in Foxc1-knockout mice
(Siegenthaler et al., 2009). Additionally, meningeal cells organize
the pial basement membrane, an extracellular matrix enriched
in a variety of growth factors that covers the brain and might
be involved in signaling at the basal side (Siegenthaler and
Pleasure, 2011). Meanwhile, the apical side of embryonic and
adult neural progenitors are in contact with the cerebrospinal
fluid and the vascular system, and therefore might be influenced
by extrinsic cues released from these non-neural tissues to
regulate their self-renewal, differentiation and migratory capacity
(Sawamoto et al., 2006; Tavazoie et al., 2008; Lehtinen and
Walsh, 2011; Gato et al., 2019; Fame and Lehtinen, 2020).
Indeed, isolated mouse apical progenitors cultured in vitro
show only limited progression of temporal gene expression
(Okamoto et al., 2016), suggesting that temporal progression in
mammalian cortical progenitors may also require cell-extrinsic
cues. This does not, however, seem to be the case with
embryonic fruit fly neuroblasts. Isolated embryonic neuroblasts
cultured in vitro express the same temporal sequences as

observed in vivo (Grosskortenhaus et al., 2005), suggesting
that the timing of temporal identity transitions in embryonic
neuroblasts is regulated by an intrinsic mechanism (Doe,
2017), probably due to the short duration of the embryonic
stage (24 h) and rapid divisions of embryonic neuroblasts
compared to mammals.

Adult Neurogenic Niches in Rodents
Heterotopic transplantation experiments demonstrated
that cell-intrinsic programs tightly regulate SEZ NSCs
(Merkle et al., 2007). Yet, despite all the intrinsic determinants,
SGZ NSCs are highly plastic and their fate can be redirected
when exposed to an adequate milieu (Suhonen et al., 1996). For
instance, when transplanted into the rostral migratory stream,
their progeny migrates to the olfactory bulb and differentiates
into dopaminergic neurons (a non-hippocampal subtype), but
when grafted into a non-neurogenic area, such as the cerebellum,
they do not generate neurons (Suhonen et al., 1996). Similarly,
grafting clonally expanded non-neurogenic NSCs from the
spinal cord to the dentate gyrus results in the cells differentiating
into new neurons that resemble resident hippocampal granule
neurons, whereas cells grafted into non-neurogenic areas of
the hippocampus either remain undifferentiated or give rise
primarily to NG2 oligodendrocyte precursors, but not to
neurons (Shihabuddin et al., 2000). This indicates that the
grafted cells are instructed by local signals emanating from the
neurogenic niche. A variety of factors released form the niche
vasculature, choroid plexus, cerebrospinal fluid, ependymal cells,
and local interneurons influence adult NSCs. Their role falls
beyond the scope of the next section, that will instead focus on
glial-derived niche signals.

THE PREVALENT ROLE OF
GLIAL-DERIVED SIGNALS

Glial-Derived Signaling in Drosophila
Extrinsic signals from glia play important roles in
microenvironments where they can act directly on different
biological processes (Figure 5A). In larval Drosophila brains,
cortex glia are the source of Spitz, a homolog of transforming
growth factor-alpha, which is required for the initial proliferation
of NECs in the medulla through the activation of the EGFR
(Morante et al., 2013). Other glial-derived signals that regulate
neuroblast proliferation in the developing larval brain include
Activin-β (Act-β), via its receptor baboon (babo) (Zhu et al.,
2008), dally-like (dlp), a heparan sulfate proteoglycan, and glass-
bottom boat (gbb), a BMP homolog (Kanai et al., 2018). Surface
and cortex glia also provide Drosophila insulin-like peptides
(dILPs) in response to systemic nutritional cues (Chell and
Brand, 2010; Sousa-Nunes et al., 2011; Lanet et al., 2013; Otsuki
and Brand, 2017, 2018), and components of the extracellular
matrix, such as trol, a secreted heparan sulfate proteoglycan
Perlecan (Voigt et al., 2002; Park et al., 2003) required for timely
reactivation of quiescent larval neuroblasts in the ventral nerve
cord and CB. Conversely, secretion of the anachronism (ana)
glycoprotein also affects the initiation of neuroblast proliferation,
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FIGURE 5 | Niche glia-derived signals in the larval Drosophila brain and adult neurogenic areas. (A) Schematic representation of niche glia-derived signals in the
larval central brain (CB, yellow) and optic lobe (OL, green), and schematic illustration of a GFP-labeled cortex glia Flp-out clone (gray) showing how the cortex glia
ensheaths a Type I Nb (blue), ganglion mother cells (orange) and its neural progeny (yellow) in the central brain. (B) Schematic representation of niche
astroglia-derived signals in the adult neurogenic areas. Astrocytes (blue cells) are regionally specified and secrete a variety of local signals to regulate neurogenesis.
Astrocytes from the SEZ (the site of neuronal birth) secrete Wnt7a while olfactory bulb astrocytes (OB, the site of neuronal integration) express the Wnt antagonist
sFRP4. Hippocampal astrocytes specifically release Wnt3, IL-1β, IL-6, and neurogenesin-1. Rostral migratory stream (RMS) astrocytes that ensheath migratory
neuroblasts en route to the OB and hippocampal astrocytes also modulate adult neurogenesis through the supply of neurotransmitters (glutamate, D-serine).
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but in the opposite way: in ana mutants, mitotically regulated
neuroblasts begin cell division too early (Ebens et al., 1993).
Glial cells are not only necessary to regulate the proliferation
of neuroblasts, but also protect the proliferation of neuroblasts
under conditions of hypoxia and oxidative stress (Bailey et al.,
2015), or nutrient restriction, through positive regulation of
the jelly belly (jeb) secretion to stimulate Anaplastic lymphoma
kinase (Alk)-dependent PI3K signaling in neuroblasts and
protects their proliferation (Cheng et al., 2011). Release of
dILPs by wrapping glia also stimulates lamina precursor cells to
differentiate into lamina neurons in the visual system (Fernandes
et al., 2017). These examples show the important function of
glial-derived signaling within the stem cell niche in flies. Recent
studies have also highlighted that establishing the correct niche
architecture is necessary for encasing neural progenitor cells
and NSCs and allowing them to divide (Morante et al., 2013;
Speder and Brand, 2018).

Niche Astroglial-Derived Signaling and
Cell Heterogeneity in Rodents
During embryonic development in mammals, neurogenesis
precedes gliogenesis, so the new neurons are generated in
environments devoid of mature astroglial cells. However, in
the adult, astrocytes are distributed throughout the neurogenic
niches (Figure 5B), where they play fundamental roles. Gene
expression profiling shows that astrocytes are heterogeneous
across, and even within, regions (Doyle et al., 2008; Morel
et al., 2017, 2019; Boisvert et al., 2018; Batiuk et al., 2020;
Bayraktar et al., 2020), in line with the remarkable morphological
and functional heterogeneity of astroglia throughout the brain
(Emsley and Macklis, 2006; Matyash and Kettenmann, 2010).
Specifically, co-culture experiments demonstrate that niche
astrocytes (but not those from non-neurogenic areas such as
the adult spinal cord) are regulators of all the stages along the
neurogenic cascade, supporting NSC self-renewal, proliferation
and neuronal differentiation of precursor cells through the
release of soluble and/or cell membrane-bound factors (Lim
and Alvarez-Buylla, 1999; Song et al., 2002). For instance, the
molecular signatures of astroglia from the SEZ (the site of
neuronal birth) and the olfactory bulb (the site of neuronal
differentiation and maturation) are remarkably different: Wnt7a
secreted by SEZ astrocytes promotes symmetric NSC self-
renewing divisions, whereas its antagonist sFRP4 expressed by
olfactory bulb astrocytes presumably blocks the activation of local
olfactory bulb NSCs (Moreno-Estelles et al., 2012). In the SGZ,
Wnt3, IL-1β, and IL-6 and the BMP antagonist neurogenesin-
1 released by hippocampal astrocytes enhance neuronal fate
specification and differentiation (Ueki et al., 2003; Lie et al.,
2005; Barkho et al., 2006; Figure 5B). Non-neurogenic astrocytes
instead secrete IGFBP6 (Barkho et al., 2006), which negatively
regulates insulin growth factor (IGF)-II, an important player
(together with IGF-I) in adult hippocampal neurogenesis (Bracko
et al., 2012; Nieto-Estevez et al., 2016).

Hippocampal astrocytes can also negatively affect
neurogenesis possibly through the cell membrane-bound Notch
ligand, Jagged1 as suggested from in vitro experiments performed

with astrocytes and NSCs isolated from the postnatal forebrain
(Wilhelmsson et al., 2012). Astrocytes modulate the late phases of
adult neurogenesis through the supply of neurotransmitters such
as glutamate and D-serine. Blocking their exocytotic vesicular
release from astrocytes or knocking-out NMDA receptors in
neuroblasts compromises neuroblast survival during migration
from the SEZ toward the olfactory bulb (Platel et al., 2010) and
reduces dendritic spine maturation and synaptic integration
of adult-born hippocampal neurons (Sultan et al., 2015). The
extracellular matrix protein trombospondin-1 secreted by
astrocytes, involved in astrocyte-induced synaptogenesis, is
probably an astrocyte-derived factor that affects several steps of
the neurogenic process, although its expression is not restricted
to the niches (Lu and Kipnis, 2010). Other astrocyte-related
factors regulating neuronal function throughout the brain may
also contribute to the adequate functionality of the adult-born
neurons once these neurons become mature, fully integrated and
indistinguishable from their embryonically born counterparts.

Astrocytes may be more diverse than anticipated, with
differences not only between distant regions such as the SEZ
niche and olfactory bulb (Moreno-Estelles et al., 2012), but
also possibly even within regions (Figures 2B,B’), including
the hippocampal niche (Beckervordersandforth et al., 2014;
Schneider et al., 2019). The advent of transcriptomics is unveiling
the molecular basis for the plurality of astrocytes (Matias et al.,
2019). A large scRNA-seq study uncovered seven regionally
restricted astrocyte subtypes in the brain that correspond
to developmental boundaries (Zeisel et al., 2018), while a
more recent scRNA-seq dataset identified five distinct astrocyte
subtypes in the cortex and hippocampus that are distinguished
on the basis of their gene expression signature and topographic
distribution (Batiuk et al., 2020). Another recent single-nucleus
RNA-seq study of the hippocampus confirmed the existence of
a complex atlas of astroglial cells with a continuous range of
profiles and revealed the existence of an additional astrocyte
state associated to aging and Alzheimer’s (Habib et al., 2020).
Other studies have also uncovered the existence of intra-cortical
astroglial heterogeneity and highlight layer-specific interactions
between neurons and astrocytes (Lanjakornsiripan et al., 2018;
Morel et al., 2019; Bayraktar et al., 2020), so it is conceivable that
this holds true for other zones. A putative enrichment of specific
astrocytic subtypes in defined subdomains of adult neurogenic
areas may have interesting implications for our understanding of
the functional interactions taking place between astrocytes, NSCs,
newly born neurons, and pre-existing neurons.

FUTURE PERSPECTIVES OF NSC
RESEARCH

Single-cell RNA sequencing technology is revolutionizing how
cell types are identified in developing and adult brains, providing
astonishing insight into cellular diversity in specific regions
including the optic lobe (Konstantinides et al., 2018), antennal
lobe (Li et al., 2017), ventral nerve cord (Allen et al., 2020),
and CB (Croset et al., 2018). In organisms with relatively simple
brains, such as flies, whose brains consist of approximately
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150,000 cells, the whole adult brain (Davie et al., 2018) can
be investigated using this technology. And in animals with
larger brains, like mice, the hypothalamus (Campbell et al.,
2017; Romanov et al., 2017), lateral geniculate nucleus (Kalish
et al., 2018), midbrain (La Manno et al., 2016), somatosensory
cortex and hippocampus (Zeisel et al., 2015), visual cortex
and anterior lateral motor cortex (Tasic et al., 2016, 2018);
have been examined, among other areas. Some studies employ
transgenic line–based sampling strategies and retrograde labeling
of projection neurons to further assess the correspondence
between the scRNA-seq identified cell types and specific cellular
functions, including differential electrophysiological properties
and long-range projection specificity (Zeisel et al., 2015;
Tasic et al., 2016, 2018; Economo et al., 2018). Furthermore,
spatiotemporal gene expression analysis of scRNA-seq datasets
is revealing in unprecedented detail the intricate developmental
trajectories that brain cells undergo through differentiation
from embryonic neural progenitors (Telley et al., 2016, 2019;
Nowakowski et al., 2017).

In the adult mouse, scRNA-seq studies have improved our
understanding of the cellular composition of neurogenic niches.
They have identified cellular states along the neurogenic lineage
of the SEZ (Llorens-Bobadilla et al., 2015; Luo et al., 2015; Dulken
et al., 2017; Zywitza et al., 2018; Mizrak et al., 2019) and the SGZ
of the hippocampal dentate gyrus (Shin et al., 2015; Artegiani
et al., 2017; Hochgerner et al., 2018). In Drosophila, a pioneer
single-cell transcriptomic study has established a molecular
cell atlas of the first instar larval brain (Brunet Avalos et al.,
2019), identifying neurons expressing distinct neurotransmitters,
neuromodulators and neuropeptides; neural progenitor cells;
glial cells of different types; undifferentiated neurons; and non-
neural cells.

Future studies will complement current knowledge and
allow us to establish a detailed catalog of brain cell types
(Ecker et al., 2017; Regev et al., 2017), as well as to fully
map the cellular, molecular and spatial organization of the
complex niche networks that maintain and regulate the division
capacity of neural progenitors and stem cells. New data
are already starting to shed light on the intrinsic epigenetic

mechanisms that preserve regional identities in NSCs as the
brain increases its complexity from development to adulthood.
Additional studies are needed to clarify if there are glial
subtypes in the niches and, if so, to analyze their possible role
in regulating the different stages of the neurogenic cascade.
It will be equally interesting to explore whether adult NSCs
contribute to the intra-regional heterogeneity of astroglia and
to generating their own local glial niche. Finally, we need
to better understand how extrinsic cues received by neural
progenitors are effectively interpreted to produce the correct
intrinsic responses, as little is known about the specifics of
these interactions.
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