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Cavity-Backed Antenna-Coupled
Nanothermocouples
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. This paper reports a two-orders-of-magnitude improvement in the sensitivity of antenna-coupled
. nanothermocouple (ACNTC) infrared detectors. The electrical signal generated by on-chip ACNTCs
Accepted: 21 June 2019 . results from the temperature difference between a resonant antenna locally heated by infrared
Published online: 03 July 2019 * radiation and the substrate. A cavity etched under the antenna provides two benefits. It eliminates the

. undesirable cooling of the hot junction by thermally isolating the antenna from the substrate. More
importantly, careful cavity design results in constructive interference of the incident radiation reflected
back to the antenna, which significantly increases the detector sensitivity. We present the cavity-
depth-dependent response of ACNTCs with cavity depths between 1 pm and 22 pm. When constructive
interference is maximized, the thermal response increases by 100-fold compared to devices without the
cavity.
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Long-wave infrared (LWIR) and THz detectors are of special interest due to black-body radiation of objects at
. room temperature. Applications of these detectors include energy harvesting', target tracking and identifica-
. tion of hidden objects?, atmospheric research?, biological sensing?, and medical diagnostics**. Antenna-coupled
. detectors are based on the wave nature of the IR and THz radiation; a nanoantenna receives the freely-propagating

electromagnetic waves, and the infrared radiation-induced antenna currents are converted to electrical signals by

a bolometer®’, a nanothermocouple (NTC)3-1°, or a heterostructure backward diode!"12,
: Antenna-coupled nanothermocouples (ACNTCs) convert the optical energy to electrical signals by Joule
. heating and the Seebeck effect. The radiation-induced antenna currents increase the temperature of the hot junc-
- tion of the thermocouple that is located at the center of the antenna, and an open-circuit voltage (Vo) is induced,
. as expressed by

Voc = AS - AT, (1)

: where AS is the relative Seebeck coefficient of materials that compose the NTC, and AT is the temperature gra-
. dient between the cold and hot junctions.

The response of thermal-based antenna-coupled detectors is proportional to the heating of the sensing ele-
ment (bolometer, NTC) and inversely proportional to the heat removal by the bulk of the chip. Recently, we have
demonstrated that thermal insulation of the antenna from the substrate by a SiO, membrane' or suspending
over a cavity'* increased the thermal response of ACNTCs by a factor of 2.5 times and 20 times, respectively. In
our previous work it was observed!* that the magnitude of the measured V¢ of the thermally insulated devices

. is cavity-depth-dependent, and in this work we study the generation of a voltage by suspended single-metal
: ACNTCs over various cavity depths, as shown in Fig. 1. In particular, we design ACNTCs to detect 28.3 THz
: electromagnetic waves because the IR source of our experiments is a CO, laser that is operating at this frequency.
. Therefore, we use half-wave dipole antennas that are fairly narrow band, and their frequency selectivity is tuned
. by their physical lengths. Because the interference caused by the cavity is also frequency dependent, the geometry
of the cavity has to also match the wavelength of the incident radiation. For applications that require broadband
. detection, e.g., energy harvesting, broadband antennas and matching cavity are required, but is not the focus of
- this paper.
: Experimental and simulation results show that the cavity reflects the incident radiation back to the anten-
nas, and interferences occur between the reflected and incident IR waves resulting in a cavity-depth dependent
response.
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Figure 1. Schematic of the suspended ACNTC. (a) Isometric view of the ACNTC and the cavity, (b) top view of
the primary and secondary antennas and the lead lines of the NTC.

Design and Fabrication

Nanoantenna design. Inorder to receive the 10.6-pum IR irradiation, the antenna length has to be matched
the effective wavelength of the incident electromagnetic waves. Similar to our previous work®, COMSOL
Multiphysics Simulation Software!® was used to determine the resonant antenna length, which was found to be
4.1 pm for our suspended primary dipole antenna. The hot junctions of the NTCs are placed at the center of the
antenna where the radiation-induced antenna currents are at maximum!'®. To further increase the heating of the
hot junction of the NTC, two nanowires were placed in parallel to the antenna, as shown in Fig. 1. The secondary
antennas also resonate with the incident radiation, which contributes additional antenna current and thus heating
of the hot junction. As a result, AT significantly increases, and a larger Seebeck voltage is induced. We have found
that maximum temperature increase is achieved when the secondary antennas are 500 nm away from the primary
antenna, and their lengths are 3.5 um. This paper reports mostly on the effects of the cavity parameters whereas
details of the effects of the primary and secondary antennas are reported elsewhere'”.

Nanothermocouple design. The heat produced by the nanoantenna is converted to electrical signals by
the NTC. Usually, thermocouples are constructed from two different conductors with different absolute Seebeck
coefficients (ASC). However, we have recently demonstrated'® that nanowire thermocouples can be constructed
from a single metal with a cross-sectional discontinuity at the hot junction. Single-metal NTCs are based on the
size-dependent ASC of metals at nanoscales. When the physical sizes (width and thickness) of metallic conduc-
tors are comparable to the electron mean free path, all transport properties reduce compared to their bulk val-
ues'”~2? due to the increase of grain boundary? and surface scattering*** of electrons. Size quantization effects?
are negligible in metals at these dimensions due to the very short Fermi wavelength?”. As a result, the ASC of
metal nanowires are reduced compared to their bulk values??%-32, We have previously shown?! that when narrow
and wide nanowire segments are joined at one end from the same metal, the reduction of the ASC of the narrow
wire segment is more prominent than in the wider wire segment. The resulting size-dependent difference in the
ASC leads to a measurable difference in the relative Seebeck coefficient (RSC)'8, thus creating a thermocouple
junction at the size discontinuity. In this work, we used single-metal NTCs to reduce the fabrication complexity
of the devices. We built single-metal NTCs from 65 nm and 330 nm wide Pd wire segments. Because the geometry
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Figure 2. SEM images of the suspended ACNTC. (a) The antenna structure and the cavity. (b) Enlarged view of
the primary and secondary antennas and the hot junction. The antennas and the narrow section of the NTC are
65nm wide, and the wider segment of the NTC is 330 nm wide.

of the NTC in ref.!® is the same as in this work without the cavity, the expected RSC of our single-metal NTC is
about 1.2 pV/K.

Fabrication. The suspended ACNTCs were fabricated on a high-resistivity Si wafer (>20,000 Q-cm) that
provides sufficient electrical isolation between the devices without the need for an oxide layer. The 200-nm-thick
Au bonding pads and lead lines for electrical and IR measurements were fabricated by using optical lithography.

A Raith 5200 EBPG electron beam lithography (EBL) system was used to pattern the ACNTCs. The receiv-
ing elements of the ACNTC were patterned into a methyl methacrylate (MMA) and polymethyl methacrylate
(PMMA) resist structure. The MMA layer was pre-exposed with a deep UV light source, providing a necessary
undercut in the resist profile to aid in the lift-off process. Development of the exposed patterns were performed
in a mixture of isopropanol (IPA) and methyl isobutyl ketone (MIBK) with a 3:1 ratio with 1.5% methyl ethyl
ketone (MEK)* for 45s. The 45-nm-thick Pd layer that forms the ACNTCs was electron beam evaporated, and
1-methyl-2-pyrrolidinone (NMP) was used for lift-off.

Next, the cavities were formed under the finished ACNTCs. A 6 pm x 6 pm square, centering the hot junction
of the ACNTCs, was exposed with EBL into a MMA/PMMA resist layer to form an etch window. After devel-
opment, the native oxide layer on the Si wafer was removed by reactive ion etching using a mixture of CHF,
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Figure 3. Cavity profiles imaged by (a) FEI Helios FIB, and (b) Olympus LEXT 4100. (c) Cavity profile by the
confocal microscope.

and O, for 30s at 300 W. Then, the cavities were formed by using gaseous XeF, to etch the Si substrate under the
ACNTCs. The physical geometry (depth and width) of the cavity is controlled by the pressure and etch duration.
Suspended ACNTCs with cavity depths ranging between 1 pm and 22 pm were fabricated.

A finished ACNTC with thermal insulation is shown in Fig. 2. The ACNTCs are nominally identical for all
cavity depths. The primary antenna is 4.1 pm long, and the secondary antennas are 3.5 pm long. The antennas
and narrow segment of the NTC are all 65 nm wide, while the width of the wide segment of the NTC is 330 nm.

Results

In this section, we discuss the characterization of the finished devices. The V response to IR excitation of the
ACNTC was recorded for various cavities. The cavity depths from each fabrication set were measured to account
for the lack of precision in the XeF, etch step.

Cavity depth. There are several ways to determine the cavity depth. Focused-ion beam (FIB) provides a
detailed view of the cross section of the cavity, including depth, width, and roughness, but provides a cross section
along only one line and is destructive. Hence, this method can be used only after the devices were tested for the
IR response. As an alternative, we used the Olympus LEXT OLS4100 laser confocal microscope to determine the
cavity depth and its profile, and used the FIB to confirm the results on selected samples. Figure 3a shows the cross
section of a cavity created with a FIB. Figure 3b,c show the image and profile of the same cavity acquired by the
Olympus LEXT, and by comparing Fig. 3¢ to Fig. 3a the obtained cavity depths are the nearly identical.

Figure 3a also shows that the side of the cavity has to be milled to reveal the cavity profile when using the
FIB, and as a result, the sample is damaged, while the confocal microscope can perform measurements without
damage.

Note, while the Olympus LEXT is capable of determining the cavity depth when ACNTCs are present above
the cavity, the laser scan is obstructed by the nanoantenna and NTC lead lines at the center of the cavity and
create a noisy cavity profile. Therefore, a bonding pad pair without any devices was dedicated for cavity profile
measurements.

In order to characterize the uniformity of the XeF, etch, cavities were fabricated on a chip without any
ACNTCs by the fabrication process presented above. The mean depth and width were 9.75 pm and 25.39 pm,
respectively. The dimensions of the cavities varied less than 0.65% over the entire chip within one fabrication run;
see Supplementary Information for details.

IR response. The fabricated devices were wire-bonded to a chip carrier and inserted into a chip socket on a
PCB with BNC connectors for electrical testing under IR irradiation. The PCB was attached to a translation stage
having three degrees of freedom. The LWIR source is a linearly polarized CO, laser operating at 28.3 THz. The
Voc response of an ACNTC is at maximum when the polarization of the incident laser beam is parallel to the axis
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Figure 4. (a) Measured and simulated responses of the suspended ACNTCs as a function of cavity depth. The
measured Vi and the simulated temperature increases are proportional to the relative Seebeck coefficient of
the NTC that is 1.2 wV/K. Simulated electric field intensity across the center of the cavity (b) for the first peak,
and (c) for the first valley of (a). In (b), the antenna is immersed in a field maximum, whereas in (c) the antenna
is immersed in a field minimum.

of the antenna as expected from antenna theory'. We used a half-wave plate to set the co-polarization state by
rotating the polarization of the laser beam. V- was measured using a high-input-impedance differential ampli-
fier and a lock-in amplifier synchronized with the laser beam chopper.

Figure 4 shows the measured V¢ as a function of cavity depth. Each data point represents the average value
of the responses of at a minimum 10 nominally identical devices, and the error bars are the standard deviation.
Figure 4 shows that V¢ oscillates with cavity depth, and the distances between the adjacent maxima or minima
are about 5 pm, which is about a half-wavelength of the incident radiation.

This behavior can be explained by the shape of the cavities. The isotropic nature of the Si etch in XeF, results
in a spherical cavity, as shown in Fig. 3. Therefore, the cavity does not just simply thermally insulate the devices
from the substrate by removing the Si and replacing it with air, which has a smaller thermal conductiv-
ity, ki, = 0.025 Wi ' K™, than Si, ig; = 134 Wi~ K. The wall of the cavity also acts as a mirror and reflects
the incident radiation. The reflected and incident radiations at the antenna interfere, and the responses of the
ACNTCGCs oscillate with cavity depth.

Figure 4 also shows that the response of the ACNTCs when the cavity depth is 5.6 pm deep is about 100
times larger than that of ACNTCs without any thermal insulation on a substrate, as reported previously®**. That
response is shown by the dash-dot line at a constant value of 30 nV.

Discussion
In order to support the experimental results, the expected temperature increase by the antenna was calculated
using COMSOL Multiphysics Simulation Software' for various cavity depths. The simulations take into account
the induction of antenna currents due to the incident IR radiation and resulting heating. It also includes the heat
flow along the antenna and lead lines of the NTC, and into the surroundings of the antenna. The simulated tem-
perature increases as a function of cavity depth are shown in Fig. 4.

The double left axis in Fig. 4 indicates the link between the measured V¢ and the simulated temperature
increase. As Eq. 1 shows, the two quantities are proportional by the relative Seebeck coefficient. We used
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AS = 1.2 uV/K, because the widths of the narrow and wide segments of the NTCs are the same as in ref.!s,
Therefore, the scales on the V- and temperature increase axis represent this proportion. Figure 4(b,c) show the
electric field intensity across the center of the cavity for the first interference peak and valley from Fig. 4(a). When
simulations and measurements show maximum ACNTC response, constructive interference occurs and the
intensity of the electric field is large at the antenna position. When the simulations and measurement show min-
imum ACNTC response, the intensity of the electric field is minimal due to destructive interference. Figure 4
shows that the experimental and simulation results are in excellent agreement, and confirm the oscillating
antenna behavior as a function of cavity depth.

Note that our initial model of the cavity was spherical for all cavity depths, which is a good approximation for
cavities deeper than 7 pm, as shown in Fig. 3. However, the bottom of shallower cavities is flat, and the simulation
overestimated the temperature increase because a spherical surface directs more IR radiation to the antenna than
does the flat cavity bottom. Therefore, the physical dimensions of the cavities, widths, depths, and profile were
extracted from Fig. 3c. Then the 3D model of the cavity was created with the Autodesk Fusion 360 CAD program,
and imported to COMSOL where the remaining part of the structure was modelled and simulated. The tempera-
ture values on Fig. 4 represent this modeling.

The small deviation between simulation and mean values found in the experiment demonstrate that the
ACNTC responses are highly dependent on cavity depth. Conversely, the large standard deviation of nominally
identical devices can be explained by fabrication errors including the roughness of the cavity surface after XeF,
etching. Loss of the primary and secondary antenna planarity due to residual stress causes further loss in detec-
tion efficiency resulting in a smaller V5 than that predicted by the simulations.

Summary and Conclusion

We show that thermal insulation of ACNTCs from the substrate by suspending them over a cavity increases the
device response by almost 100-fold. The optimized shape and geometrical dimensions of the cavity are essential
to reach such an increase. The cavity does not just eliminate most thermal losses to the Si (leaving only thermal
conductance through the lead lines and air), but it also reflects the electromagnetic waves and causes interferences
at the antenna. For example, when the depth of the cavity is 7.5 pum, the V¢ response of such devices is only 1.5
times larger than devices without any thermal insulation on a substrate, while with cavity depth of 5.6 pum, the
increased response is 100 times larger.

This technique might be also useful for other antenna-coupled detectors, even for those that are not based
on thermal effects, because the radiation-induced antenna current increases with properly designed cavities due
to constructive interference. As a result, the rectified signal and hence the device performance can be increased.
In this work, the experimental and simulation results represent the response of ACNTCs operating at 28.3 THz.
Because the oscillating cavity behavior is proportional to the wavelength of the incident radiation, the cavity size
has to be adjusted for different wavelengths.

Note that the structure of our antenna configuration is very similar to a spherical reflector IR antenna®*¢;
however, the distance between the feed antenna (primary and secondary antennas) and the spherical reflector
(cavity wall) is less than 2X. Thus, the reflector is in the near-field of the feed antenna, and as a result our sensor
size is about five times smaller.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding
author on reasonable request.
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