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ABSTRACT
In animal cells cytokinesis relies on the contraction of an actomyosin ring that pulls the plasma
membrane to create a cleavage furrow, whose ingression finally divides the mother cell into two
daughter cells. Fungal cells are surrounded by a tough and flexible structure called cell wall, which
is considered to be the functional equivalent of the extracellular matrix in animal cells. Therefore, in
addition to cleavage furrow ingression, fungal cytokinesis also requires the centripetal formation of
a septum wall structure that develops between the dividing cells, whose genesis must be strictly
coordinated with both the actomyosin ring closure and plasma membrane ingression. Here we
briefly review what is known about the septum structure and composition in the fission yeast
Schizosaccharomyces pombe, the recent progress about the relationship between septum
biosynthesis and actomyosin ring constriction, and the importance of the septum and ring in the
steady progression of the cleavage furrow.
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Introduction

Cytokinesis is the final step of the eukaryotic cell cycle
where, after the mitotic exit, the ingression of a cleavage
furrow allows the partition of the cell into two new cells.
In animal cells furrow formation requires the formation,
maintenance, and closure of a contractile actomyosin
ring (CAR), tied to the deposition of new plasma mem-
brane material. Fungal cells are enveloped by a cell wall,
whose rigidity and resistance are determined by its com-
position and the mechanical force exerted against the
hydraulic turgor pressure inside the cell.1-3 Therefore,
fungal cell division requires that CAR contracts in coor-
dination with the centripetal biosynthesis of a special
wall structure called division septum.3,4

Animal cells are surrounded by an extracellular
matrix, a structure composed of polysaccharides and
proteins. Although the extracellular matrix does not pro-
vide osmotic support, it is considered to be the functional
analog of the fungal cell wall. Similar to fungal cells,
some extracellular matrix polymers have been depicted
as being important for cytokinesis.5-8

The cell wall and septum are essential structures for
cell shape maintenance, and thus extending our knowl-
edge of the morphogenesis processes is significantly

important.2,3,9 The fission yeast Schizosaccharomyces
pombe has become widely popular for the study of
eukaryotic morphogenesis and cell division as it exhibits
a rod shape with a simple polarized growth pattern, and
because its cell cycle and cytokinesis are remarkably sim-
ilar to that of animal cells.10 Here we summarize how the
septum is constructed in coordination with the CAR and
plasma membrane ingression, followed by a debate
regarding the impact of septum and ring biogenesis in
cleavage furrow ingression in fission yeast.

Cell wall and septum in fission yeast

In fission yeast two glucose polysaccharides are the
main structural polymers of the cell wall, b(1,3)-D-
glucan with 14% of b(1,6) branches (B-BG) that con-
stitutes 48-54% of the cell wall, and a(1,3)-D-glucan
with 7% of a(1,4) bonds located at the reducing end
of each chain, representing 28-32% of the cell wall.11-
14 The b(1,6)-D-glucan with 75% of b(1,3) branches
only represents 5-10%.15,16 Additionally, the galacto-
mannan bound to proteins forms the glycopro-
teins.11,17,18 Under electron microscopy the cell wall
shows two electron dense layers of galactomannan,18
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separated by a non-dense layer of B-BG and a(1,3)-
D-glucan, with the b(1,6)-D-glucan appearing closer
to the outer galactomannan layer (Fig. 1).12,16,19

Once the CAR is formed and matures throughout ana-
phase,4 coordinated and simultaneous CAR closure and
septum formation only initiate after breakage of the
mitotic spindle.20 The three-layered septum structure
displays a middle electron-transparent primary septum
(PS) flanked by an electron-dense secondary septum (SS)
on each side (Fig. 1). After completion, the septum
thickness increases through an additional round of SS
synthesis.2,7,21 The fission yeast septum comprises different
essential glucans. b(1,6)-D-glucan is localized in the SS; a
linear b(1,3)-D-glucan (L-BG) is located and abundant in
the PS; and B-BG and a(1,3)-D-glucan are located in both
PS and SS (Fig. 1).2,19,22 The electron dense glycoprotein
layers are not observed in the septum structure, however
galatomannoproteins have been detected in the SS by
immunoelectron microscopy with a gold particle-labeled
lectin specific for terminal residues of galactose.18,23

Synthesis of the fission yeast septum

As stated above, the fission yeast septum is mainly com-
posed of essential a- and b-glucans. Although the
b(1,6)-D-glucan must be important to interconnect the
wall polysaccharides, our knowledge about how it is syn-
thesized and incorporated into the fission yeast cell wall
is still very limited.24

b(1,3)-D-glucan synthases

In fungal cells, the in vitro b(1,3)-D-glucan synthase
(GS) activity is responsible for the biosynthesis of

short chains of linear b(1,3)-D-glucan. The
essential GTPase Rho1 is a regulatory subunit of this
activity.25 The GS catalytic subunit is formed by the
family Bgs/Fks in fungi, and the callose synthases,
CalS, in plants. All of these are large proteins
(»200 KDa) with 15-16 putative transmembranal
domains along two hydrophobic regions. Their central
hydrophilic region displays a high identity (> 80%)
between all Bgs/Fks/CalS proteins. This region is
thought to be located on the cytoplasmic face of the
plasma membrane and to be essential for the function
of the GS.26,27 In fission yeast four GS catalytic subu-
nits have been identified, three of them being essen-
tial (Bgs1, 3 and 4) during vegetative growth, and the
last one (Bgs2), being only essential for the GS activ-
ity required for the synthesis of the spore wall b(1,3)-
D-glucan during the sexual phase of the life
cycle.22,28-33 Although the absence of bgs3C causes the
death of the cell, the specific function of Bgs3 in the
cell wall and septum assembly still remains unknown.
Bgs1, 3 and 4 appear in the CAR and septum during
cytokinesis and in the cell ends during polar growth.
Additionally, they are detected in the sites of wall
synthesis during sexual differentiation. Since they are
essential for cell survival, the GS catalytic subunits
must display differential and vital non-overlapping
roles in the biogenesis of b-glucans during cell wall
and septum assembly. In the next sections
we will describe the known roles of Bgs1 and Bgs4
during the cell cycle, mainly cytokinesis. Despite Bgs3
has to be crucial for septum and/or cell wall assem-
bly, its specific role is unknown (see above), and
therefore this subunit will not be additionally
discussed.

Figure 1. Scheme showing the differential composition of the cell wall and the septum structures. Under transmission electron micros-
copy, the cell wall (CW) presents two electron dense layers of galactomannoproteins, separated by a non-dense layer composed of B-
BG, a(1,3)-D-glucan and b(1,6)-D-glucan. The three-layered septum structure displays a middle primary septum (PS) flanked by two
layers of secondary septum (SS). Both septum structures contain B-BG and a(1,3)-D-glucan. The b(1,6)-D-glucan is only detected in the
SS; while the L-BG is exclusively found in the PS.
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Bgs1/Cps1

The gene bgs1C was initially identified by complemen-
tation of the cps1-12 mutant hypersensitive to the spin-
dle poison chlorpropham and to Papulacandin, a
specific inhibitor of the GS. This mutant displayed a
multiseptated and branched phenotype, and thus it was
proposed that Bgs1 could be a GS involved in cytokine-
sis, polarity and cell wall morphogenesis.34 Two other
mutants, swl1-N12 (cps1-N12) and drc1-191 (cps1-191),
were described as forming a stable CAR, but unable to
assemble the division septum, implicating Bgs1 in a
septation checkpoint.35,36 The cytokinesis mutant phe-
notypes described above, together with the findings
that Bgs1 was localized at the CAR, and that it was
essential for cell survival, allowed to suggest that it
could be required for PS formation.29,31 However, the
fact that other GSs also localize to the CAR, and Bgs1
localizes not only to the CAR, but also to the growing
poles, made more complicated to draw conclusions
about the specific role of Bgs1 during septation,29 and
therefore, additional experiments were required to
undoubtedly demonstrate the function of Bgs1 synthe-
tizing the L-BG of the PS. Depletion or absence of Bgs1
induces a phenotype of multiseptated cells that eventu-
ally die. Analysis of the septa formed in bgs1D cells
from germinating bgs1D spores under electron micros-
copy established that Bgs1 is responsible for the L-BG
synthesis and PS formation, and that the fluorochrome

calcofluor binds specifically to the L-BG of the chitin-
lacking PS of fission yeast.22

Bgs4/Cwg1/Pbr1

Bgs4 is the only subunit that has been shown to form
part of the GS enzyme. It is responsible for the synthesis
of the cell wall B-BG and the major in vitro GS activity.
The B-BG produced by Bgs4 is vital to maintain cell
shape and integrity and for SS formation and correct PS
completion during cytokinesis.7,28,37-39 Fungal resistance
to GS inhibitors is clearly associated with mutations
grouped in conserved short regions (hot spots) of the
Bgs/Fks proteins,40,41 indicating that this resistance
mechanism is well conserved in fungi (Fig. 2). To date,
the only identified mutants of fission yeast that display
reduced levels of cell wall b-glucan and GS activity,38,39

or resistance to the specific GS inhibitors,42 are due to
point mutations in the Bgs4 sequence. The study of these
resistant mutants extended the resistance hot spot 1 to
13 aminoacids, and distingued a new resistance hot spot
1-2 (Fig. 2).41 The fact that a simple mutation within
Bgs4 conferring resistance to specific GS inhibitors, with
Bgs1 and Bgs3 being wild-type, suggests that Bgs1 and
Bgs3 are intrinsically natural resistant to known GS
inhibitors. Thus, the available GS inhibitors (echinocan-
dins, enfumafungin and papulacandins) only suppress
GS activity through Bgs4, and not those derived from

Bgs4 696 CKFAESYFFLTLSIRDPIIVLSTMRPYLCSIYWAGSRLCFVQPRIILGIMYFTDLILFFLDTYLWYIIFN 765
Bgs1 515 AKFLESYFFLTLNLADSIRFLGAMRPYDCRDYILGAGLCKAQPKILLSLLYLTDLSLFFLDTYLWYILIS 584
Bgs2 666 AKFTESYFFLSLSFRDPILVLSTMKPYLCNITFLGSHLCIWQPKILLGIMYVTDLVLFFLDTYLWYILVN 735
Bgs3 606 AKFVESYYFLTLSVRDPIRFLQRMKPYDCYDFMIGASLCSHQPKFLLSLVYLTDLVLFFLDTYLWYMLIS 675

Sc Fks1 631 AKYSESYYFLVLSLRDPIRILSTTAMRCTGEYWWGAVLCKVQPKIVLGLVIATDFILFFLDTYLWYIIVN 700
Sc Fks2 650 AKYAESYFFLILSLRDPIRILSTTSMRCTGEYWWGNKICKVQPKIVLGLMIATDFILFFLDTYLWYIVVN 719
Ca Gsc1 633 AKLVESYFFSTLSLRDPIRNLSTMTMRCVGEVWYKDIVCRNQAKIVLGLMYLVDLLLFFLDTYMWYIICN 702
Cg Fks1 617 AKYAESYYFLILSLRDPIRILSTTTMRCTGEYWWGSKLCRHQSKIVLGLMIATDFILFFLDTYLWYIVVN 686
Cg Fks2 651 AKYSESYFFLILSLRDPIRILSTTTMRCTGEYWWGSKLCRHQSKIVLGFMIATDFILFFLDTYLWYIVVN 720

.*  ***:* *.. *:*  *                :*  *.:::*.::  .*: *******:**:: .

Bgs4pbr1-8 - E700V

Sc Fks2-1 - I660K

Bgs4pbr1-6 - W760S

Sc Fks1 - L642S
Ca Gsc1 - L644F

RESISTANCE HOT SPOT 1-2

Ca Gsc1 - S645P,Y,F,C
Cg Fks1 - S629P
Cg Fks2 - S663P

Sc Fks1-3 - D646Y
Ca Gsc1 - D648Y
Cg Fks1 - D632G,E,Y
Cg Fks2 - D666G,E

Ca Gsc1 - P649H
Cg Fks2 - P667T

Sc Fks1-2 - F639I
Ca Gsc1 - F641S,Y,L
Cg Fks1 - F625S
Cg Fks2 - F659S,V

RESISTANCE HOT SPOT 1-1

Figure 2. Protein alignments of two conserved regions of Bgs1, Bgs2, Bgs3 (blue), and Bgs4 (green) from S. pombe, and Fks1, Fks2 and
Gsc1 (Fks1) from Saccharomyces cerevisiae (Sc), Candida albicans (Ca), and Candida glabrata (Cg). Mutations in the residues depicted in
red confer resistance to specific GS antifungals, defining a resistance hot spot 1. The Bgs4pbr1-8 mutation is N-terminal located in a hot
spot 1-1 of 13-amino acids conferring resistance to the GS inhibitors. The Bgs4pb1-6 change defines a hot spot 1-2 of resistance located
C-terminal from hot spot 1-1. Adapted from ref. 41.
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Bgs1 or Bgs3.41 In accordance with this, Bgs4 depletion
induces the same lytic phenotype as that observed in
wild-type cells treated with lethal doses of GS inhibi-
tors,28,41,43 as this is not the case for Bgs1 and Bgs3.

a(1,3)-D-glucan Synthase: Ags1/Mok1

In contrast to GS activity, an in vitro a(1,3)-D-glucan
synthase activity has not yet been detected. Ags1 is the
putative a(1,3)-D-glucan synthase responsible for the
synthesis of the cell wall a(1,3)-D-glucan.44,45 Similar to
Bgs proteins, Ags1 is found in the CAR, septum, growing
poles, and sites of wall synthesis during sexual differenti-
ation.2 During septation Ags1 is required for the straight
progression of the PS, suggesting that Ags1 might collab-
orate with Bgs1 and the CAR. In addition, together with
Bgs4, it is responsible for the assembly of the SS, and the
maintenance of cell integrity. Importantly, Ags1 provides
the strength needed to PS to counteract the turgor pres-
sure for a gradual cell separation.2 Four additional
ags1C/mok1C homologs, which are only expressed dur-
ing sporulation, have been identified in fission yeast.46

b-glucans participate in the anchorage of the ring
before septation

To create two daughter cells, the CAR must be placed and
kept in the cell middle before the onset of septation. In fis-
sion yeast the nucleus and the anillin Mid1 mark the site
that localizes the CAR in the cell middle.4 However, dur-
ing and after assembly this ring must be spatially main-
tained in the same place for proper cell division to occur.
Studies using protoplasts, deprived of their cell walls, sug-
gested that new membranes and/or septum ingression
might stabilize and maintain the ring in the middle of the
cell.47,48 Similarly, in arrested cps1-191 mutant cells lack-
ing either microtubules or Mid1 the CAR can be observed
sliding sideways.49,50 Since the CAR begins constriction
after mitosis completion,20 it seems probable that the
extracellular cell wall in combination with some trans-
membranal proteins might help to keep the correct posi-
tion of CAR until septum and cleavage furrow ingression
begin at the end of anaphase. The observation of mis-
placed and unstable rings in cells with reduced Bgs4-
dependent B-BG supports this hypothesis, and suggests
that the CAR is bound to the extracellular cell wall B-BG
through the plasma membrane.7 As described above, and
similar to Bgs4, Bgs1 also participates in the stable mainte-
nance of the CAR in the cell middle. The F-BAR protein
Cdc15 may contribute to the transport of Bgs1 (and prob-
ably the rest of Bgs and Ags1 proteins) from the Golgi
apparatus to the plasma membrane.51 Thus, when Bgs1
location in the cell division site is delayed by the presence

of a compromised Cdc15, the CAR slides away from the
cell middle.51 However a similar delay is also observed in
Ags1, suggesting that the reason for the late localization of
Bgs1 could be a general delay and/or the formation of a
compromised CAR when the essential function of Cdc15
is reduced.2,4,52 Despite these observations, to date it is not
known whether Bgs1 itself or the synthetized chains of L-
BG are responsible for the stable CAR placement, and
how the CAR is attached to the plasma membrane and
connected to the cell wall glucan. Recently, it has been
reported that the absence of paxillin, Pxl1, a conserved
ring protein required for CAR integrity and whose locali-
zation depends on the SH3 domains of the homologs
Cdc15 and Imp2,53-55 induces simultaneous Bgs1 and
CAR sliding from the cell middle until the CAR begins to
constrict and the PS is detected.56 This observation, and
the fact that Bgs1 mutant cps1-191 also displays CAR slid-
ing,49-51,56 suggest that the mere presence of Bgs1 is not
enough to stably maintain the ring location. Interestingly,
the combined reduction of function of Pxl1 and Cdc15
induces Bgs1 and CAR sliding even after activation of
synthesis of a L-BG material, which is visualized along the
longitudinal axis of the cell without cleavage furrow
formation. Therefore, suggesting that cooperation between
both CAR proteins is needed to coordinate the simulta-
neous activation of Bgs1 GS synthesis and CAR
constriction.56

Role of b-glucans coupling septum synthesis with
cleavage furrow ingression

Recent studies have revealed that both septum synthesis
and CAR constriction are required for the correct

CAR  

PM  

PS  

PM  

SS  

PS  

CAR  

Wild type  Bgs4 absence  

PM  

PS  

CAR  
CAR  

PM  

PS  

Figure 3. Model of advanced fast CAR and septum membrane
ingressions uncoupled from delayed PS synthesis in the absence
of the branched b(1,3)-D-glucan synthesized by Bgs4. A loose
CAR devoid of tensile force promotes the synthesis of misdirected
septum. The septum membrane progresses without CAR constric-
tion and septum synthesis forces. CAR, actomyosin ring; PM,
plasma membrane; PS, primary septum; SS, secondary septum.
Adapted from ref. 7.
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ingression of the cleavage furrow.7,57 The intimate cor-
relation between CAR closure and septum genesis has
traditionally complicated the deciphering of, as in ani-
mal cells, weather the CAR produces the mechanical
force that invaginates the plasma membrane covering
the septum.58 The analysis of the cell division region of
wild-type cells under transmission electron microscopy
showed growing septa that in some cases appeared bent

and misdirected. Furthermore, mutants affected in
CAR assembly are able to form septa, suggesting that
the sole synthesis of the growing septum is able to push
the plasma membrane.58 In support of this, it has been
reported that largely advanced septa are slowly com-
pleted in the presence of the actin depolymerizing drug
latrunculin A. It is important to note that small septa
are unable to advance, indicating that the CAR is still

Figure 4. Scheme of the proteins connecting the CAR with the biosynthesis of the septum wall. Type II myosin Myo2, Cdc15 and other
essential regulators locate early in the CAR assembly site.20 Cdc15 recruits the formin Cdc12 through its F-BAR domain.60 Later, Cdc15
and Imp2 61 collaborate through their SH3 domains to stabilize the CAR by recruiting the paxillin Pxl1 and many other proteins.52,62

Pxl1 helps to stabilize the CAR through Myo2,53,54 while Cdc15 function is required for the translocation of glucan synthase Bgs1 from
the Golgi apparatus to the plasma membrane in the division site.63 Pxl1 and Bgs1 cooperation results essential for septum biogenesis
and cleavage furrow ingression, probably because of their role maintaining the stable location of the CAR and the other septum glucan
synthases, Ags1, Bgs4 and probably Bgs3.56
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essential for general septum ingression. In any case, all
these observations together with the reduced rates of
septum ingression in cps1-191 mutant cells, lead to pro-
pose that Bgs1-dependent L-BG provides the mechani-
cal force needed for plasma membrane ingression.3,57

However, this hypothesis opposes the fact that the
absence of the major B-BG, synthesized by Bgs4 and
present in both PS and SS, causes misdirected septum
formation, indicative of a weak, labile and larger CAR
and a faster ring and membrane ingression separated
away from the PS synthesis, which is delayed (Fig. 3).
This observation led to suggest that cleavage furrow
ingression could progress just by the fusion of mem-
brane vesicles to the tip of the advanced septum mem-
brane, without the need of the mechanical force of the
newly synthetized glucans or the pulling force of CAR
contraction.7 Moreover, the close relationship between
CAR and the septum makes drawing conclusions diffi-
cult as regards the real influence of both CAR constric-
tion and PS synthesis to the force required for septum
membrane ingression. With this in mind, it has been
shown that the septum L-BG or Bgs1 seems to contrib-
ute to the maintenance of the ring structure during sep-
tation, based on the fact that a reduction of Bgs1
function in cps1-191 cells triggers the disorganization of
the constricting ring.56 Bgs1 also cooperates with Pxl1
keeping the CAR and allowing septum ingression.
Thus, when Bgs1 is depleted in cells deprived of Pxl1
function, the CAR disassembles prematurely and sep-
tum formation is abolished.56 Importantly, Pxl1 coop-
erates with Bgs1 to restrict the region of septum
synthesis by delimiting the location of the synthases
Ags1, Bgs4, and probably Bgs3 (Fig. 4). Therefore, sep-
tum and cleavage furrow formation in cells depleted of
Bgs1 depend exclusively on the presence of Pxl1 in the
CAR.56

Concluding remarks

Bgs1 is responsible for the L-BG synthesis because L-BG
and the corresponding PS are absent in bgs1D cells.22

However, although the available Bgs1 mutants have
proved to be useful in the study of the functions of this
GS subunit,34-36,51,56,57 their morphological phenotypes
are different from those observed in bgs1D cells, and it is
unknown how these point mutations compromise bio-
chemically the L-BG synthesis or any additional function
of Bgs1. Future studies are required that delve into the
GS activity and the cell wall ultrastructure and composi-
tion of these mutants.

Our recent study indicates that cooperation of Bgs1
and Pxl1 is required to maintain the other GS subunits
in the division site.56 Although, how this is accomplished

is still unknown. In focal adhesions, paxillin connects
and reinforces the linkages between the extracellular
matrix and cytoskeleton through the transmembranal
a-integrins.59 Therefore, a noteworthy hypothesis is that
Pxl1 might act as a mechanosensor to transmit the CAR
tension to activate the Bgs1 function in the plasma mem-
brane, which somehow would help to concentrate Ags1,
Bgs3 and Bgs4 in the cell equator (Fig. 4). In the absence
of Bgs1 and Pxl1 there is no PS synthesis and this could
trigger the breakage of linkages between the plasma
membrane and CAR, which would ultimately promote
Ags1, Bgs3 and Bgs4 delocalization,56 leading to a wide-
spread SS synthesis and absence of cleavage furrow
ingression.
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