
entropy

Article

Heat Transfer Enhancement in Unsteady MHD Natural
Convective Flow of CNTs Oldroyd-B Nanofluid under
Ramped Wall Velocity and Ramped Wall Temperature

Talha Anwar 1 , Poom Kumam 2,3,4,* , Ilyas Khan 5 and Wiboonsak Watthayu 1

1 Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT),
126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand; anwartalha80@gmail.com (T.A.);
wiboonsak.wat@kmutt.ac.th (W.W.)

2 KMUTT Fixed Point Research Laboratory, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building,
Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT),
Bangkok 10140, Thailand

3 Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building, Faculty
of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod,
Thrung Khru, Bangkok 10140, Thailand

4 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

5 Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
i.said@mu.edu.sa

* Correspondence: poom.kumam@mail.kmutt.ac.th

Received: 13 March 2020; Accepted: 27 March 2020; Published: 31 March 2020
����������
�������

Abstract: This article analyzes heat transfer enhancement in incompressible time dependent
magnetohydrodynamic (MHD) convective flow of Oldroyd-B nanofluid with carbon nanotubes (CNTs).
Single wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) are immersed in a
base fluid named Sodium alginate. The flow is restricted to an infinite vertical plate saturated in a porous
material incorporating the generalized Darcy’s law and heat suction/injection. The governing equations
for momentum, shear stress and energy are modelled in the form of partial differential equations along
with ramped wall temperature and ramped wall velocity boundary conditions. Laplace transformation is
applied to convert principal partial differential equations to ordinary differential equations first and, later,
complex multivalued functions of Laplace parameter are handled with numerical inversion to obtain the
solutions in real time domain. Expression for Nusselt number is also obtained to clearly examine the
difference in rate of heat transfer. A comparison for isothermal wall condition and ramped wall condition
is also made to analyze the difference in both profiles. A graphical study is conducted to analyze how the
fluid profiles are significantly affected by several pertinent parameters. Rate of heat transfer increases
with increasing volume fraction of nanoparticle while shear stress reduces with elevation in retardation
time. Moreover, flow gets accelerated with increase in Grashof number and Porosity parameter. For every
parameter, a comparison between solutions of SWCNTs and MWCNTs is also presented.
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1. Introduction

In emerging and modern technologies, non-Newtonian fluids are acquiring attention because of
their higher practical significance. Examples of non-Newtonian fluids are honey, paints, toothpaste,
polymer solutions and greases. In order to predict the features of such fluids, there exist many models.
The relation which links shear rate and shear stress is nonlinear for non-Newtonian fluids. Therefore,
the resulting flow equations associated to non-Newtonian fluids have higher order and are more complex
than Navier Stokes equation. Due to these additional non linear terms, such fluids are hard to tackle.
The purpose of forecasting the flow profile of non-Newtonian fluids together with handling non linear
terms effectively is served by producing several mathematical models. The three principal types of such
models are named integral, rate and differential models. Integral models incorporate substances like
polymers which melt with noticeable memory. In such models, deformation gradient provides information
about stress. While, there exists an implicit relation between stress and its higher order derivatives in rate
type fluids. On the other hand, stress for fluids lying in the category of differential model is derived by its
several higher derivatives.

In the current work, a subdivision of rate type fluid named Oldroyd-B fluid is selected due to
its relatively higher significance, when it comes to prediction of both memory and elastic effects [1].
This model even preserves rheological effects for flows in one direction and for extensional flows it has
non-physical singularity. This model was first given by James G. Oldroyd to anticipate the viscous and
elastic profile of fluids. This model can be viewed as a generalization of Upper Convected Maxwell
model, when viscosity of solvent is zero. Moreover, Maxwell material and viscous fluid are special cases
of this model [2,3]. Das et al. studied the impact of magnetic field on oldroyd-B nanofluid for porous
surface [4]. Subbarao et al. investigated the behavior of Oldroyd-B nanofluid under thermal radiation for
stretching sheet [5]. Gupta et al. obtained the numerical solutions for three dimensional flow of Oldroyd-B
nanofluid for bidirectional moving sheet [6]. The effect of thermophoresis on Oldroyd-B nanofluid flow
was examined by Awad et al. [7]. Khan et al. provided the variation in oldroyd-B nanofluid, when heat is
consumed or generated [8].

All aforementioned studies of Oldroy-B fluid do not involve the tube-shaped nanoparticles named
carbon nanotubes (CNTs). These CNTs can be bent without any harm and have greater thermal
conductivity and mechanical strength, when compared with other types of nanoparticles. These properties
make them appealing and more applicable for practical purposes. In present study, two types of CNTs
named SWCNTs and MWCNTs are considered. CNTs are said to be best heating conductors. CNTs
applications include advanced electrodes, energy storage, conductive films and coatings (including
transparent conductive coatings), solar, wearable electronics, thermal interface materials, structural
materials, catalyst supports, biomedical and sensor applications.

SWCNTs are defined as one dimensional, cylindrical shaped allotropes of carbon that have a high
surface area and aspect ratio as shown in Figure 1a [9]. In Figure 1b [9], three different kinds of structures of
SWCNTs (Armchair, Zigzag, Chiral) are presented. MWCNTs consist of multiple rolled layers (concentric
tubes) of graphene layers in one dimensional format. The properties of MWCNTs are unique because they
come in a complex array of forms and each concentric nanotube can have a different structure as shown in
Figure 2 [9]. MWCNTs enhance the thermal, electrical and mechanical strength of the connected material,
therefore they are point of interest for researchers these days.

The theme of nanofluids was initiated by Choi [10], when he suspended nano-sized solid particles
in base fluid and the successive fluid was called nanofluid. Nanofluids have different sizes, types, and
shapes depending upon the suspended nanoparticles, see [11–16]. Eid et al. employed finite element
method to evaluate the solution of Blood-based SWCNTs flow through a circular cylinder in presence of
electromagnetic radiation and a porous medium [17]. Boumaiza et al. studied analytical and numerical



Entropy 2020, 22, 401 3 of 22

solutions for mixed convection Falkner-skan flow of nanofluids with variable thermal conductivity [18].
Effects of inclined magnetic field and variable thermal conductivity on heat transfer of squeezing unsteady
nanofluid flow were analyzed by Lahmar et al. [19]. Eid et al. investigated the effects of convective
condition and nanoparticles’ shapes on flow of non-Newtonian bio-nanofluids in blowing/suction
process [20]. Combination of ramped boundary conditions and nanofluid is of effective significance
physically but there is a dearth of articles in literature incorporating the solution of such flows. One of
the significant reason is that handling the subsequent complex expressions is very problematic. However,
these simultaneous ramped conditions have imperative utilities such as heart deceases diagnoses and
working analysis of vessels of blood. Kundu proposed a cancer treatment, based on a therapy inculcating
several types of boundary conditions along with ramped wall conditions, which has no side harm for
human body [21]. Extensively, these conditions have vital association with human health and daily life
related problems like use of Ergometer or treadmil testing for diagnoses of cardiovascular deceases [22].
Further, Astrand and Rodahl [23], Bruce [24], and Myers and Bellin [25] played their role to enhance the
effectiveness of treadmil testing.

Figure 1. (a) Structure of single wall carbon nanotubes (SWCNTs). (b) Structure of three types of
carbon nanotubes (CNTs).

Figure 2. Structure of multi-wall carbon nanotubes (MWCNTs).
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Initially, the idea of combined ramped boundary conditions was introduced by Ahmed and Dutta [26]
to analyze the flow over an infinite vertical plate. Seth et al. [27–29] investigated thermal and momentum
profiles with ramped temperature conditions for stretching vertical sheets. The effect of wall heating
on mass and energy curves for infinite vertical plate was studied by Narahari et al. [30]. Recently,
Chandran et al. [31] observed the variation in momentum boundary layer thickness subjected to ramped
temperature condition. Zin et al. [32] extended the study of Khan [33] on MHD flow of Jeffery fluid
for ramped wall temperature. Maqbool et al. [34] further extended this work for ramped wall velocity
condition to examine the significance of simultaneous boundary conditions. Mazhar et al. [35] conducted
a study to observe the mass and energy behavior for Oldroyd-B fluid subjected to simultaneous ramped
conditions. More practical utilities of ramped wall conditions can be seen from the contribution of
Schetz [36], Hayday [37] and Malhotra [38].

On the basis of such strong motivation, we have considered incompressible, time-dependent MHD
convection flow. Moreover, heat suction/injection is also introduced to the flow with the existence of a
porous medium. The ramped velocity and ramped temperature conditions are considered at the wall
simultaneously. Laplace transformation is implemented to reach out to the solutions.

2. Mathematical Modeling and Formulation of Problem

The unsteady, incompressible and magneto-hydrodynamics motion of Oldroyd-B nanofluid over an
infinite vertical plate under the Boussinesq’s approximations [39] can be governed by the the succeeding
equations [40,41].

∇ ·V = 0, (1)

ρn f

[
∂V
∂t

+ (V.∇)V
]
= divT + J× B + g(ρβ)n f (T − T∞) + r, (2)

where ρn f , r, B, J, g, β, T, T∞ and t represent nanofluid density, Darcy’s resistence, total magnetic field,
current density, standard gravitational force, constant of thermal volume expansion, temperature of
nanofluid, ambient temperature and time respectively. Moreover, velocity V, accounting one-dimensional
and uni-directional flow and the Cauchy stress tensor T are defined as

V = [u(y, t), 0, 0], (3)

T = −PI + S, (4)

where S and −PI denote the extra stress tensor and indeterminate stress tensor respectively. Moreover, S
holds the following relation

µn f

(
1 + λr

D
Dt

)
A1 = S

(
1 + λ

D
Dt

)
, (5)

where µn f refers to dynamic viscosity of nanofluid. λr and λ refers to retardation and relaxation time
respectively. Additionally, material time derivative D

Dt and Rivlin-Ericksen tensor A1 are defined as

DS
Dt

=
∂S
∂t

+ u
∂S
∂x

+ v
∂S
∂y

+ w
∂S
∂z

, (6)

A1 = ∇V + (∇V)T =

(
0 uy

uy 0

)
. (7)
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For Oldroyd-B nanofluid, modified Darcy’s law is defined as

−
µn f φ

k

(
1 + λr

∂

∂t

)
V =

(
1 + λ

∂

∂t

)
r, (8)

where k and φ denote permeability and porosity of the medium respectively. The equations of Maxwell
are given as

divB = 0, curlB = µmJ, curlE = −∂B
∂t

, (9)

and

J× B = −(σn f B2
0u, 0, 0), (10)

where µm, σn f and E refer to magnetic permeability, electrical conductivity of nanofluid and electric field
respectively. The total magnetic field is given as B = B0 + b0. Here, B0 denotes the magnetic field applied
and b0 denotes the magnetic field induced.

In the presence of Equations (3)–(7), simplified form of (2) can be presented as

ρn f
∂u
∂t

= (ρβ)n f g(T − T∞) + rx + (J× B)x +
∂Sxy

∂y
. (11)

On using Maxwell’s equations and modified Darcy’s law in above equation and multiplying it by
(1 + λ∂t), we obtain the following form

(1 + λ∂t)ρn f
∂u
∂t

= (1 + λ∂t)(ρβ)n f g(T − T∞)− (1 + λr∂t)
µn f φ

k
u

− (1 + λ∂t)σn f B2
0u + (1 + λ∂t)

∂Sxy

∂y
. (12)

Plugging relation (1 + λ∂t)Sxy = µn f (1 + λr∂t)uy into the above equation and rearranging the
resulted equation leads to form mentioned below

ρn f (1 + λ∂t)
∂u
∂t

= µn f (1 + λr∂t)
∂2u
∂y2 + g(ρβ)n f (1 + λ∂t)(T − T∞)

− σn f B2
0(1 + λ∂t)u−

µn f φ

k
(1 + λr∂t)u. (13)

The geometrical presentation of considered model is provided in Figure 3.
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Figure 3. Geometrical presentation of flow.

The governing equations of mass, shear stress and energy transfer under Boussinesq’s approximation
incorporating carbon nanotubes are provided as(

1 + λ
∂

∂t

)
∂u
∂t

= νn f

(
1 + λr

∂

∂t

)
∂2u
∂y2 +

1
ρn f

(ρβ)n f g
(

1 + λ
∂

∂t

)
(T − T∞)

−
σn f B2

0

ρn f

(
1 + λ

∂

∂t

)
u−

νn f φ

k

(
1 + λr

∂

∂t

)
u, (14)(

1 + λ
∂

∂t

)
τ = µn f

(
1 + λr

∂

∂t

)
∂u
∂y

, (15)

(ρcp)n f
∂T
∂t

= kn f
∂2T
∂y2 + Q0(T − T∞), (16)

where kn f , (ρcp)n f and Q0 denote the nanofluid thermal conductivity, nanofluid heat capacitance and heat
injection/suction respectively.

The interesting initial and boundary conditions involving ramped velocity and ramped temperature
conditions at wall are defined as

u(y, 0) = 0, T(y, 0) = T∞,

y ≥ 0 : ut(y, 0) = 0, uy(y, 0) = 0, (17)

t > 0 : u(y, t)→ 0, T(y, t)→ T∞, for y→ ∞, (18)

u(0, t) =

{
uc

t
t0

0 < t ≤ t0

uc t > t0,

T(0, t) =

{
T∞ + (Tw − T∞) t

t0
0 < t ≤ t0

Tw t > t0.
(19)
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The expressions for viscosity µn f , heat capacity (cp)n f , coefficient of thermal expansion βn f , density
ρn f and electrical conductivity σn f are given as [42,43]

µn f =
µ f

(1− φ)2.5 , (ρcp)n f = (ρcp) f

[
(1− φ) + φ

(ρcp)cnt

(ρcp) f

]
,

(ρβ)n f = (ρβ) f

[
(1− φ) + φ

(ρβ)cnt

(ρβ) f

]
, ρn f = ρ f

[
(1− φ) + φ

ρcnt

ρ f

]
,

σn f = σf +
3σf (σ− 1)φ

(σ + 2)− (σ− 1)φ
, σ =

σcnt

σf
.

For thermal conductivity of CNTs, we have chosen Xue’s model [44], because it incorporates the effect
of space distribution on CNTs and also embrace the rotational elliptical nanotubes with huge axial ratios.

kn f

k f
=

1 + 2φ
(

kcnt
kcnt−k f

)
ln
( kcnt+k f

2k f

)
− φ

1 + 2φ
( k f

kcnt−k f

)
ln
( kcnt+k f

2k f

)
− φ

.

On using non-dimensional terms given below [34]

u∗ =
u
uc

, ξ =
yuc

ν
, τ∗ =

ντ

µu2
c

, t0 =
ν

u2
c

, t∗ =
tu2

c
ν

, θ =
T − T∞

Tw − T∞
. (20)

in Equations (14)–(16), and for sake of brevity, eliminating ∗ notation, we obtain(
1 + λ1

∂

∂t

)
∂u
∂t

=
ϕ6

ϕ3

(
1 + λ2

∂

∂t

)
∂2u
∂ξ2 −M

ϕ4

ϕ3

(
1 + λ1

∂

∂t

)
u

− 1
K

ϕ6

ϕ3

(
1 + λ2

∂

∂t

)
u + Gr

ϕ5

ϕ3

(
1 + λ1

∂

∂t

)
θ, (21)(

1 + λ1
∂

∂t

)
τ = ϕ6

(
1 + λ2

∂

∂t

)
∂u
∂ξ

, (22)

∂θ

∂t
=

1
Pr

ϕ2

ϕ1

∂2θ

∂ξ2 +
Q
ϕ1

θ, (23)

where non-dimensional quantities are defined as

Gr =
gβ f ν f ∆T

u3
c

, M =
σf B2

0ν f

ρ f u2
c

, Pr =
(µcp

k

)
f

, λ1 =
λu2

c
ν f

,

λ2 =
λru2

c
ν f

,
1
K

=
φν2

f

k f u2
c

, Q =
ν f Q0

(ρcp) f u2
c

.
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The constants used in non-dimensional equations are given as

ϕ1 = 1− φ + φ
(ρcp)cnt

(ρcp) f
, ϕ2 =

1 + 2φ
(

kcnt
kcnt−k f

)
ln
( kcnt+k f

2k f

)
− φ

1 + 2φ
( k f

kcnt−k f

)
ln
( kcnt+k f

2k f

)
− φ

, ϕ3 = 1− φ + φ
ρcnt

ρ f
,

ϕ4 = 1 +
3(σ− 1)φ

(σ + 2)− (σ− 1)φ
, ϕ5 = 1− φ + φ

(ρβ)cnt

(ρβ) f
, ϕ6 =

1
(1− φ)2.5 .

The non-dimensional form of initial and boundary conditions turn out as

u(ξ, 0) = 0, θ(ξ, 0) = 0, (24)

ξ ≥ 0 : ut(ξ, 0) = 0, uξ(ξ, 0) = 0,

t > 0 : u(ξ, t)→ 0, θ(ξ, t)→ 0 when ξ → ∞, (25)

u(0, t) = θ(0, t) =

{
t 0 < t ≤ 1
1 t > 1.

(26)

3. Analytical Solutions

To derive the analytical solutions of current problem, Laplace transform [45] is an effective tool due
to its efficient utility for non uniform boundary conditions. The formulation of Laplace transform pair in
integral form to evaluate the solutions of present problem is provided as

W̄(ξ, s) =
∞∫

0

e−stW(ξ, t)dt = L[W](t), t ≥ 0, (27)

where W ∈ {θ, τ, u}. The above integral is convergent for Re(s) > β0, where s = Ψ + IΩ, β0 is real
number and I =

√
−1. Laplace domain solutions can be inverted back to real time domain t such as

W(ξ, t) =
1

2π I

∫
BR

estW̄(ξ, s)ds = L−1[W̄](s). (28)

3.1. Temperature Field

Implementation of Laplace transform on Equations (23), (25)2 and (26)2, and using initial
condition yields

1
Pr

ϕ2

ϕ1

d2θ̄

dξ2 +

(
Q
ϕ1
− s
)

θ̄ = 0, (29)

θ̄(0, s) =
1− e−s

s2 , θ̄(ξ, s)→ 0 as ξ → ∞. (30)

The solution of ordinary differential Equation (29) under conditions in Equation (30) is obtained as

θ̄(ξ, s) =
(

1− e−s

s2

)
e−
√

α(s−a2)ξ , (31)
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where

α =
Prϕ1

ϕ2
, a2 =

Q
ϕ1

.

3.2. Velocity Field

Applying Laplace transform on Equations (21), (25)1 and (26)1, and using initial condition emits

ϕ6

ϕ3
(1 + λ2s)

d2ū
dξ2−[

(1 + λ1s) s + M
ϕ4

ϕ3
(1 + λ1s) +

1
K

ϕ6

ϕ3
(1 + λ2s)

]
ū = −Gr

ϕ5

ϕ3
(1 + λ1s) θ̄, (32)

ū(0, s) =
1− e−s

s2 , ū(ξ, s)→ 0 as ξ → ∞. (33)

Plugging Equation (31) into Equation (32) and simplifying yields

d2ū
dξ2 −

[
λ1s2 + s(1 + λ1a4 + λ2a5) + (a4 + a5)

a3(1 + λ2s)

]
ū =

− a6

a3

(
1 + λ1s
1 + λ2s

)(
1− e−s

s2 e−
√

α(s−a2)ξ

)
, (34)

where

a3 =
ϕ6

ϕ3
, a4 = M

ϕ4

ϕ3
, a5 =

1
K

ϕ6

ϕ3
, a6 = Gr

ϕ5

ϕ3
.

The solution of Equation (34) under conditions in Equation (33) is simplified as

ū(ξ, s) = Ḡ(ξ, s)
(

1− e−s

s2

)
, (35)

where

Ḡ(ξ, s) = e−
√

γξ +
a6(1 + λ1s)

(αa3λ2 − λ1)
[
(s− b1)2 − b2

2
] (e−

√
γξ − e−

√
α(s−a2)ξ

)
, (36)

with

γ =
λ1s2 + s(1 + λ1a4 + λ2a5) + (a4 + a5)

a3(1 + λ2s)
, b1 =

1− αa3 + λ1a4 + λ2(a5 + αa2a3)

2(αa3λ2 − λ1)
,

b2 =

√(
1− αa3 + λ1a4 + λ2(a5 + αa2a3)

2(αa3λ2 − λ1)

)2

+
a4 + a5 + αa2a3

αa3λ2 − λ1
. (37)
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3.3. Shear Field

Taking Laplace transform of Equation (22) gives

(1 + λ1s)τ̄ = ϕ6(1 + λ2s)
dū
dξ

. (38)

On differentiating Equation (35) with respect to variable ξ, we obtain

dū
dξ

= H̄(ξ, s)
(

1− e−s

s2

)
, (39)

where

H̄(ξ, s) = −√γe−
√

γξ −
a6(1 + λ1s)

√
γe−

√
γξ

(αa3λ2 − λ1)
[
(s− b1)2 − b2

2
]+

a6(1 + λ1s)
√

α(s− a2)e−
√

α(s−a2)ξ

(αa3λ2 − λ1)
[
(s− b1)2 − b2

2
] .

Plugging Equation (39) in Equation (38), we get

τ̄(ξ, s) =
ϕ6(1 + λ2s)

1 + λ1s

(
1− e−s

s2

)
H̄(ξ, s). (40)

Since the Laplace domain solutions of temperature, momentum and shear stress in Equations (31), (35)
and (40) are the multivalued functions of the Laplace parameter “s”, therefore numerical inversion named
the Durbin method [46] is used to transform back the solution in real time domain t.

3.4. Nusselt Number

The expression for Nusselt number Nu is

Nu = − ∂θ

∂ξ

∣∣∣∣
ξ=0

, (41)

Nu = L−1
[√

α(s− a2)

(
1− e−s

s2

)]
. (42)

(43)

4. Special Cases

This section deals with two special cases of current work.

4.1. Case 1

The energy and mass solutions of regular Oldroyd-B fluid (φ = 0) with simultaneous ramped wall
conditions can be deduced as:
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θ(ξ, t) = L−1
[(

1− e−s

s2

)
e−
√

Pr(s−Q)ξ

]
, (44)

u(ξ, t) = L−1
[(

1− e−s

s2

)
Ḡ(ξ, s)

]
, (45)

where

Ḡ(ξ, s) = e
−
√

a∗1+s2λ1+a∗2
λ2s+1 ξ

+
Gr(1 + λ1s)

(λ2Pr− λ1)
(
(s− z1)2 − z2

2
)
e
−
√

a∗1+s2λ1+a∗2
λ2s+1 ξ − e−

√
Pr(s−Q)ξ

 ,

with

z1 =
a∗2 + λ2PrQ− Pr

2(λ2Pr− λ1)
, z2 =

√(
a∗2 + λ2PrQ− Pr

2(λ2Pr− λ1)

)2
+

a∗1 + PrQ
λ2Pr− λ1

,

a∗1 = M +
1
K

, a∗2 = 1 + λ1M +
λ2

K
.

4.2. Case 2

The energy and mass results of Oldroyd-B nanofluid for constant boundary conditions can be
obtained as:

θ(ξ, t) = e−ξ ı̇
√

αa2 erfc
(

ξ
√

a2

2
√

t
− ı̇
√

a2t
)
+ eξ ı̇

√
αa2 erfc

(
ξ
√

a2

2
√

t
+ ı̇
√

a2t
)

, (46)

u(ξ, t) = L−1
[(

1− e−s

s

)
Ḡ(ξ, s)

]
, (47)

where

Ḡ(ξ, s) = e−
√

γξ +
a6(1 + λ1s)

(αa3λ2 − λ1)
[
(s− b1)2 − b2

2
] (e−

√
γξ − e−

√
α(s−a2)ξ

)
,

with γ, b1 and b2 provided in Equation (37).
The purpose of comprehensive understanding of the physics of the current problem is served with

the help of parametric study and variation in solutions is elucidated with the support of tables and graphs.
The solutions presented in these graphs are of four kinds. Plot (a) and (b) in every figure present the
results for SWCNTs and MWCNTs respectively. The results for isothermal plate and ramped plate are
represented by dashed lines and solid lines respectively. Thermophysical properties of base fluid and two
types of CNTs, i.e., SWCNTs and MWCNTs, are provided in Table 1. In order to find the effective values
of thermal conductivity of CNTs for several values of volume fraction φ, model proposed by Xue [44] is
utilized and a comparison between thermal conductivity for SWCNTs and MWCNTs is provided in Table 2.
It is spotted that for the same values of volume fraction, nanofluid with MWCNTs have lower thermal
conductivity in contrast to nanofluid with SWCNTs. This is physically justified by the fact that MWCNTs
have lower thermal conductivity which is 3000 W/mK in contrast to thermal conductivity of SWCNTs
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which is 6600 W/mK. In Table 3, alteration in Nusselt number under variation of different parameters
for SWCNTs and MWCNTs is given to understand the effects of those parameters on heat transfer. From
Table 3, enhancement in heat transfer is pretty clear with maximization of volume fraction of carbon
nanotubes. This kind of behavior was expected to show the significance of nanofluids in practical purposes
such as heating and cooling processes. It can be stated as well that for each parameter, rate of heat transfer
for SWCNTs is slightly higher than that of MWCNTs. This fact also justifies the little difference in the
heights of graphs of SWCNTs and MWCNTs in the case of each associated parameter.

In order have deep insight into the relative difference between temperature and velocity profiles
of sodium alginate based nanofluid having SWCNTs and MWCNTs as nanoparticles, both solutions are
tabulated in Table 4 and 5. The corresponding tables describe that in case of φ = 0 (i.e., pure Sodium
alginate) we have the same values of SWCNTs and MWCNTs mass and energy solutions. It can be seen
from Table 4 that temperature has higher profile in case of SWCNTs because of their relatively higher
thermal conductivity. This factor also points out the little difference in heights of solutions for SWCNTs
and MWCNTs. Table 4 shows that temperature is an increasing function of φ, t and Q > 0 and decreasing
function of Q < 0 for both SWCNTs and MWCNTs. Table 5 provides that solution of velocity has higher
values in case of MWCNTs because of their relatively lower density. It also concludes that velocity solution
faces similar kind of influence for both SWCNTs and MWCNTs. It is observed from the table that velocity
is an elevating function of φ, λ2, t, Gr and K, while on the other hand fluid is decelerated by increasing
values of M and λ1. Table 6 illustrates variation in wall shear stress when other associated quantities are
altered. It can be concluded from the table that velocity on plate is a decreasing function of λ1 and φ while
it behaves inversely for λ2 and K.

Table 1. Thermophysical properties of base fluid and CNTs [47,48].

Physical Properties Sodium Alginate SWCNTs MWCNTs

k (W/m K) 0.613 6600 3000
ρ (kg/m3) 989 2600 1600
cp (J/kg K) 4175 425 796

β× 10−5 (1/K) 0.99 27 44

Table 2. Variation in thermal conductivity of nanofluid for several values of volume fraction.

Volume Fraction (φ) 0.00 0.01 0.02 0.03 0.04

Thermal Conductivity for SWCNT (kn f ) 0.145 0.174 0.204 0.235 0.266

Thermal Conductivity for MWCNT (kn f ) 0.145 0.172 0.2 0.228 0.257

Table 3. Variation of Nusselt number under influence of different parameters when Pr = 12.

t Q φ Nu for SWCNT Nu for MWCNT

0.6 0.5 0.02 3.0803 3.0438
0.7 - - 3.2597 3.2212
0.8 - - 3.4120 3.3717

0.8 −1 - 4.9698 4.9097
- −0.5 - 4.4898 4.4358
- 0 - 3.9728 3.9253
- 0.5 - 3.4120 3.3717
- 1 - 2.7988 2.7664

- 0.5 0.0 3.0099 3.0099
- - 0.02 3.4120 3.3717
- - 0.04 3.7718 3.6994
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Table 4. Variation of temperature under influence of different parameters when Pr = 12.

y t Q φ Temperature of SWCNTs Temperature of MWCNTs

0.3 0.8 0.5 0.0 0.2040 0.2040
- - - 0.02 0.2521 0.2477
- - - 0.04 0.2923 0.2851

- - −1 0.02 0.1741 0.1704
- - −0.5 - 0.1958 0.1920
- - 0 - 0.2215 0.2174
- - 0.5 - 0.2521 0.2477
- - 1 - 0.2886 0.2840

- 0.6 0.5 - 0.1475 0.1444
- 0.7 - - 0.1975 0.1937
- 0.8 - - 0.2521 0.2477

0.4 0.8 - - 0.1581 0.1541
0.5 - - - 0.0950 0.0918
0.6 - - - 0.0547 0.0523

Table 5. Variation of velocity under influence of different parameters when Pr = 12 and Q = 0.5.

y t φ M Gr K λ1 λ2 Velocity for SWCNT Velocity for MWCNT

0.3 0.8 0.02 2.0 1.0 0.6 1.0 1.0 0.4336 0.4350
0.4 - - - - - - - 0.3484 0.3499
0.5 - - - - - - - 0.2785 0.2800

0.3 0.6 - - - - - - 0.3098 0.3110
- 0.7 - - - - - - 0.3713 0.3726
- 0.8 - - - - - - 0.4336 0.4350

- 0.8 0.0 - - - - - 0.4180 0.4180
- - 0.02 - - - - - 0.4336 0.4350
- - 0.04 - - - - - 0.4483 0.4511

- - 0.02 2.0 - - - - 0.4336 0.4350
- - - 4.0 - - - - 0.3848 0.3862
- - - 6.0 - - - - 0.3466 0.3480

- - - 2.0 1.0 - - - 0.4336 0.4350
- - - - 2.0 - - - 0.4604 0.4620
- - - - 3.0 - - - 0.4872 0.4889

- - - - 1.0 0.1 - - 0.4336 0.4350
- - - - - 0.4 - - 0.4604 0.4620
- - - - - 0.9 - - 0.4872 0.4889

- - - - - 0.6 1.0 - 0.4336 0.4350
- - - - - - 2.0 - 0.3924 0.3943
- - - - - - 3.0 - 0.3601 0.3622

- - - - - - 1.0 1.0 0.4336 0.4350
- - - - - - - 2.0 0.4662 0.4673
- - - - - - - 3.0 0.4837 0.4845
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Table 6. Variation of wall shear stress under influence of different parameters when Pr = 12 and Q = 0.5.

t φ M K λ1 λ2 Shear Stress for SWCNT Shear Stress for MWCNT

0.6 0.02 2.0 0.6 1.0 1.0 −1.5388 −1.5308
0.7 - - - - - −1.7952 −1.7859
0.8 - - - - - −2.0517 −2.0411

0.8 0.0 - - - - −1.9546 −1.9546
- 0.02 - - - - −2.0517 −2.0411
- 0.04 - - - - −2.1544 −2.1329

- 0.02 2.0 - - - −2.0517 −2.0411
- - 4.0 - - - −2.3745 −2.3628
- - 6.0 - - - −2.6583 −2.6457

- - 2.0 0.1 - - −3.1796 −3.1727
- - - 0.4 - - −2.1907 −2.1808
- - - 0.9 - - −1.9535 −1.9423

- - - 0.6 1.0 - −2.0517 −2.0411
- - - - 2.0 - −1.4781 −1.4695
- - - - 3.0 - −1.2047 −1.1972

- - - - 1.0 2.0 −2.9071 −2.8946
- - - - - 3.0 −3.7164 −2.8946
- - - - - 4.0 −4.5045 −4.4899

5. Results and Discussion

Significance of heat suction/injection parameter (Q) in rise or fall of temperature is graphed in
Figure 4a,b. Positive values of Q are referred to heat injection and negative values of Q are associated
with heat suction. The graph describes that increase in positive value of Q rises the temperature but on
the other hand increase in negative value of Q drops the temperature. Physically, increase in positive
value of Q means more heat is injected, so temperature must increase, as shown in the graph. Likewise,
increase in negative value of Q corresponds to more suction or consumption of heat, which means
that temperature must decrease. Moreover, in case of constant wall temperature, solution has higher
profile as compared to ramped wall temperature. Figure 5a,b display alteration in temperature values
due to variation in volume fraction (φ) of nanoparticles. As φ enlarges, temperature boundary layer
thickness increases, which is justified by the physical behavior of nanoparticles. Moreover, the temperature
boundary layer is greater for sodium alginate based nanofluid as compared to pure sodium alginate
(φ = 0). The reason is higher thermal conductivity of CNTs, which consequently raises the thermal
conductivity of base fluid when CNTs are added to it. Eventually, we observe elevation in temperature
boundary layer thickness. This observation concludes the significance of nanoparticles in heating and
cooling processes. Additionally, thermal boundary layer thickness of ramped wall temperature is less than
thermal boundary layer thickness of constant wall temperature. It is presented in Figure 6a,b that as time
(t) duration increases, temperature of fluid rises for both ramped wall and isothermal wall conditions.

Figure 7a,b describe the effect of Grashof number (Gr) on mass distribution. The thickness of
momentum boundary layer in case of isothermal temperature condition is higher as compared to ramped
wall temperature. It is observed that maximization of Gr elevates the mass profile. The physical logic
behind this behavior is reduction of resistance. Since Gr is the fraction of buoyancy and viscous forces,
increase in Gr leads to strong buoyancy force near the plate, which suppress the resistances and fluid
flows more rapidly. Moreover, away from the plate the buoyancy force gets weaker and leads to calmness
of fluid.

Effect of magnetic parameter (M) on ramped wall velocity and constant wall velocity is illustrated
in Figure 8a,b. It is witnessed that velocity of constant wall temperature is greater than that of ramped
wall temperature. Velocity of fluid drops for increasing values of M because applied magnetic field leads
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to existence of strong Lorentz force. This force acts as a dragging force and presents strong resistance to
flow of fluid, therefore eventually mass profile decreases. As fluid moves away from the plate this Lorentz
force gets weaker and fluid comes to rest.

Figure 9a,b depict the impact of porosity parameter (K) on mass profile. It is observed that mass profile
gets elevation for enlargement in values of K. The physically supporting factor is reduction of friction
in porous medium. When K increases, fluid faces less resistance which in turn increase the momentum
development of the regime and as a result velocity profile is raised. Furthermore, velocity is low in case of
ramped boundary condition.

Figure 10a,b describe the behavior of mass distribution for different values of relaxation time (λ1).
Momentum boundary layer thickness has greater values for isothermal wall condition as compared to
ramped wall condition. As value of λ1 enlarges, mass profile of fluid declines. Physically, as λ1 increment
implies that fluid will take extra time to get calm, it readily justifies the fall in velocity curves.

The contribution of retardation time (λ2) in fluid flow is sketched in Figure 11a,b. It is noticed that
momentum boundary layer thickness increases in both cases since an increase in λ2 reduces the resistance.
As a consequence, fluid is accelerated. Velocity for constant wall condition is greater as compared to
ramped wall condition.

Figure 12a,b analyze the significance of addition of CNTs to our base fluid. It is visible from the
maps that velocity is an increasing function of volume fraction for both ramped wall and constant wall
conditions. This happens because suspension of CNTs in base fluid reduces the viscous forces and leads to
elevation of momentum boundary layer.

Figure 13a,b show the shear stress curves for SWCNTs and MWCNTs for distinct values of volume
fraction. It is detected that shear stress decreases with elevation of φ. Shear stress profiles incorporating
λ1 and λ2 are drawn in Figure 14a,b. It is clear from the profiles that shear stress has inverse behavior
for λ1 and λ2. As λ1 increases, magnitude of shear shear stress elevates and ultimately magnitude of
velocity reduces. Contrarily, increase in λ2 results in enhancement of velocity due to decrease in skin
friction. In order to authenticate our current solutions, Figure 15a,b are presented. It can be observed that
if heat injection/suction and volume fraction of nanoparticles are removed from the current model (later
case shows that only regular fluid is considered), then present solutions of velocity and temperature field
are in excellent agreement with velocity and temperature solutions of [35]. This comparison verifies the
present study.
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Figure 4. Temperature behavior for variation in Q at t = 0.8 and φ = 0.02.



Entropy 2020, 22, 401 16 of 22

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

(
,t

)

[a]

 = 0.0, 0.02, 0.04

Ramped Temperature 

Constant Temperature

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

(
,t

)

[b]

 = 0.0, 0.02, 0.04

Ramped Temperature 

Constant Temperature

Figure 5. Temperature behavior for variation in φ at t = 0.8 and Q = 0.5.

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

(
,t

)

[a]

t = 0.4, 0.8, 1.2, 1.6

Ramped Temperature 

Constant Temperature

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

(
,t

)

[b]

t = 0.4, 0.8, 1.2, 1.6

Ramped Temperature 

Constant Temperature

Figure 6. Temperature behavior for variation in t at Q = 0.5 and φ = 0.02.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

u
(

,t
)

[a]

Gr = 1, 2, 3

Ramped Velocity 

Constant Velocity

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

u
(

,t
) Gr = 1, 2, 3

[b]

Ramped Velocity 

Constant Velocity

Figure 7. Velocity behavior for variation in Gr at t = 0.8, λ1 = 1, φ = 0.02, M = 2, K = 0.6 and λ2 = 1.



Entropy 2020, 22, 401 17 of 22

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

u
(

,t
)

[a]

M = 2, 4, 6

Ramped Velocity 

Constant Velocity

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

u
(

,t
)

[b]

M = 2, 4, 6

Ramped Velocity 

Constant Velocity

Figure 8. Velocity behavior for variation in M at t = 0.8, λ1 = 1, φ = 0.02, Gr = 1, K = 0.6 and λ2 = 1.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

u
(

,t
)

[a]

K = 0.1, 0.4, 0.9

Ramped Velocity 

Constant Velocity

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

u
(

,t
)

K = 0.1, 0.4, 0.9

Ramped Velocity 

Constant Velocity

Figure 9. Velocity behavior for variation in K at t = 0.8, λ1 = 1, φ = 0.02, M = 2, Gr = 1 and λ2 = 1.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

u
(

,t
) 1

 = 1, 2, 3

[a]

Ramped Velocity 

Constant Velocity

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

u
(

,t
) 1

 = 1, 2, 3

[b]

Ramped Velocity 

Constant Velocity

Figure 10. Velocity behavior for variation in λ1 at t = 0.8, Gr = 1, φ = 0.02, M = 2, K = 0.6 and λ2 = 1.



Entropy 2020, 22, 401 18 of 22

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

u
(

,t
)

[a]

2
 = 1, 2, 3

Ramped Velocity 

Constant Velocity

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

u
(

,t
)

[b]

2
 = 1, 2, 3

Ramped Velocity 

Constant Velocity

Figure 11. Velocity behavior for variation in λ2 at t = 0.8, λ1 = 1, φ = 0.02, M = 2, K = 0.6 and Gr = 1.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

u
(

,t
)

[a]

 = 0.0, 0.02, 0.04

Ramped Velocity 

Constant Velocity

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

u
(

,t
)  = 0.0, 0.02, 0.04

[b]

Ramped Velocity 

Constant Velocity

Figure 12. Velocity behavior for variation in φ at t = 0.8, λ1 = 1, M = 2, Gr = 1, K = 0.6 and λ2 = 1.

0 0.5 1 1.5 2

-2.5

-2

-1.5

-1

-0.5

0

(
,t

)

[a]

 = 0.0, 0.02, 0.04

Ramped Velocity 

Constant Velocity

0 0.5 1 1.5 2

-2.5

-2

-1.5

-1

-0.5

0

(
,t

)

[b]

 = 0.0, 0.02, 0.04

Ramped Velocity 

Constant Velocity

Figure 13. Shear stress behavior for variation in φ at t = 0.8, λ1 = 1, M = 2, Gr = 1, K = 0.6 and λ2 = 1.



Entropy 2020, 22, 401 19 of 22

0 0.5 1 1.5 2
-3

-2.5

-2

-1.5

-1

-0.5

0

(
,t

)

2
 = 2, 3, 4

1
 = 1, 2, 3

1
 

2[a]

0 0.5 1 1.5 2
-3

-2.5

-2

-1.5

-1

-0.5

0

(
,t

)

1
 = 1, 2, 3

1
 

2[b]

2
 = 2, 3, 4

Figure 14. Shear stress behavior for variation in λ1 and λ2 at t = 0.8, M = 2, φ = 0.02, Gr = 1 and K = 0.6.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

u
(

,t
)

Present Ramped Velocity

[35] Ramped Velocity

Present Constant Velocity

[35] Constant Velocity

[a]

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

(
,t

)
Present Ramped Temperature

[35] Ramped Temperature

Present Constant Temperature

[35] Constant Temperature

[b]
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6. Conclusions

This work aims to investigate the heat transfer enhancement when nanoparticles in the form
of carbon nanotubes are suspended in a base fluid along with ramped wall velocity and ramped
temperature conditions in a porous medium. It is significant to mention that the use of ramped
conditions simultaneously is physically effective, but restricted in the literature, especially for nanofluids.
The principal governing equations of momentum, shear stress and energy for MHD convective unsteady
flow of Oldroyd-B nanofluid, are comprised of partial differential equations. These equations are solved
via Laplace transform and Durbin method. The solutions of ramped wall condition are compared with
those of constant wall condition. Moreover, Nusselt number expression is derived for in depth analysis of
enhancement in heat transfer. The variation in solution profiles, resulting due to an increase or decrease in
particular parameters, is observed with the help of graphs and tables. The solutions for single wall carbon
nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) are also compared.

The significant results of this study are

• Mass profile gets elevation with increase in φ, Gr, K, and λ2. Oppositely, an increase in relaxation time
λ1 and magnetic parameter M decelerate the flow.

• An increase in the amount of heat injection and volume fraction of nanoparticles enhances the
temperature, while an inverse behavior is witnessed for the increase in the amount of heat suction.
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• Heat transfer enhances when the volume fraction φ of CNTs increases. The values of φ are calculated
using model proposed by Xue [44]. It is found that maximization in volume fraction boosts the
thermal conductivity, which results in a higher rate of heat transfer.

• Velocity on the plate (skin friction) increases with an increase in retardation time λ2 and behaves
oppositely for relaxation time λ1 and volume fraction φ.
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