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A B S T R A C T   

As the demand for laboratory testing by mass spectrometry increases, so does the need for automated methods 
for data analysis. Clinical mass spectrometry (MS) data is particularly well-suited for machine learning (ML) 
methods, which deal nicely with structured and discrete data elements. The alignment of these two fields offers a 
promising synergy that can be used to optimize workflows, improve result quality, and enhance our under-
standing of high-dimensional datasets and their inherent relationship with disease. In recent years, there has 
been an increasing number of publications that examine the capabilities of ML-based software in the context of 
chromatography and MS. However, given the historically distant nature between the fields of clinical chemistry 
and computer science, there is an opportunity to improve technological literacy of ML-based software within the 
clinical laboratory scientist community. To this end, we present a basic overview of ML and a tutorial of an ML- 
based experiment using a previously published MS dataset. The purpose of this paper is to describe the funda-
mental principles of supervised ML, outline the steps that are classically involved in an ML-based experiment, 
and discuss the purpose of good ML practice in the context of a binary MS classification problem.   

Introduction 

As the demand for laboratory testing by mass spectrometry (MS) 
increases, so does the need for automated methods for data analysis. The 
alignment of machine learning (ML) and MS offers a promising synergy 
that can be leveraged to optimize workflows, improve quality assurance 
practices, and enhance our clinical understanding of high-dimensional 
(i.e., multivariate) datasets. To this end, there has been an increasing 
number of publications that explore the capabilities of ML-based soft-
ware that optimize clinical chromatography and MS workflows. How-
ever, given the historically distant nature between the fields of clinical 
chemistry and artificial intelligence, there is an opportunity to improve 
technological literacy among the clinical laboratory scientist community 
around ML-based software [1]. Knowledge gaps related to the funda-
mental principles of ML can hinder the intuitive understanding of 
how these novel applications function, and as a result, limit our ability 
to ensure ML-based technology is appropriately validated and subjected 
to ongoing quality assurance procedures. In this report, we use a 

previously published dataset of categorically labeled plasma amino acid 
(PAA) profiles to provide a high-level tutorial of an ML-based experi-
ment, to be used as a contextual framework for exploring the funda-
mental principles and workflow of ML model development. 

Supervised machine learning 

There are three, commonly referenced categories of ML, which are 
supervised learning, unsupervised learning, and reinforcement learning 
(RL) [2,3]. In the context of ML, supervision refers to ‘labels’ that are 
individually paired with input data (e.g., PAA profiles labeled as 
‘normal’ or ‘abnormal’). In classification problems, these labels are often 
assigned by human experts, and the labor required to make these labels 
is a key barrier to ML development. The goal of supervised ML is to 
model a relationship between input data (e.g., a patient’s PAA profile) 
and output data (e.g., is the PAA profile normal or abnormal) using a 
dataset of input–output pairs. Unsupervised ML involves datasets with 
no human annotation, and the identification of patterns is unbound by 
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the existence of labels [3]. These methods are often used as approaches 
to data-driven knowledge discovery. RL is a less commonly applied 
method that implies the use of reward and penalty signals to drive 
learning. The purpose of this article is to provide an introductory 
overview of supervised ML, as this is the most encountered form of ML in 
the clinical laboratory today. For the interested reader, more compre-
hensive overviews of artificial intelligence, unsupervised ML, and RL 
can be found in recent publications [3,4]. 

In supervised ML, datasets are comprised of: [1] data (input, 
commonly denoted as X) and [2] labels (output, commonly denoted 
as Y). Labels are typically categorical or continuous variables. In this 
paper, we use a previously published dataset of PAA profiles with in-
dividual, categorical labels of ‘normal’ or ‘abnormal’. The following 
sections follow a traditional approach to an ML-based binary classifi-
cation problem that begins with identifying the clinical need. Subse-
quent sections will progress through the customary heuristics of ML 
development, including preparation of the dataset, choosing the 
appropriate ML method, training of the algorithm, and testing the model 
[4]. 

Binary classification with machine learning 

Hardware and software 

Computation for model training and testing was performed on a 
commodity laptop running a macOS (version: 10.15.7). Processing 
hardware included 1 CPU (Intel(R) Core i7 I7-9750H @ 2.6 GHz). Ma-
chine learning functions that generated the results presented in the 
primary manuscript were implemented in parallel using both R (version: 
4.1.0) and Python (version: 3.9.4) [5–8]. Results generated in R and 
Python are comparably similar but not identical. For this reason, only 
the results from the R implementation are presented in the following 
sections. To help illustrate the implementation of ML, R and Python code 
that is relevant to concepts presented in the following sections can be 
viewed in the supplemental material. These documents are referenced as 
supplementary code files (SCF). For readers interested in running the 
analysis and interacting with the data, the complete code used to 
perform these analyses is also available for public download here [9,10]. 
The dataset is available for download in the supplementary material of 
Wilkes et al. [11]. 

Identifying the clinical need 

Data generated by clinical MS assays are particularly well-suited for 
ML-based methods which deal nicely with structured, high-dimensional 
datasets [2]. Accordingly, there are many opportunities to implement 
ML-based solutions in the clinical MS laboratory. This is reflected in 
recent publications that examine the use of ML for peak integration 
[12,13], autoverification [14,15], clinical interpretation support (CIS) 
[11,16,17], and the support of novel MS applications at the point of care 
[18,19]. For the purposes of this paper, and the sake of simplicity, we 
describe the development of a model that can predict whether a PAA 
profile is ‘normal’ or ‘abnormal’. With only two possible outputs (clas-
ses), this is known as a binary classification ML task. 

Preparing the dataset 

Datasets can be classified as structured, semi-structured, or un-
structured. A dataset is structured if there is an inherent organizational 
paradigm (i.e., model), that provides a framework to access individual 
data elements. Unstructured datasets contain no inherent organization 
of data elements; examples include digital images or raw DNA 
sequencing data. The dataset used in Wilkes et al. is structured, as it 
contains discrete data elements that are composed in rows and columns 
and can be stored as a delimited file with a comma separator (SCF Code 
Block 2). 

Prior to training, data preprocessing is often required to make ML 
analysis feasible. The Wilkes dataset comprises 2,084 PAA profiles, 31% 
(n = 644) of which are labeled as abnormal. Each PAA profile consists of 
24 continuous variables and 4 categorical variables. To this end, cate-
gorical variables (e.g., Sex) were encoded as numeric values since a 
numeric representation of the data is required by the ML algorithm that 
will be used (Fig. 1) (SCF Code Block 3). It should be noted that Wilkes 
et al. already performed preprocessing on the data and made specific 
decisions for handling censored data, such as setting undetectable levels 
to 0 and replacing values of “Present,” “Detected,” or “Trace,” with a 
fixed, arbitrarily low value. Commenting on these choices is outside the 
scope of this paper, but these kinds of decisions can affect the perfor-
mance of ML algorithms and must be made carefully. Other forms of 
data preprocessing, such as imputation of missing values or normaliza-
tion of numeric variables, were not performed in this tutorial. In datasets 
with missing values, missing value imputation can be performed by 
using statistical techniques to make inferences on values to substitute 
missing data in order to avoid throwing out data, which can cause biases 
in the ML model [20,21]. Normalization should be performed when 
values of numeric variables have different orders of magnitude since ML 
algorithms usually need inputs on similar scales [22]. These forms of 
data preprocessing can be implemented for tuning algorithm perfor-
mance and are outside the scope of this paper. 

The purpose of supervised ML in binary classification is to train a 
model that can make accurate class predictions (i.e., normal or 
abnormal) on novel input data – i.e., data that was not analyzed during 
training. Accordingly, the total dataset (n = 2084) is divided into 
separate groups, commonly using a random 70:30 split, creating inde-
pendent train and test datasets, respectively (SCF Code Block 4). The test 
dataset is purposefully set aside and not presented to the algorithm 
while training the model. This is referred to as the ‘holdout method’. The 
train dataset is then split into a training set and a validation set. The 
resulting smaller training set is the sample of data used to fit the model, 
and the validation set is used to evaluate the model fit after each iter-
ation of training. It is important to note that splitting data sets should be 
done randomly in order to avoid biasing the ML model with unforeseen 
effects that can occur with manual splitting, and accordingly, helper 
functions in machine learning packages exist to facilitate appropriate 
splitting (SCF Code Block 4). 

Conceptually, the train-test split is analogous to providing a group of 
students with practice questions (i.e., the training dataset), but not 
allowing them to see the final exam questions (i.e., the testing dataset). 
This practice avoids an overly optimistic assessment of how well the 
model learned during training and provides a more conservative and 
accurate estimate of performance on future, unseen data. 

Dividing the dataset for training and testing can be approached in 
several ways but is commonly done as a one-time split or many splits in 
what is known as k-fold cross-validation (CV). The latter involves 
repeating the training and testing process using k number of random 
splits and taking the mean of the observed performance metrics. As 
opposed to a one-time split, k-fold CV provides k independent calcula-
tions of test metrics that can be used to derive a range of expected 
performance that accounts for variability that is derived from random 
division of train and test datasets. However, in this paper, for the sake of 
simplicity and ease of interpreting the supplemental material, we per-
formed a one-time 70:30 split of the original dataset. This was done 
using a stratified shuffle split function that maintains an approximately 
equal distribution of ‘positives’ between the train and test datasets. 
Accordingly, post-split, there were 30% (n = 352) and 33% (n = 204) 
abnormal PAA profiles in the train and test datasets, respectively (Fig. 1) 
(SCF Code Block 4). 

Choosing the algorithm 

Once the clinical need is defined and a dataset is appropriately 
curated, an ML algorithm can be selected. An algorithm is the mathe-
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matical machinery used to make a prediction (denoted as Å⋅) from the 
input data (denoted as xi). Logistic regression is a well-known example 
of an algorithm that can be used for binary classification and, while it is 
often grouped with traditional statistical methods, it is commonly used 
in ML. There are many ML algorithms in existence and choosing the 
right algorithm to support an application is not always straightforward. 
Currently, best practice in ML would recommend choosing the ‘correct’ 
algorithm based on the intended task and on technical considerations, 
such as the input and output data type and content [23]. In addition, like 
choosing the parameters for chromatography and MS development, ML 
method selection protocols often rely on trial and error with several 
types of algorithms. 

For the purposes of this experiment, we chose to use an imple-
mentation of extreme gradient boosted trees (XGBT) (SCF Code Block 5) 
[24,25]. Given the multitude of factors that can influence algorithm 
selection, a comprehensive evaluation and reasoning for using XGBT 
cannot be fully addressed within the intended scope of this paper. 
Briefly, XGBT is based on a combination of gradient boosting and de-
cision trees; for the latter, although there are many approaches, classi-
fication and regression trees (CART) are most often used [24,26]. While 
there are few studies that empirically evaluate modern ML classifiers, 
available literature suggest that boosted trees are among the best, ‘off 
the shelf’ classifiers to date, based on various performance metrics 
[23,27]. Accordingly, XGBT is widely used in ML research today. It was 
also one of the algorithms used by Wilkes et al. in the work originally 
associated with the PAA profile dataset used in this paper. 

Training the algorithm 

ML training is the process of iterative calculations over a group of 
algebraic functions in a specific sequence. Conceptually, each iteration 
involves the following steps: present a batch of training data to the al-
gorithm, make predictions on all samples in the batch, calculate a loss 
function, and update model parameters based on the loss value (Fig. 2). 
The parameters are the variables in the algorithm that, when adjusted, 
affect the accuracy of predictions. Updates to parameters are guided by 
calculating loss (i.e., error) using a loss function. A loss function is 
designed to measure the mathematical distance between the true and 
predicted labels. Customarily, as in this experiment, the loss is propor-
tional to the amount of disagreement between the predicted label and 
the true label; therefore, the smaller the loss, the more accurate the 
prediction. Accordingly, machines learn by comparing predicted labels 
with true labels and adjust the model parameters to minimize that 
margin of error. The appropriate choice for a loss function, and for the 
mathematical details of how to calculate the “disagreement” between 
the prediction and the labels, depends on the type of problem being 
answered and the ML algorithm being used. For example, a binary 
classification problem could use the negative log likelihood of a statis-
tical distribution, and a regression problem—where the model is making 
a numeric value prediction based on input data—usually uses the root 
mean square error. The process of selecting loss functions must consider 
the questions being asked and the type of learning being performed on 
the data. 

Loss calculations are performed on the training dataset and a second 
‘hold out dataset’. In addition to the train-test split, the training dataset 

Fig. 1. Data preprocessing schematic. (Top) Original PAA profile dataset represented in a tabular format. This is an example of structured dataset. (Bottom) Post- 
preprocessing: Identifier column is removed, and categorical data is encoded as numeric values. In addition, the data used for making predictions (input) is separated 
from the labels (output). This is done so that the labels are not used by the algorithm as a feature for making predictions during training. (Bottom right) Lastly, input 
and output data are separated into train, validation, and test datasets. 
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undergoes an additional, and final, 80:20 split to generate a training 
dataset and a validation dataset (Fig. 1) (SCF Code Block 4). After each 
iteration, predictions are made on a batch of training and validation 
samples and checked against the true labels. From those comparisons, 
the mean loss is calculated across all training and validation samples and 
referred to as the training loss and validation loss. The training loss is 
used to guide updates to algorithm parameters. The validation loss is 
used to monitor for overfitting. If the ML algorithm is learning appro-
priately, the training and validation loss should decrease across training 
iterations. Once the validation loss is no longer decreasing over a pre-
defined number of training iterations, the algorithm predictions are 
unlikely to improve further. At this point, training should be stopped to 
avoid the risk of overfitting the model. For a more detailed description of 
overfitting, please refer to the review by Harrison et al [3]. 

In this experiment, the final training protocol was as follows (SCF 
Code Block 6). Following the 80:20 split, the training and validation 
datasets were comprised of 1,166 and 292 samples, with 30% (n = 352) 
and 33% (n = 88) abnormal cases, respectively. Negative log-likelihood 
(NLL) was used as the validation loss function. After the first training 
iteration, validation loss was 0.639. At iteration 82, validation loss had 
not improved in the last ten iterations and training stopped. Accord-
ingly, model parameters from iteration 72 were saved, where a mini-
mum validation loss of 0.214 was achieved. Lastly, the training and 
validation loss curves were visually assessed for overfitting, which 
would be indicated by positive divergence of the validation loss from the 
training loss. This divergence suggests overfitting since the model is 
fitting to the training set but failing to generalize to the validation set, 
and thus choosing model parameters from the iteration where this 
divergence begins would avoid overfitting. Visual inspection of training 
and validation loss curves indicate minimally appreciable divergence up 
to iteration 72, at which point model parameters were saved (Fig. 3) 
(SCF Code Block 6). 

Testing the model 

During training, the parameters in the algorithm are updated to 
achieve the most accurate predictions. Once those parameters are 
identified, they are saved into a file that is referred to as the model. Once 
a model is saved, it will not change unless additional training is per-
formed, and new parameters are saved over it. Models are saved in many 
different formats and can even be stored as text files. These are the final 
commodity of ML training. Accordingly, the last step is to unit test the 
model. 

Testing the model involves the following steps: use the model to 
make predictions for the test dataset, compare the predictions to the true 
values or labels by calculating various metrics, and evaluate the per-
formance of the model. Assessing the model with the test dataset pro-
vides information about how well the model’s predictions generalize to 
new data. The metrics can be used to evaluate the performance of the 
model and even allow for comparison between different ML algorithms. 

There are many performance metrics that can be evaluated on the 
test dataset. In ML, precision (i.e., positive predictive value) and recall 
(i.e., sensitivity) are commonly used for classification problems. These 
values are commonly represented as the precision-recall (PR) curve, 
which is analogous in concept to the receiver operator characteristic 
(ROC) curve and can be similarly summarized by calculating the area 
under the PR curve (PRAUC). 

In this experiment, evaluation of the model on the test dataset 
demonstrated a binomial classification accuracy of 93.12% (SCF Code 
Block 7) and a PRAUC of 0.97 (SCF Code Block 8). These results are 
similar to those presented by Wilkes et al. for binomial classification 
using XGBT with no subsampling or feature selection. 

Discussion 

In this article, we describe high-level principles of ML, using the 
development of a binary classification model as a contextual framework. 
As described above, the major themes encountered in the train-test 
development cycle include, (1) the appropriate separation of datasets, 
(2) the mechanics of ML training, and (3) model testing. While PAA 
profile classification is a specific and narrow use case, the workflow and 
underlying theory are broadly generalizable to modern applications of 
supervised ML. 

Ensuring train and test data are truly separated is an essential 
consideration in ML development. Similar to contamination in NAAT 
testing, train-test contamination can happen inadvertently, and this so- 
called data leakage is not always easy to detect. For example, if two 
healthcare entities share electronic health information and a researcher 
unknowingly combines two separate extracts of laboratory result data 
from each of those institutions, duplicate entries will exist and could be 
represented in train and test datasets. Using an alternative training 
protocol, we illustrate the effect of train-test contamination by adding 

Fig. 2. Machine learning workflow sche-
matic for binary classification of PAA pro-
files as ‘normal’ or ‘abnormal’. (From left to 
right) A sample (batch) of training data is 
presented to the XGBoost algorithm. 
XGBoost analyses the data and makes pre-
dictions for each class, ‘normal’ and 
‘abnormal’, and represents the predictions 
as a sum-to-one probability distribution, 
with probability of ‘normal’ in the left col-
umn and ‘abnormal’ in the right column of 
the prediction table. The true labels are then 
compared against the predicted classes via a 
loss function. The calculated loss is then 
used to update the parameters of the 
XGBoost algorithm. This process repeats it-
self until the loss no longer decreases.   

Fig. 3. Training and validation loss plotted as a function of training iterations.  
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test data to the training dataset at 10% intervals. Following this pro-
cedure, the binomial classification accuracy increases linearly as the 
amount of train-test contamination increases. With 100% train-test 
contamination (i.e., all test data is analyzed during training), evalua-
tion of the resulting model demonstrated a binomial classification ac-
curacy of 99% and a PRAUC of 0.999 (Supplemental Table). From this, 
we can observe that the failure to separate train and test data will result 
in inflated performance metrics with model testing. Robust quality 
assurance practices during development can offer reassuring data that 
train-test contamination does not exist but, these practices are not al-
ways implemented. Alternatively, robust validation with multiple hold- 
out datasets can also detect this type of error as one would expect sig-
nificant performance degradation between evaluations with the 
contaminated and uncontaminated test datasets. 

Lastly, the iterative nature of training and the optimization of a loss 
function remain paramount in the intuitive understanding of ML. In an 
alternative training protocol, the XGBT model was trained for 5 itera-
tions. This resulted in a binomial classification accuracy of 87.5% and a 
PRAUC of 0.889. Knowing that our model is capable of higher perfor-
mance metrics, this model would be considered ‘underfit’, in that, the 
model will perform better if it was given additional time to learn. 
However, if the algorithm is given too much time to learn, or is allowed 
to become too complex, the model may become overfit. Following an 
alternative training protocol where the algorithm is tuned towards high 
complexity, training loss is observed to decrease across all training it-
erations. However, the validation loss is observed to follow an initial 
decrease, followed by a steady increase (Supplemental Fig. 1). This 
would indicate a model is likely overfit. Evaluation of this model on the 
testing dataset did not appear to have deleterious effects on perfor-
mance, indicating that data distributions between the train and test may 
be sufficiently similar. However, it would be expected that a model with 
evidence of overfitting would be unlikely to perform well with novel 
real-world data. 

Several aspects of ML development, such as feature engineering and 
model interpretation, were omitted since detailed discussion of these 
steps are outside the scope of this paper but are important to briefly 
mention here. Feature engineering is the process of determining a set of 
features or inputs for the ML algorithm to train on and involves feature 
selection and extraction. Feature selection is the step of choosing the 
most useful inputs in the dataset to train on, and feature extraction is the 
process of making more useful inputs by combining existing features. 
Choosing a useful set of features is essential in successfully training a ML 
model. Model interpretability is also an important issue to note since 
many of the best performing ML models are often “black boxes.” In our 
discussion, XGBoost provided predictions with high accuracy but is 
opaque to what and how it learned from the data. This contrasts with a 
model like linear regression, which has straightforward interpretations 
of its structure. Tools such as LIME (Local Interpretable Model-agnostic 
Explanations) and SHAP (Shapley Additive Explanations) can aid in 
providing insights in black box models, and balancing interpretability 
and predictive power must be considered in any ML development 
project [28,29]. 

Conclusion 

The use of ML in the clinical MS laboratory offers the potential for 
several operational enhancements. However, there are several inherent 
limitations of current ML technology that can negatively affect the 
robustness of these applications. Several regulatory agencies are 
beginning to offer draft guidance on how ML can be safely implemented 
in clinical practice [30–33]. Regulations can be helpful, but strong 
technological literacy among laboratorians is also necessary to ensure 
these novel methods enhance our workflows and do not negatively 
impact the high-quality nature of test results. The concepts described 
here are fundamental and generalizable to supervised ML development 
and may provide an intuitive understanding of these novel technologies. 

Continued review of ML topics will be needed as the fields of artificial 
intelligence and computer science continue to evolve rapidly. 
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