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Introduction 

Historically food processing has been labor-intensive, with 
the seafood industry being no exception. Until recently, the 
biggest share of seafood production comes from wild har-
vest with a large variety of species and different raw material 
conditions, subject to natural fluctuation and handling of the 
catch. Mathiesen (2012) stated that a considerable number of 
the world population have their employment linked to the fish 
industry in some way, be that primary production, processing, 
packaging, distribution, etc. The production of seafood from 
raw material to consumable products requires skilled people 
for filleting, trimming, peeling, and visual parasite and quality 
control. The largest wild fish resources are often located in re-
mote or scarcely populated areas, and the same applies to some 
of the best salmon aquaculture sites. The fish industry, there-
fore, often deals with significant challenges in finding people 
willing to work in the processing plants.

The jobs are often difficult and repetitive, and even dan-
gerous. The quality of seafood deteriorates quickly, espe-
cially with increased temperature. For this reason, the product 

is always kept as cold as possible. The work environment is, 
therefore, cold and humid, making it difficult for the workers 
to stay in for the duration of an entire shift or even longer as 
is often the case on board factory vessels and during seasonal 
peaks in the wild harvest. With the COVID-19 pandemic, food 
producers are finding it difficult to recruit people due to social 
distancing and border travel restrictions (Aday and Aday, 2020; 
Minahal et al., 2020; Hailu, 2021). High-income regions often 
rely on migrant workers, creating challenges maintaining the 
supply chain.

With poor access to manual labor, great focus has been 
placed on automating food production. Through recent dec-
ades, automation within fish production is becoming more 
prevalent, making it one of the most high-tech automated sec-
tors within the protein industry alongside poultry (Komlatsky 
et al., 2019). Significant advances in the last decade are auto-
mated de-heading (Buckingham et al., 2001) and filleting ma-
chines (Andersen and Magnusson, 2002).

Automation has enabled an enormous increase in line speed 
and throughput. In the 1990s, pelagic fish factories processed 
and froze 150 kg of fish per worker per day. Today, factories 
can process and freeze significantly beyond 1,500 kg per person 
per day (Sigurðardóttir, 2018), with reports as high as 15,000 kg 
per person per day (Vigfússon and Gestsson, 2016). In the most 
automated fish factories, the yield and utilization of fish are 
estimated to have improved from around 60% to 80% in the 
past decade.

Many processing steps still, however, rely on manual labor. 
These are tasks such as trimming of fillets and quality inspec-
tion. Although these tasks may seem trivial, in reality, they are 
quite challenging. To elaborate further, an example from the 
automotive industry is given. In an automotive factory, almost 
every step in assembling a car is automated. Figure 1 shows an 
automotive factory floor where a number of robotic arms are 
placed on an assembly line, each specifically programmed to 
perform a limited and well-defined task. Due to the static (and 
rigid) nature of every component, the variation between spe-
cific car parts is limited, making it simple to automate for tasks 
such as the attachment of a door and the car frame. In con-
trast, each fish varies in size, weight, color, and physical shape. 
The state of rigor mortis (a postmortem change resulting in the 
stiffening of the body muscles) also varies between fish, based 
on multiple variables such as pre-rigor stress and environmental 
temperature. The differences in raw material core temperature 
will accelerate or decelerate the rigor cycle of each fish. A ma-
chine that automates the filleting step needs to be able to cope 

Implications

• The fish industry has historically been a labor-intensive 
field, requiring skilled staff  to process whole fish into 
consumable products.

• The introduction of automation in food production 
has been at a slower pace compared with conventional 
manufacturing industries such as automotive due to 
the organic variation present in food products.

• Recent advances in automated inspection, artificial 
intelligence, and robotics are transforming the food 
production industry, introducing new automation cap-
abilities that can potentially increase throughput and 
yield.
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with these variations and adjust accordingly for every fish to 
reach an acceptable speed and yield. Another significant differ-
ence between manufacturing a car and processing a fish is the 
fact that the car is being assembled, while the fish is being taken 
apart. Furthermore, in fish processing, traceability from raw 
product intake to end consumable product is necessary in many 
cases in order to validate the country of origin and validate the 
quality and remaining shelf  life. Finally, gathering the weight 
of each piece and product quality information is important to 
give food producers insight to optimize their process.

Fish Processing

Figure 2 provides an overview of a fish production process, 
illustrating the key concepts. The detailed steps and their order 
can vary depending on fish species, and whether the fish is wild-
caught or farmed. After capturing the fish, it is transported to 
processing facilities, either on board a fishing vessel or to a 
land-based facility. If  the fish is wild-caught, an initial sorting 
of different species is required, and sometimes the fish is graded 
based on size, weight, and quality. For a farmed fish, a stunning 
process takes place prior to additional processing steps. The 
fish is then bled, which is a necessary step as blood is a good 
nutrition for bacteria, and the presence of blood can reduce 
the shelf  life and value of the catch. Bleeding is performed in 
dedicated tanks with clean circulating seawater. After bleeding, 
the fish is chilled, followed by evisceration and gutting. Gutting 
is the process of cutting the belly open, removing internal or-
gans, and making sure the body cavity is clean of blood re-
sidual and other excess residues. During the gutting process, 
byproducts can be extracted such as the liver for fish oil pro-
duction. The fish can then be further processed depending on 
what the end product should be; in some cases, the fish will be 
packaged whole, while in others it will undergo a de-heading 
process and even filleted, trimmed, and further portioned. The 

exact end product also dictates any additional processing steps 
needed (e.g., sushi portions, fresh steaks, smoked salmon slices, 
fish cakes, and nuggets). In any case, the packaging of the 
product is required for transportation to retail, food service, 
or consumer.

Recent Automation Advances

As in many other production industries, automation in fish 
processing has focused on eliminating dangerous, difficult, and 
repetitive tasks. Some tasks are ergonomically challenging, such 
as unloading fish from stacks of large bins into the processing 
line, also known as de-palletizing. The task of de-palletizing 
is a relatively simple task to automate, due to the limited vari-
ability between containers and boxes on pallets. As the vari-
ability is low, a simple machine vision or sensing system can 
be used to estimate the placement of boxes in relation to the 
rest of the processing line. Coupling this with a robotic arm, a 
de-palletizing solution can be achieved (see Figure 3).

If we consider the other end of the spectrum, automating 
the trimming of defects in fish fillets requires technology that 
is more advanced. Defects in fish fillets either can be of natural 
causes, such as parasites, melanin spots, and disease, or it can 
be caused by the fishing method and handling of the fish on 
board the vessel or in the processing hall. This is in addition 
to defects that can happen when using automatic processing, 
such as miscuts in filleting machines or inadequate peeling of 
shrimp. In order to automate the trimming process, a machine 
would need to mimic a person’s ability to identify defects, de-
termine their severity, and determine a trimming action based 
on the defect in question. A fish fillet is also a non-rigid struc-
ture, so manipulating it requires delicate handling. Another task 
in the trimming process is the removal of pin bones. Pin bone 
attachment in salmonoids tends to weaken during post-rigor, 
making it easier to remove the pin bones manually. Operators 

Figure 1. An automotive factory floor where robots are seen spot-welding car bodies (Jenson, 2021).
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then must rely on their sight and hands to locate the bones and 
remove each one from the fillet, which is a tedious process. This 
process can be automated using mechanical methods, but doing 
a proper quality inspection to make sure all bones have been 

removed is challenging because salmon bones are thin. Over the 
last decade, X-ray technology has seen a substantial decrease 
in cost and has been adapted for use in meat plants as a tool 
for bone detection in the processing line. In the case of many 
species of fish, for example, cod, the pin bones cannot easily be 
picked out and are removed by cutting out the area where the 
pin bones are located. This is also the case with salmon in the 
pre-rigor mortis stage. Figure 4 shows an example of a machine 
that locates bones by means of X-ray technology and then auto-
matically cuts the region where the bones are located away with 
a water jet guided by a motion or robotic system. Such a pro-
cess has made removing salmon pin bones in a pre-rigor state 
achievable, which in turn also extends the shelf life of the bone-
less fillet since the product can go to market 2 to 3 days earlier. 
The X-ray image data can also be used to estimate density and 
thereby the thickness throughout the fillet. Based on the volume 
estimate, portions can be calculated and automatically cut. To 
optimize the packing of the individual portions, a pick-and-
place robot arm can be used to pick pieces off the conveyor 
and place them into boxes or trays. By automating this step, 
the piece combinations can match the orders the food producers 
need to fulfill, creating value by minimizing labor use and redu-
cing give away of the sold packages at the same time.

Machine Vision

In a fish processing line, operators need to be able to iden-
tify dark pigment deposits from blood spots and melanin spots, 
remove brown meat from the fillet center, grade according to a 
color scale, and remove other skinning defects such as leftover 
fins and membranes. Operators undergo training to understand 
quality defects such as those shown in Figure 5. The perceived 
severity of a defect can vary highly between operators on the 
trimming line. This variation in perception can cause an un-
wanted drop in yield, as operators may tend to over-trim fillets 
to minimize the risk of complaints.

As straightforward as it may seem to automate, for example, 
bone detection in an X-ray image, a significant effort is placed 
on algorithm development to automatically detect them (Mery 
et al., 2011). An algorithm is a series of mathematical equa-
tions and sets of rules to determine different aspects of the im-
ages such as the presence of bones. 

Figure 2. An example of a fish processing pipeline from receiving to 
packaging (figure based on Vidaček and Bugge, 2016).

Figure 3. An automated solution for unloading whole salmon from boxes. Courtesy of Marel.
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removed is challenging because salmon bones are thin. Over the 
last decade, X-ray technology has seen a substantial decrease 
in cost and has been adapted for use in meat plants as a tool 
for bone detection in the processing line. In the case of many 
species of fish, for example, cod, the pin bones cannot easily be 
picked out and are removed by cutting out the area where the 
pin bones are located. This is also the case with salmon in the 
pre-rigor mortis stage. Figure 4 shows an example of a machine 
that locates bones by means of X-ray technology and then auto-
matically cuts the region where the bones are located away with 
a water jet guided by a motion or robotic system. Such a pro-
cess has made removing salmon pin bones in a pre-rigor state 
achievable, which in turn also extends the shelf life of the bone-
less fillet since the product can go to market 2 to 3 days earlier. 
The X-ray image data can also be used to estimate density and 
thereby the thickness throughout the fillet. Based on the volume 
estimate, portions can be calculated and automatically cut. To 
optimize the packing of the individual portions, a pick-and-
place robot arm can be used to pick pieces off the conveyor 
and place them into boxes or trays. By automating this step, 
the piece combinations can match the orders the food producers 
need to fulfill, creating value by minimizing labor use and redu-
cing give away of the sold packages at the same time.

Machine Vision

In a fish processing line, operators need to be able to iden-
tify dark pigment deposits from blood spots and melanin spots, 
remove brown meat from the fillet center, grade according to a 
color scale, and remove other skinning defects such as leftover 
fins and membranes. Operators undergo training to understand 
quality defects such as those shown in Figure 5. The perceived 
severity of a defect can vary highly between operators on the 
trimming line. This variation in perception can cause an un-
wanted drop in yield, as operators may tend to over-trim fillets 
to minimize the risk of complaints.

As straightforward as it may seem to automate, for example, 
bone detection in an X-ray image, a significant effort is placed 
on algorithm development to automatically detect them (Mery 
et al., 2011). An algorithm is a series of mathematical equa-
tions and sets of rules to determine different aspects of the im-
ages such as the presence of bones. For a machine to automatically determine quality defects 

and remove them, it needs to be able to objectively evaluate 
the fillet quality. Computer vision has taken leaps in recent 
years where cameras, sensors, and lighting technologies are ap-
plied to mimic human sight (Kopparapu, 2006). Some inspec-
tion tasks can be solved by conventional imaging such as color 
grading, while others require more advanced machine vision 
technology (Bhargava and Bansal, 2021). To further elaborate, 
a digital image can capture the same information from a sur-
rounding as humans perceive it. Camera technology can also 
extend beyond what a person can see. Human sight can only 
sense a limited part of what is known as the electromagnetic 
spectrum, as illustrated in Figure 6. This range is known as 
the visible range, which covers only a narrow part of the spec-
trum (400 to 700 nm). Beyond the visible range are ultraviolet, 

infrared, X-ray, and even radio waves and gamma rays. Camera 
technology today can sense a large part of the spectrum, al-
though each camera category is limited to sensing a specific 
part. Hyperspectral cameras are becoming commercially avail-
able, which can measure multiple narrow bands of the electro-
magnetic spectrum, essentially giving insight into the chemical 
composition of what is imaged (Feng and Sun, 2012). These ad-
vances in camera technology open new application potentials. 
Cheng and Sun (2014) illustrated how hyperspectral imaging 
can be applied to perform quality analysis and control of fish 
and other seafoods. Another study showed the application of 
hyperspectral imaging combining visible and near-infrared 
imaging to differentiate between fresh and frozen-thawed fish 
fillets (Zhu et al., 2013). By developing solutions that can sense 
this wide range, image information can be obtained to dis-
criminate between muscle tissues, fat stripes, membranes, and 
blood spots (Menesatti et al., 2010; Heia et al., 2012; Cheng 
and Sun, 2014). With advances in imaging technologies, the po-
tential where machine vision can automate inspection tasks for 
quality control and food safety is numerous.

Artificial Intelligence

Just as eyesight is not enough for a human to interpret a scene, 
having a camera system for imaging is not sufficient to solve an 
automated inspection task. Our adept ability to evaluate our 
surroundings and make decisions based on the visual input is 
supported by our brain’s capability to process and decode that 
input. Similarly, images require computers to further analyze 
and evaluate different attributes in an image. Conventionally, 

Figure 5. Typical quality defects in salmon fillets. Courtesy of Marel.

Figure 4. Salmon fillet processing. The pin bones of the fillet are removed with a guided robotic water jet cutter and portioned (top- and lower left pictures) and 
then picked by an automated gripper off  the conveyor and placed into boxes. Courtesy of Marel.
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image analysis has relied heavily on contrasts in colors and 
brightness in images along with differences in patterns. A clas-
sical image analysis approach to determine whether an image 
contains a face can be done by applying simple pattern ana-
lysis to determine the likelihood of the image containing eyes, 
nose, and mouth. Feature engineering is the field in which a 
computer vision expert will fine-tune algorithms to be able to 
determine well-defined features in images. With advances in in-
creased computation power and prices of computers rapidly 
declining, new approaches to image interpretation have come 
to light. A disruptive trend in the past decade is known as deep 
learning (Kakani et al., 2020). Deep learning is a subcategory 
within machine learning and artificial intelligence (AI) that 
imitates how humans gain their knowledge. Deep learning can 
be applied to perform predictive modeling to, for example, de-
termine the presence of breast cancer in mammograms (Yala 
et al., 2019). Instead of tedious work to hard-code rules and 
calculations to determine different image properties, deep 
learning can abstract information from labeled images. The 
main difference in hardware required for the traditional image 
analysis approach, and deep learning is the need for a powerful 
processing unit. As Kakani et  al. (2020) highlight, the intro-
duction of graphical processing unit (GPU) has enabled a dif-
ferent approach to image analysis, and rather than relying on 
detailed feature engineering work, an AI model can be trained 
to understand image properties based on massive amounts of 
labeled data. AI models are capable of achieving tasks such as 
image classification (is there a human in an image), object de-
tection (where are the eyes of the human located precisely in 
the image), and even segmentation (what regions of the image 

contain hair) (Guo et  al., 2016). Major companies such as 
Google, Amazon, and Facebook have been basing their suc-
cess on AI. These companies have created numerous consumer 
products driven by their AI research (Markoff, 2016; Pan, 
2016). Almost any camera app today will contain an image-
enhancing feature based on AI, be that an augmenting face 
filter or scene enhancement. Self-driving cars even rely on AI 
to determine surroundings such as pedestrians and traffic signs 
(Daily et al., 2017). Fish processing has been no exception in 
adapting computer vision and AI methodologies to enable new 
automation applications. A  recent study presented how deep 
learning can be applied to automatically determine individual 
fish size from echosounder equipment to reduce the catch of 
undersized fish in commercial trawling (Garcia et  al., 2019). 
Another example where deep learning has been applied is the 
detection of salmon muscle gaping as shown in Figure 7, a 
quality defect affecting the end quality and grade of a salmon 
fillet (Xu and Sun, 2018). Solving the tasks of detecting gaping 
by a classical image analysis approach would require a major 
feature engineering effort. By applying deep learning, the task 
is reduced to labeling a set of images manually and training the 
algorithm to identify gaping regions. Vision technology and AI 
has also been used in shellfish processing to identify pieces of 
shell after peeling of shrimps. 

Advanced and Intelligent Robotics

With increasing capabilities to sense and analyze products 
moving on a processing line, it becomes possible to start auto-
mating complex tasks with mechatronics (the combination 

Figure 6. The electromagnetic spectrum. The narrow range of visible light is shown enlarged at the right (Encyclopaedia Britannica, 2022).
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contain hair) (Guo et  al., 2016). Major companies such as 
Google, Amazon, and Facebook have been basing their suc-
cess on AI. These companies have created numerous consumer 
products driven by their AI research (Markoff, 2016; Pan, 
2016). Almost any camera app today will contain an image-
enhancing feature based on AI, be that an augmenting face 
filter or scene enhancement. Self-driving cars even rely on AI 
to determine surroundings such as pedestrians and traffic signs 
(Daily et al., 2017). Fish processing has been no exception in 
adapting computer vision and AI methodologies to enable new 
automation applications. A  recent study presented how deep 
learning can be applied to automatically determine individual 
fish size from echosounder equipment to reduce the catch of 
undersized fish in commercial trawling (Garcia et  al., 2019). 
Another example where deep learning has been applied is the 
detection of salmon muscle gaping as shown in Figure 7, a 
quality defect affecting the end quality and grade of a salmon 
fillet (Xu and Sun, 2018). Solving the tasks of detecting gaping 
by a classical image analysis approach would require a major 
feature engineering effort. By applying deep learning, the task 
is reduced to labeling a set of images manually and training the 
algorithm to identify gaping regions. Vision technology and AI 
has also been used in shellfish processing to identify pieces of 
shell after peeling of shrimps. 

Advanced and Intelligent Robotics

With increasing capabilities to sense and analyze products 
moving on a processing line, it becomes possible to start auto-
mating complex tasks with mechatronics (the combination 

of mechanical and electronic components) and robotics. 
Manufacturing industries have seen significant advances within 
robotics in recent years, and a prime example is how ware-
housing has been completely transformed with the introduc-
tion of mobile robots. For example, an Amazon warehouse has 
dozens of self-driving robots navigating around the floor, col-
lecting products from shelves, and delivering them to packaging 
stations for further transport to consumers (Eppner et al., 2016). 
Similarly, the healthcare industry is starting to incorporate tech-
nologies such as surgical robots to perform high-precision sur-
geries on patients. When looking at these advances one may ask 
why robotics has still not completely transformed the food pro-
duction industry. To give context, the surgical robots are taken 
as an example. Actual surgeons operate the surgical robots, 
and the robots are, therefore, merely a tool to the surgeon. 
They are used to optimize precision and to improve sanitation 
and hygiene during operation. Surgical robots can, therefore, 
be considered as a remote extension to the surgeon, and fully 
automating the operation of surgical robots still requires signifi-
cant developments (Svoboda, 2019). In addition, a surgery may 
take several hours to perform successfully on a single patient. 
The throughput required for food production is at a completely 
different scale. A poultry plant can process over 2 million birds 
per week (Alonzo, 2021), putting extreme requirements on pro-
cessing speed. For a salmon factory, it is not unusual that the 
process from receiving a fish into the processing line until final 
packaging takes under 5 min. Still, there remains the demand 
for accuracy and yield in the food processing industry. Although 

surgical precision is not required, any yield loss is value lost for 
food producers and an unnecessary source of food waste in the 
supply chain. Deploying robotic solutions into food production 
requires solutions capable of achieving the same accuracy as 
human operators, at speeds surpassing human capability. Several 
technology trends are creating stepping-stones toward a fully 
automated future, such as reinforcement learning (Kalashnikov 
et  al., 2018, preprint) and advanced gripper technology (Low 
et al., 2021). Reinforcement learning is a methodology used to 
train machine learning models to optimize (e.g., the machine’s 
performance). Gripper technology is the design of tooling that 
can manipulate food products, such as picking products from a 
conveyor and placing in a tray. Gripping technology today often 
tries to resemble elements from nature, such as suction cups 
on octopuses’ arms or grasping capabilities of human hands. 
Other advances that are on the horizon are mobile robots (Gao 
et  al., 2018; Rubio et  al., 2019) and collaborative robots, cap-
able of performing in the harsh food production environment. 
To be able to deploy collaborative robots capable of performing 
alongside human operators will open enormous opportunities 
for tasks such as loading of raw materials into the production 
line. Furthermore, mobile robots could potentially play an im-
portant part in transforming logistics in food production plants 
by transporting products between destination points. A recent 
publication illustrated how collaborative robots could be applied 
to handle food products that are non-rigid, which is essential to 
perform operations such as trimming and handling of fish fillets 
(Long et al., 2021).

Figure 7. Visualization of results obtained from a deep learning model trained to identify gaping in salmon fillets (Xu and Sun, 2018).
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Future Outlook

One might ask what the food production plant of  the fu-
ture will look like? Can a lights-out manufacturing utopia be 
achieved within the next few years or so? To reach this mile-
stone, there are still quite some challenges ahead, such as fur-
ther developing intelligent machines and advancing sensing 
technology capabilities. As prices decrease for advanced 
technologies, they become more applicable in industrial set-
tings, providing further opportunities to automate production 
plants. A robotic solution capable of  trimming quality defects 
from fish fillets with minimal yield loss is perhaps not too far 
on the horizon, and it is merely a question of  when rather than 
if  this step in the fish processing will be automated. To achieve 
this goal, knowledge transfer from academia to industry is es-
sential to incorporate advanced technologies into future food 
production solutions.
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