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Electroacupuncture (EA) has been observed to reduce insulin resistance in obesity and diabetes. However, the biochemical
mechanism underlying this effect remains unclear. This study investigated the effects of low-frequency EA on metabolic action in
genetically obese and type 2 diabetic db/db mice. Nine-week-old db/m and db/db mice were randomly divided into four groups,
namely, db/m, db/m + EA, db/db, and db/db + EA. db/m + EA and db/db + EA mice received 3-Hz electroacupuncture five times
weekly for eight consecutive weeks. In db/db mice, EA tempered the increase in fasting blood glucose, food intake, and body mass
and maintained insulin levels. In EA-treated db/db mice, improved insulin sensitivity was established through intraperitoneal
insulin tolerance test. EA was likewise observed to decrease free fatty acid levels in db/db mice; it increased protein expression
in skeletal muscle Sirtuin 1 (SIRT1) and induced gene expression of peroxisome proliferator-activated receptor y coactivator 1«
(PGC-1a), nuclear respiratory factor 1 (NRF1), and acyl-CoA oxidase (ACOX). These results indicated that EA offers a beneficial
effect on insulin resistance in obese and diabetic db/db mice, at least partly, via stimulation of SIRT1/PGC-1«, thus resulting in

improved insulin signal.

1. Introduction

Obesity is a serious health issue that is prevalent worldwide.
It currently affects over 396 million individuals across the
globe, and this figure is expected to climb to over 573
million by 2030 [1]. Insulin resistance is characterized as
the most critical factor that contributes to the development
of obesity among patients afflicted with type 2 diabetes
mellitus (T2DM). Thus, reduction of insulin resistance is an
important clinical goal today.

In mammals, Sirtuin 1 (SIRT1) is one of the seven
homologs of silent information regulator 2 (Sir2). It plays
a critical role in DNA damage response, metabolism, and
longevity [2]. Recent studies suggest an association between
SIRT1 and insulin sensitivity [3]. SIRT1 augments insulin
sensitivity by repressing inflammation and having a direct or
indirect involvement in the insulin-signaling pathway [3-5].

Remarkably, SIRT1 activators enhance insulin sensitivity in
vitro and ameliorate insulin resistance in vivo in a SIRT1-
dependent manner [4, 6]. Moreover, overexpression of SIRT1
protects against insulin resistance in diabetic models [7]
and high-fat-diet-induced metabolic disorder [8]. Taken
collectively, these findings implicate SIRT1 activation as a
potential therapeutic target in overcoming insulin resistance.

Peroxisome proliferator-activated receptor y (PPARy)
coactivator la (PGC-1a) ranks among the major substrates
of SIRT1. PGC-1« is a metabolic coactivator that interacts
with transcription factors to induce mitochondrial biogene-
sis and respiration [9]. In human skeletal muscle, low levels
of nuclear-encoded PGC-la and mitochondrial-encoded
gene COXI1 suggest a role for impaired mitochondrial
function in the development of insulin resistance [10]. High-
fat-diet-induced insulin resistance occurs together with
decreased muscle PGC-1a expression, persistent elevation
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in intramuscular acylcarnitines, and metabolic byproducts
of incomplete fatty acid oxidation. Increased PGC-1« activ-
ity and/or enhanced mitochondrial efficiency may protect
against lipid-induced insulin resistance [11]. Deacetylation
of PGC-1a by SIRT1 increases mitochondrial biogenesis
and activates genes associated with mitochondrial fatty acid
oxidation [12]. Collectively, these findings indicate that
therapy targeting SIRT1/PGC-la and mitochondria may
serve as a novel approach for curbing insulin resistance.

In experimental research and clinical studies, acupunc-
ture has been observed to reduce obesity-related insulin
resistance [13—15]. However, though acupuncture has the
potential to improve pathological changes in the mitochon-
dria [16], the biochemical mechanism underlying its effect
on insulin resistance remains elusive. Meanwhile, electric
stimulation such as exercise induces muscle contraction,
which has been observed to activate SIRT1/PGC-l« [17,
18]. It is interesting to examine if the combination of
acupuncture and electric stimulation will yield merits for the
improvement of insulin sensitivity.

The present study tested the hypothesis that elec-
troacupuncture (EA) ameliorates insulin sensitivity via
regulation of SIRT1/PGC-1a and improving mitochondrial
function. EA is a type of acupuncture wherein needles
are attached to an apparatus that produces continuous
electric pulses. To investigate the effect of EA on insulin
resistance, this study was conducted on db/db mice, a genetic
model of insulin resistance and T2DM. Low-frequency EA
produced insulin-sensitizing effects and modulated free fatty
acid (FFA) levels in db/db mice. Strikingly, EA likewise
induced SIRT1 protein expression, which was concordant
with increased PGC- 1w, nuclear respiratory factor 1 (NRF1),
and acyl-CoA oxidase (ACOX) gene expression in the skeletal
muscle of db/db mice. Based on these findings, EA is
proposed to improve insulin sensitivity in db/db mice, at
least partly, via stimulation of mitochondrial biogenesis and
lipid oxidation involving SIRT1/PGC-1« activation.

2. Materials and Methods

2.1. Animals. Male, seven-week-old, C57BL/KsI—Lepdb/ db
mice (db/db mice) and their lean db/m heterozygote litter-
mates were obtained from CLEA Japan, Inc. (Tokyo, Japan).
They were housed at 22°C in a controlled environment and
received 12 h of artificial light per day. They were allowed
access to normal laboratory chow and water ad libitum. All
experiments conducted on these samples were approved by
the Animal Experimental Committee of Kanazawa Medical
University.

2.2. Experimental-Design. After two weeks of acclimatiza-
tion, the samples were randomly divided into four groups:
db/m (n = 8), db/m + EA (n = 6), db/db (n = 8), and db/db
+ EA (n = 8). EA was applied at the acupuncture points of
Zusanli (ST36) and Guanyuan (CV4) using 0.30 X 25 mm
needles (Suzhou Acupuncture & Moxibustion Appliance
Co, China). ST36 is located 5mm below and lateral to
the anterior tubercle of the tibia; at this point, needles
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were inserted perpendicularly at 3-5mm. CV4 is located
at the juncture of upper 6/7 and lower 1/7 of the line
that links the xiphoid process and external genitalia; the
needle at this point was inserted obliquely towards the
xiphisternum at 3-5mm. Needles at CV4 and ST36 on
one side, which were linked to ST36 on the other side
on the following day, were linked with two electrodes of
an electrostimulator (G6805-2A, Shanghai Huayi Medical
Instrument Factory, China). The points were electrically
stimulated with successive low-frequency waves of 3 Hz.
Intensity was adjusted to produce local muscle contractions
that varied from 0.5 to 0.8 mA. db/m+EA and db/db+EA
groups received EA treatment for 10 min per day, with five
treatments being performed weekly. Neuronal activity was
assumed to affect transmission of acupuncture stimulation;
thus, the mice were not anesthetized during acupuncture.
db/m and db/db mice were placed in cages used for EA
treatments for the same 10-min periods. Treatment lasted for
eight weeks.

2.3. Body Mass, Food Intake, Fasting Blood Glucose, Plasma
Insulin, and HbAIc. Body mass, food intake, and fasting
blood glucose (FBG) were analyzed at zero, two, four, six,
and eight weeks after commencement of EA treatment. Tail-
snip fasting glucose levels were measured using a glucose
testing machine and corresponding cartridge (Antesense III
from Horiba, Japan). After two and eight weeks of treatment,
tail blood was collected to assay plasma fasting insulin
(1,000 g for 15min at 4°C) using a commercial enzyme-
linked immunosorbent assay (ELISA) kit (ARKIN-011T,
Shibayagi, Japan). Plasma HbA1c levels were measured using
an automatic glycohemoglobin analyzer ADAMS Alc HA-
8160 (Arkray Inc., Kyodo, Japan).

2.4. Intraperitoneal Insulin Tolerance Test and Intraperitoneal
Glucose Tolerance Test. Intraperitoneal insulin tolerance tests
(IPITTs) were performed after six weeks of EA treatment.
After 12h of fasting, an insulin solution of 2 U/kg of body
mass was injected intraperitoneally into the mice; blood
samples were collected for glucose determination prior to
insulin administration and after 15, 30, 60, and 90 min.
Intraperitoneal glucose tolerance tests (IPGTTs) were per-
formed seven weeks following the series of treatments.
Meanwhile, mice that were allowed to fast for 12 h received
an intraperitoneal injection of glucose (1 mg glucose/g body
mass), and blood samples were collected for glucose level
determination at zero, 15, 30, 60, and 120 min following
glucose injection. After insulin or glucose administration,
blood glucose was assayed from 10 uL of blood collected from
the tip of the tail vein.

2.5. Serum FFA, Triglyceride, Total Cholesterol, and Corticos-
terone. After the treatment, blood was collected from the
inner canthus using a capillary, and it was centrifuged at
1,000 g for 15min at 4°C. The resultant serum was stored
at —20°C prior to analysis. Serum FFA or nonesterified fatty
acid, NEFA (ACS-ACOD method), triglyceride or TG (GPO-
DAOS method), and total cholesterol or TC (DAOS method)



Evidence-Based Complementary and Alternative Medicine

IPITT
120 -
# #
= #
o 90
2
E
= #*x #
2 60}
o\o #x
~ #%
2
g
5 30
0 1 1 1 1 1
0 15 30 60 90
Time (min)
—~— db/m —&— db/db

— db/m + EA —*= db/db + EA

IPGTT
800 # 4
3 600 |
o
=3
E
E 400 |
2
3
=
O 200 F
0 1 L Il Il L
0 15 30 60 120
Time (min)
—— db/m —&— db/db
—# db/m + EA —>— db/db + EA

(b)

Figure 1: Effect of electroacupuncture on IPITTs and IPGTTs. (a)
Intraperitoneal insulin tolerance test. Mice were fasted overnight
and then injected with insulin solution (2 U/kg of body mass)
intraperitoneally. Blood glucose levels were determined at the time
points indicated. (b) Intraperitoneal glucose tolerance test. Mice
were fasted overnight and then injected intraperitoneally with
glucose (1 mg glucose/g of body mass). Blood glucose levels were
measured at the indicated time points. Each data point represents
the mean + SE of four mice. *P < .05 versus db/m and db/m+EA,
*P < .05 versus db/db.

were assayed using respective kits (Wako Pure Chemical
Industries, Japan). Serum corticosterone levels were mea-
sured using corticosterone enzyme immunoassay (EIA) kit
(Beckman Coulter, Inc. USA, REF: DSL-10-81100).

2.6. Real-Time Reverse Transcriptional Polymerase Chain
Reaction. Mice were sacrificed at the end of the treatment.
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FIGURE 2: Effect of electroacupuncture on SIRT1 protein expression
in skeletal muscle of nondiabetic db/m and diabetic db/db mice.
Electroacupuncture increased SIRT1 protein expression in both
groups. Total protein obtained from quadriceps muscles of the mice
was subjected to western blotting for SIRT1. a/f-tubulin was used
as a reference protein. Data are shown as the mean + SE of four
mice in each group. * P < .05 versus db/m and db/db.

Excised quadriceps muscle tissues were stored overnight at
4°C in RNAlater solution (Qiagen Inc., Tokyo, Japan), and
subsequently at —20°C prior to total RNA extraction. This
was conducted following the method described in a previous
work [19].

RNA concentrations were determined at the 260/280 nm
absorbance ratio. An aliquot (1ug) of extracted RNA was
reverse transcribed into first-strain complementary DNA
(cDNA) using a PrimeScript RT reagent Kit (Perfect Real
Time, Takara Code RR037A, Japan) following the instruc-
tions provided by the manufacturer. The following thermal
cycling protocol was used for reverse transcription: 30°C for
10 min, 42°C for 45 min, and 99°C for 5min. It was then
stored at 4°C.

Real-time reverse transcriptional polymerase chain reac-
tion (RT-PCR) was performed with a 7700 Real-Time RT-
PCR system (ABI PRISM, 7700 Sequence Detector) using
the DNA-binding dye SYBR green to detect PCR products.
The reaction mixture contained SYBR Green Master Mix
10 yuL (Toyobo Company Ltd., Osaka, Japan), 2 L enhancer,
0.8 uL custom-synthesized primers (forward and reverse
primers, 10 uM), and cDNA equivalent to 20 ng total RNA
in a final reaction volume of 20 yL. PCR protocol included
initial denaturation of 10s at 50°C, followed by 32 cycles
of amplification for 5min at 95°C, 15s at 95°C, and 1 min
at 60°C. Duplicate samples were run for real-time RT-PCR,
and amplification products were qualified using a standard
calibration curve. Relative expression was calculated as
follows: density of the product of respective target gene
divided by that for GAPDH from the same cDNA. Specific
primers used for PCR are listed in Table 1.
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FiGure 3: Effect of electroacupuncture on SITR1, PGC-la, NRF1, and ACOX gene expressions in skeletal muscles of nondiabetic
db/m and diabetic db/db mice. (a) Electroacupuncture had no significant effect on SIRT1 mRNA levels in db/m and db/db mice.
(b) Electroacupuncture upregulated PGC-1a¢ mRNA levels in both db/m and db/db mice. (¢) Electroacupuncture increased NRFI mRNA
levels in db/db mice. (d) Electroacupuncture increased ACOX mRNA levels in db/m and db/db mice. Quadriceps muscles of the mice were
collected for mRNA expression, which was estimated using quantitative real-time RT-PCR and normalized to the expression of GAPDH.
Graph shows the percentage of mRNA relative to GAPDH in each group. Each value represents the mean + SE of four mice. “P < .05 versus

db/m, *P < .05 versus db/db, and SP < .01 versus db/m.

2.7. Western Blotting. A total of 100 mg quadriceps tissue
sample was homogenized in 1 mL ice-cold lysis buffer (2%
lithium lauryl sulfate (LDS), 1v/v% 1.7 mg/mL aprotinin,
1v/v% 10 mg/mL phenylmethylsulfonyl fluoride (PMSEF),
and 1 mM sodium orthovanadate). The homogenate was
centrifuged at 15,000 rpm for 15min at 4°C. Supernatants
were collected, and protein concentrations were determined
using a bicinchoninic acid protein assay kit (Pierce Biotech-
nology, USA, 1859078). Supernatants were stored at —80°C
prior to d use.

Equivalent amounts of protein for each sample were
incubated at 95°C for 5 min in sample buffer. Subsequently,
these were electrophoretically separated on 10% sodium
dodecyl sulfate- (SDS-) polyacrylamide gels (Atto Corpora-
tion, Tokyo, Japan) prior to being transferred onto PVDF
membrane (Pall Corporation). Nonspecific reactivity was
blocked in 5% nonfat dry milk in PBST (10 mM Tris-HCI,
pH 7.5, 150 mM NaCl, 1% Tween-20) for 1h at 6-8°C.
Afterwards, the membrane was incubated overnight at 4°C

with anti-SIRT1 rabbit antibody (07-131; 1:1000; Upstate
Biotechnology, Lake Placid, NY, USA). An antibody that
recognizes «/f-tubulin (no. 2148, 1:1000; Cell Signaling
Technology) was utilized as a reference.

Stabilized goat antirabbit IgG HRP-linked antibody (no.
7074, Cell Signaling Technology) or antimouse IgG HRP-
linked antibody (no. 7076, Cell Signaling Technology) was
used as secondary antibody. Bands were visualized using
an enhanced chemiluminescence Western blotting analysis
system (no. 34095, PIERCE) and luminescent image analyzer
(LAS-4000, Fujifilm Corporation, Tokyo, Japan). Densito-
metry was performed using NIH Image ] software. SIRT1
immunoreactivity was normalized against the a/f-tubulin
result. The experiment was repeated at least thrice for each
protein in each sample.

2.8. Statistical Analysis. Data were expressed as mean =+
SE. Trapezoidal rule was used to determine area under
the IPGTT curve (AUCg). Meanwhile, analysis of variance
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TABLE 1: Primers used in PCR.
Gene Primer sequence Gene number Product length

Fw 5"-CAGTGTCATGGTTCCTTTGC-3’

SIRT1 (mouse, rat) AF214646 104 bp
Rv 5'-CACCGAGGAACTACCTGAT-3’

PGC-1alpha (mouse, rat) Fw 5"-ATGAATGCAGCGGTCTTAGC-3 AF049330 174 bp
Rv 5'-TGGTCAGATACTTGAGAAGC-3'

NRF1 (mouse) Fw 5'-GGAGCACTTACTGGAGTCC-3 NM010938 143 bp
Rv 5'-CTGTCCGATATCCTGGTGGT-3’

ACOX (mouse) Fw 5'-GGTGGTATGGTGTCGTACTTGA-3 NM015729.2 296 bp

Rv 5'-GAATCTTGGGGAGTTTATCTGC-3’
GAPDH (mouse, rat) Fw 5'-GCCAAAAGGGTCATCATCTC-3 BC082592 226 bp

Rv 5'-GGCCATCCACAGTCTTCT-3'

(ANOVA) with subsequent Bonferroni’s test was employed
to determine the significance of differences in multiple
comparisons. A P value of less than .05 was considered
statistically significant.

3. Results

3.1. FBG Decreased and Fasting Plasma Insulin Levels Were
Maintained by EA. At nine weeks of age, the db/db mice
exhibited hyperglycemia compared to their db/m littermates.
It was observed that EA treatment lasting two weeks was
suitable for lowering FBG of db/db mice. After six weeks of
treatment, FBG levels decreased significantly in EA-treated
db/db mice compared with untreated db/db littermates; the
effect became more significant after eight weeks of treatment
(Table 2). EA produced no significant effect on the FBG of
db/m mice compared with untreated db/m mice.

Compared to their db/m littermates, db/db mice exhib-
ited hyperinsulinemia at 11 weeks of age (Table 2). After two
weeks of treatment, improved insulin sensitivity following
EA treatment was demonstrated by reduced insulin levels
in EA-treated mice that were subjected to overnight fasting.
However, after eight weeks of treatment, plasma insulin
levels in EA-treated db/db mice that experienced fasting
were significantly higher than those of untreated db/db
mice. Further, plasma fasting insulin levels in 17-week-old
untreated db/db mice were significantly decreased compared
with untreated db/db mice at 11 weeks of age.

3.2. Body Mass Gain and Food Intake Were Reduced. Body
mass of db/db mice was higher than their db/m littermates at
nine weeks of age. This continued to increase to nearly twice
that of db/m mice by 17 weeks (Table 2). Low-frequency EA
induced a significantly reduced body mass gain among db/db
mice after six weeks of treatment.

Food intake of db/db mice was higher by 1.4 folds to
two folds compared with that of db/m mice throughout the
experiment period. EA reduced food intake of db/db mice
significantly after six weeks of treatment (Table 2).

3.3. Plasma HbAIc Levels Were Not Affected. Plasma HbAlc
levels were measured to investigate the long-term effect
of EA on glucose metabolism. At 17 weeks, db/db mice

displayed markedly higher plasma HbAlc levels compared
with db/m mice. EA treatment induced a decrease in plasma
HbAlc levels in db/db mice compared with non-EA-treated
db/db mice (Table 2), through in the absence of statistical
significance (P = .053).

3.4. EA Decreased Serum FFA, with No Significant Effect
on TC, TG, or Corticosterone Levels. Blood glucose control
may be attributed to improved insulin sensitivity; this may
result in reduced blood lipid levels as well. Serum FFA, TC,
and TG levels were elevated in db/db mice compared with
db/m mice. EA treatment caused a significant decrease in
FFA concentrations in db/db mice compared with untreated
littermates (Table 2). A slight, though insignificant, decrease
in TC and TG was observed as well (Table 2). EA produced
no effect on FFA, TC, or TG in db/m mice compared with
untreated db/m controls.

At the end of treatment, serum corticosterone levels were
measured to evaluate potential stress induced by treatment.
As demonstrated in a previous study [20], db/db mice
displayed higher corticosterone levels than their littermates
(Table 2). EA treatment did not affect serum corticosterone
of db/m or db/db mice, indicating that handling and
treatment were not stressful for the subjects.

3.5. EA Improved IPITT, with No Significant Impact on
IPGTTs and AUCg. Based on insulin tolerance testing, it was
observed that the glucose-lowering effects of insulin were
higher in EA-treated db/db mice compared with untreated
littermates (Figure 1(a)). IPGTTs suggested that glucose
tolerance did not differ significantly between EA-treated and
-untreated db/db mice (Figure 1(b)). AUCg data revealed
a slight decrease, without significance, in EA-treated db/db
mice compared with untreated controls (Table 2).

3.6. EA Increased SIRT1 Protein Expression, Producing No
Effect on SIRT1 mRNA Expression. The effect of EA on
SIRT1 gene expression and protein levels was investigated
in view of SIRT1’s association with metabolic activity
and its critical role in insulin sensitivity. EA significantly
increased SIRT1 protein levels in db/db and db/m mice
(Figure 2), but it produced no significant effect on SIRT1
mRNA levels (Figure 3(a)). This indicates that SIRT1 may be
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TABLE 2: Animal characteristics and blood analyses.

Parameter (unit) db/m (n = 8) db/m+EA (n = 6) db/db (n = 8) db/db+EA (n = 8)
FBG (mg/dl)

Ow 78.8 £ 2.8 752 £ 2.7 149.2 + 13.8* 156 + 21.6*
2w 72.5 + 2.02 64.75 + 2.06 406.5 + 25.40* 365.5 + 19.25*
4w 167 + 19.7 141.8 = 6.2 507.8 + 88.5* 371 + 32.3*
6w 1145 £ 9.1 108.2 £ 5.9 466 + 44.1* 330 = 28.8*1
8w 105.5 + 5.07 83.5+7.5 385 + 34.15* 282 + 31.5%8
Insulin (ng/ml)

2w 0.53 = 0.05 0.54 = 0.03 3.69 = 0.40* 2.05 + 0.24*t
8w 0.53 = 0.05 0.54 = 0.03 2.07 +£0.31* 3.78 + 0.53*t
Body mass (g)

Ow 26.46 + 0.36 26.70 £ 0.28 37.90 + 0.68* 37.59 + 0.14*
2w 27.78 £ 0.45 26.32 +0.40 42.90 + 0.56* 40.95 + 0.82*
4w 28.35 + 0.57 27.65 £ 0.34 45.31 + 0.52* 43.80 + 0.82*
6w 29.37 + 0.80 28.79 £ 0.78 49.01 + 0.60* 4521 + 1.16*1
8w 30.7 £ 0.55 28.28 + 0.46 49.12 + 0.63* 44,95 + 1.45*1
Food intake (g/day)

Ow 4.27 +0.13 4.81 +=0.17 8.27 + 0.72* 7.51 + 1.02*
2w 3.94 +£0.11 4.19 = 0.09 7.93 + 0.62* 7.41 + 0.63*
4w 4.38 = 0.12 3.91 £ 0.08 7.72 + 0.35* 7.08 + 0.38*
6w 3.97 +0.13 4.06 +=0.12 7.27 +0.24* 6.45 + 0.25%1
8w 4.42 +0.13 441 +0.12 7.60 + 0.23* 6.37 + 0.30*t
HbAlc (%) 3.56 + 0.09 3.73 £ 0.12 7.55 + 0.57* 7.03 + 0.56*
FFA (uEq/L) 0.36 = 0.03 0.36 = 0.07 0.76 + 0.04* 0.59 + 0.03**
Triglycerides (mg/dL) 73.1 £ 14.2 66.3 + 4.1 120.6 + 21.9* 96.2 + 8.3*
Cholesterol (mg/dL) 98.3 £ 3.9 90.4 + 5.4 147.3 + 15.15* 131.1 = 2.8*
Corticosterone (ng/mL) 640.3 + 137.8 773.7 £ 92.0 1154.7 + 153.8* 1293.7 + 81.8*
AUCg 902 + 64.7 832 + 24.6 2205 + 156* 2069 + 140*

Data are mean = SE. *P < .05 versus db/m and db/m+EA; TP < .05 versus db/db; SP < .01 versus db/db. HbAlc: glycosylated hemoglobin Alc, FFA: free fatty
acids, AUCg: area under the IPGTT (intraperitoneal glucose tolerance test) curve.

regulated posttranscriptionally. This is supported by a recent
demonstration that SIRT1 levels were posttranscriptionally
modified by phosphorylation of cell cycle-dependent kinase
Cdk1 [21].

3.7. PGC-1a, NRF1, and ACOX mRNA Expressions Were
Upregulated. Transcriptional coactivator PGC-1a is crucial
for mitochondrial biogenesis and fatty acid oxidation. To
detect the effect of EA on mitochondrial biogenesis, PGC-
la gene expression in skeletal muscle was analyzed. The
db/db mice exhibited significantly increased PGC-1a mRNA
expressions compared with the db/m controls (Figure 3(b));
this observation is in agreement with a previous study [22].
EA resulted in modest upregulation of PGC-1lae mRNA (2-
3-fold), which is similar to the effect of Pioglitazone on the
induction of skeletal muscle PGC-1« in db/db mice [23].

NRF1 is a key target of PGC-1 during mitochondrial
biogenesis [24]. NRF1 gene expression in the skeletal muscle
of db/db mice decreased significantly compared with db/m
mice, whereas it increased by two folds to four folds in
EA-treated db/db mice compared with the expression in
untreated littermates (Figure 3(c)).

ACOX, an enzyme involved in the first step of peroxiso-
mal fatty acid oxidation pathway, was analyzed to determine
the fatty acid oxidation capability of skeletal muscle. In db/db
mice, it was observed that EA significantly increased ACOX
gene expression (Figure 3(d)).

4. Discussion

Originating from China thousands of years ago, acupuncture
is now widely practiced in both Eastern Asia and Western
countries for treatment of a variety of human diseases,
including dental pain, fibromyalgia, and knee osteoarthritis.
Recently, numerous reports have proposed its application
on diseases related to insulin resistance such as obesity and
diabetes [13-15].

This study extended such previous investigations,
demonstrating that low-frequency electroacupuncture could
improve insulin sensitivity in db/db mice, a genetically obese
diabetic animal. More importantly, this study suggested
a potential molecular mechanism whereby EA treatment
ameliorates insulin resistance in db/db mice. EA increased
SIRT1 protein expression and upregulated PGC-1«, NRF1,
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FIGURE 4: Schematic model of electroacupuncture on insulin resistance in skeletal muscle. SIRT1-mediated deacetylation of PGCl« is
required to activate genes that are associated with mitochondrial fatty acid oxidation in response to energy demands. The resultant increase in
expression of mitochondrial genes, including NRF1, could exert positive effects on insulin signaling. eNOS: endothelial nitric oxide synthase;
PGCla: peroxisome proliferator-activated receptor y coactivator 1a; SIRT1: Sirtuin 1; NRF1: nuclear respiratory factor 1.

and ACOX gene expression. In turn, this could enhance
mitochondrial biogenesis and fatty acid oxidation and upreg-
ulate insulin-associated signal transduction with subsequent
improvement in insulin resistance.

Stimulation with needles from different point locations
activates muscle afferents to the spinal cord and the central
nervous system. EA induces the frequency-dependent release
of neuropeptides [25]. Low-frequency EA (1-15 Hz) releases
a sizeable number of neuropeptides, and this appears to be
essential for inducing functional changes in different organ
systems. More importantly, low-frequency EA is applied
more frequently for the treatment of insulin resistance with
beneficial results [14, 15]. Indeed, early insulin resistance in
obesity is closely associated with overactivity of the sym-
pathetic nervous system, which induces a proinflammatory
state and thus contributes to the development of T2DM [26].

Low-frequency EA at the points of abdomen and/or
hindlimb attenuates sympathetic nerve activity [27, 28],
whereas EA at the points of upper limbs induces sympathetic
nerve activity [29]. Therefore, this study targeted ST36
points in the hindlimb and CV4 points in the abdomen and
stimulated these with low-frequency EA.

Lines of evidence have demonstrated that EA is capable
of improving hyperglycemia in the fasting stage, with a
marked increase in plasma insulin levels in diabetic rats
[14, 30]. In accordance with these studies, the present work

has demonstrated that eight-week EA treatment decreased
FBG levels and maintained insulin levels. This supports the
suggestion that the effect of EA in regulating BG may be
insulin dependent.

Ameliorated insulin sensitivity after EA was established
by IPITT, which may be attributed to improvement of
responsiveness to insulin via excitation of somatic afferent
fibers by EA [31]. Additionally, this study indicated that EA
decreased HbAlc in the absence of statistical significance,
which may be ascribed to insufficient course of treatment
or limited quantity of subjects. Further, long-term study is
necessary to warrant the effect of EA on HbAlc in more
experimental animals.

SIRT1 levels may increase in rodent and human tissues in
response to calorie restriction and exercise [2]. This increase
is assumed to cause favorable changes in metabolism. Indeed,
activation of SIRT1 has been implicated as potential therapy
to protect against insulin resistance [6, 32]. The present
study revealed that EA activated SIRTI, indicating that
improved insulin resistance by EA may be attributed to
enhanced SIRT1 expression. Further, SIRT1 can protect
against insulin resistance by deacetylating the substrate PGC-
la and increasing PGC-1a activity [33]. PGC-1a was recently
demonstrated to integrate insulin signaling, mitochondrial
regulation, and bioenergetic function in skeletal muscle [23].
Overexpression of PGC-1a rescued insulin signaling and



mitochondrial bioenergetics, and its silencing concordantly
disrupted these activities [23]. Collectively, these studies
support the possibility that EA improves insulin sensitivity,
at least partially, because of increasing SIRT1/PGC-1l« in
skeletal muscle.

Intriguingly, PGC-1a gene expression levels of db/db
mice were higher than those of db/m mice. It is possible that
elevated PGC-1a was a compensatory response to elevated
fatty acid substrate availability and reactive oxygen species
(ROS) stimulation under the oxidative stress of diabetes.
Alternatively, the effect may reflect the posttranslational
regulation of PGC-1a, in which case gene expression may
not always correlate with protein levels [34]. To support this,
db/db mice that develop hyperglycemia have recorded lower
skeletal muscle PGC-1a levels [23] and high PGC-1a mRNA
levels [20] compared with strain-matched C57BL/6] mice. In
this respect, the effect of EA on PGC-1a« protein expression
requires further investigation.

As PGC-1la is a coactivator for NRF1 expression [24],
discrepancy between induced PGC-la and reduced NRF1
gene levels in db/db mice may indicate that mitochon-
drial function was improved by EA [34]. The resultant
increase in expression of mitochondrial genes, including
NRF1, may exert positive effects on insulin signaling [12]
(Figure 4).

This study has its share of limitations. There is no definite
confirmation that EA improves glucose clearance and uptake
into skeletal muscle to account for ITT data. Therefore,
it remains a possibility that the liver, adipose tissues, or
certain tissues are responsible for ITT improvement (e.g.,
electroacupuncture improved P-AMPK in white adipose
tissue and liver; P-Akt improved P-AMPK in white adipose
tissue but not in liver; data not shown).

This study suggested a preliminary mechanism of elec-
troacupuncture. Specifically, low-frequency EA improved
insulin sensitivity in a mouse model of genetic insulin
resistance and diabetes, at least in part, via stimulation of
SIRT1/PGC-1a in the skeletal muscle. Events involved in this
mechanism are presented in Figure 4. This effect leads to a
net switch in the metabolic program of the organism to an
adaptation that may be of benefit in the face of disorders
characterized by insulin resistance. The study introduces
an effective and safe activator (electroacupuncture) for
SIRT1, offering a basis for applying acupuncture in clinical
practice in the treatment of diseases related to insulin
resistance.
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